1
|
Yu DSX, Hui CK, Ismail-Fitry MR, Koirala P, Nirmal N, Nor-Khaizura MAR. High-pressure processing and heat treatment of Murrah buffalo milk: Comparative study on microbial changes during refrigerated storage. Int J Food Microbiol 2025; 426:110926. [PMID: 39368122 DOI: 10.1016/j.ijfoodmicro.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study aims to evaluate the effect of high-pressure processing (HPP) (500 and 600 MPa for 3 min and 5 min) on the microbial changes of Murrah buffalo milk in comparison to heat treatment (72 °C for 15 s of holding time) during refrigerated storage of 28 days. The results indicated that the total plate count (TPC) of raw milk at day 0 was 5.5 ± 0.6 log10 CFU/mL. At day 0, heat treatment lowered TPC to 3.9 ± 0.6, while HPP treatment was in the range of 4.1 ± 0.3 to 4.8 ± 0.6 log10 CFU/mL. Similarly, lowered yeast and mold count and lactic acid bacteria were noted in heat- and HPP-treated milk samples compared to the control sample during refrigerated storage. There were no Staphylococcus aureus and Escherichia coli detected in heat and HPP-treated samples. Heat or HPP treatment at 600 MPa for 5 min significantly extended the shelf-life of Murrah buffalo milk for three weeks at the refrigerated storage. In addition, HPP treatment did not alter the pH, lightness (L* value), protein, or fat content of Murrah buffalo milk during refrigerated storage. Hence HPP at 600 MPa for 5 min could be a suitable alternative to conventional heat treatment.
Collapse
Affiliation(s)
- Darren Sim Xuan Yu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Chong Kah Hui
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agricultural and Food Security Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Yang P, Liao X. High pressure processing plus technologies: Enhancing the inactivation of vegetative microorganisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:145-195. [PMID: 38906586 DOI: 10.1016/bs.afnr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
High pressure processing (HPP) is a non-thermal technology that can ensure microbial safety without compromising food quality. However, the presence of pressure-resistant sub-populations, the revival of sub-lethally injured (SLI) cells, and the resuscitation of viable but non-culturable (VBNC) cells pose challenges for its further development. The combination of HPP with other methods such as moderate temperatures, low pH, and natural antimicrobials (e.g., bacteriocins, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils) or other non-thermal processes (e.g., CO2, UV-TiO2 photocatalysis, ultrasound, pulsed electric fields, ultrafiltration) offers feasible alternatives to enhance microbial inactivation, termed as "HPP plus" technologies. These combinations can effectively eliminate pressure-resistant sub-populations, reduce SLI or VBNC cell populations, and inhibit their revival or resuscitation. This review provides an updated overview of microbial inactivation by "HPP plus" technologies and elucidates possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, P.R. China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; Beijing Key laboratory for Food Non-thermal processing, Beijing, P.R. China.
| |
Collapse
|
3
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes-An Overview of Challenges and Responses. Foods 2023; 13:14. [PMID: 38201041 PMCID: PMC10778341 DOI: 10.3390/foods13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors-pressure values (100-600 MPa), time of operation (a few-several minutes), and temperature of operation (room temperature or lower)-using a liquid medium responsible for pressure transfer. The combination of these three factors results in the inactivation of microorganisms, thus extending food shelf life and improving the food's microbiological safety. HPP can provide high value for the sensory and quality characteristics of products and reduce the population of pathogenic microorganisms such as L. monocytogenes to the required safety level. Nevertheless, the technology is not without impact on the cellular response of pathogens. L. monocytogenes cells surviving the HPP treatment may have multiple damages, which may impact the activation of mechanisms involved in the repair of cellular damage, increased virulence, or antibiotic resistance, as well as an increased expression of genes encoding pathogenicity and antibiotic resistance. This review has demonstrated that HPP is a technology that can reduce L. monocytogenes cells to below detection levels, thus indicating the potential to provide the desired level of safety. However, problems have been noted related to the possibilities of cell recovery during storage and changes in virulence and antibiotic resistance due to the activation of gene expression mechanisms, and the lack of a sufficient number of studies explaining these changes has been reported.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (W.C.-W.); (A.Z.)
| | | | | |
Collapse
|
4
|
Xia J, Jiang N, Zhang B, Sun R, Zhu Y, Xu W, Wang C, Liu Q, Ma Y. Bacterial Changes in Boiled Crayfish between Different Storage Periods and Characterizations of the Specific Spoilage Bacteria. Foods 2023; 12:3006. [PMID: 37628005 PMCID: PMC10453257 DOI: 10.3390/foods12163006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated changes in the microbial compositions of crayfish tails during storage at 4 °C (for 0-12 days) as measured using high-throughput sequencing (HTS). The specific spoilage organisms (SSOs) in the crayfish tails were isolated using culture-dependent cultivation methods, and they were identified by 16S rRNA and characterized for their enzymatic spoilage potentials (e.g., protease, lipase, phospholipase, and amylase). The spoilage abilities of the selected strains in the crayfish tails were assessed by inoculating them into real food. Moreover, the microbial growth and the volatile basic nitrogen (TVB-N) changes were monitored during the storage period. The results from the HTS showed that the dominant genus of shrimp tails evolved from Streptococcus (D0) to Pseudomonas (D4) and, finally, to Paenisporosarcina (D12) during storage. Seven bacterial species (Acinetobacter lwoffii, Aeromonas veronii, Kurthia gibsonii, Pseudomonas sp., Exiguobacterium aurantiacum, Lelliottia amnigena, and Citrobacter freundii) were screened from the spoiled shrimp tails by the culture-dependent method, among which Aeromonas veronii had the strongest spoilage ability.
Collapse
Affiliation(s)
- Jiangyue Xia
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yongzhi Zhu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Weicheng Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qianyuan Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yanhong Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.S.); (Y.Z.); (W.X.); (C.W.); (Q.L.); (Y.M.)
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
5
|
Zhang Z, Chen R, Mao S, Zhang Y, Yao L, Xi J, Luo S, Liu R, Liu Y, Wang R. A novel strategy to enhance photocatalytic killing of foodborne pathogenic bacteria by modification of non-metallic monomeric black phosphorus with Elaeagnus mollis polysaccharides. Int J Biol Macromol 2023; 242:125015. [PMID: 37224903 DOI: 10.1016/j.ijbiomac.2023.125015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
New antibacterial agents are needed to overcome the challenges of microbial food contamination. In this study, we investigated the potential of Elaeagnus mollis polysaccharide (EMP) to modify black phosphorus (BP) for use as a bactericide for foodborne pathogenic bacteria. The resulting compound (EMP-BP) displayed enhanced stability and activity compared with BP. EMP-BP exhibited an increased antibacterial activity (bactericidal efficiency of 99.999 % after 60 min of light exposure) compared to EMP and BP. Further studies revealed that photocatalytically generated reactive oxygen species (ROS) and active polysaccharides acted collectively on the cell membrane, leading to cell deformation and death. Furthermore, EMP-BP inhibited biofilm formation and reduced expression of virulence factors of Staphylococcus aureus, and material hemolysis and cytotoxicity tests prove that the material had good biocompatibility. In addition, bacteria treated with EMP-BP remained highly sensitive to antibiotics and did not develop significant resistance. In summary, we report an environmentally friendly method for controlling pathogenic foodborne bacteria that is efficient and apparently safe.
Collapse
Affiliation(s)
- Zuwang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangzhe Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yajie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shijia Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruixi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Liu J, Yuan S, Han D, Liu J, Zhao L, Wu J. Effects of CO2-assisted high-pressure processing on microbiological and physicochemical properties of Chinese spiced beef. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Impacts of high-hydrostatic pressure on the organoleptic, microbial, and chemical qualities and bacterial community of freshwater clam during storage studied using high-throughput sequencing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Thangavelu KP, Tiwari BK, Kerry JP, Álvarez C. Effect of high-pressure processing in improving the quality of phosphate-reduced Irish breakfast sausages formulated with ultrasound-treated phosphate alternatives. Meat Sci 2022; 194:108981. [PMID: 36156346 DOI: 10.1016/j.meatsci.2022.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022]
Abstract
This work examined the effects of High-pressure processing (HPP) treatment on pork meat subsequently used to generate three phosphate-reduced sausage formulations (1-3) containing ultrasound (US) treated apple pomace (AP) and coffee silverskin (CSS) ingredients as phosphate replacers and compared against control (traditional) sausage formulations. Results showed that HPP and formulations produced significant interactive (P < 0.05) positive changes in the water holding capacity (WHC), cook loss, emulsion stability values. Texture, colour, TBARS, and emulsion stability values for sausage formulations showed no significant interactive impacts. Overall comparison of treatment sausage formulations against control formulations with non-HPP treated meat showed that HPP improved overall sausage quality attributes, where sausage formulation 2 employing HPP-treated meat and US-treated AP and CSS was regarded as the optimal sausage formulation. In conclusion, there is potential to manufacture sausages with reduced-phosphate concentration using combined novel processing technologies and clean label ingredients such as AP and CSS.
Collapse
Affiliation(s)
- Karthikeyan Palanisamy Thangavelu
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Carlos Álvarez
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
9
|
Chen WT, Kuo YL, Chen CH, Wu HT, Chen HW, Fang WP. Improving the stability and bioactivity of curcumin using chitosan-coated liposomes through a combination mode of high-pressure processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kim Y, Shin M, Kang J, Kang D. Effect of sub‐lethal treatment of carvacrol and thymol on virulence potential and resistance to several bactericidal treatments of
Staphylococcus aureus
. J Food Saf 2022. [DOI: 10.1111/jfs.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu‐Min Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Minjung Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
| | - Jun‐Won Kang
- Department of Food Science and Biotechnology Dongguk University‐Seoul Goyang‐si Gyeonggi‐do Republic of Korea
| | - Dong‐Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences Seoul National University Seoul Republic of Korea
- Institutes of Green Bio Science & Technology Seoul National University Pyeongchang‐gun Gangwon‐do Republic of Korea
| |
Collapse
|
11
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
12
|
Chen WT, Wu HT, Chang IC, Chen HW, Fang WP. Preparation of curcumin-loaded liposome with high bioavailability by a novel method of high pressure processing. Chem Phys Lipids 2022; 244:105191. [DOI: 10.1016/j.chemphyslip.2022.105191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
|
13
|
Liu C, Shen Y, Yang M, Chi K, Guo N. Hazard of Staphylococcal Enterotoxins in Food and Promising Strategies for Natural Products against Virulence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2450-2465. [PMID: 35170308 DOI: 10.1021/acs.jafc.1c06773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Staphylococcal enterotoxins (SEs) secreted by Staphylococcus aureus frequently contaminate food and cause serious foodborne diseases but are ignored during food processing and even cold-chain storage. Notably, SEs are stable and resistant to harsh sterilization environments, which can induce more serious hazards to public health than the bacterium itself. Therefore, it is necessary to develop promising strategies to control SE contamination in food and improve food safety. Natural products not only have various pharmaceutical properties, such as antimicrobial and antitoxin activities, but they are also eco-friendly, safe, nutritive, and barely drug-resistant. Here, the hazards of SEs and the promising natural compounds with different inhibitory mechanisms are summarized and classified. The key points of future research and applications for natural products against bacterial toxin contamination in food are also prospected. Overall, this review may provide enlightening insights for screening effective natural compounds to prevent foodborne diseases caused by bacterial toxins.
Collapse
Affiliation(s)
- Chunmei Liu
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Yong Shen
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Kunmei Chi
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
14
|
Inactivation and recovery of bacterial strains, individually and mixed, in milk after high pressure processing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Applications of emerging processing technologies for quality and safety enhancement of non-bovine milk and milk products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Seow WL, Mahyudin NA, Amin-Nordin S, Radu S, Abdul-Mutalib NA. Antimicrobial resistance of Staphylococcus aureus among cooked food and food handlers associated with their occupational information in Klang Valley, Malaysia. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Dong P, Zhou B, Zou H, Wang Y, Liao X, Hu X, Zhang Y. High pressure homogenization inactivation of Escherichia coli and Staphylococcus aureus in phosphate buffered saline, milk and apple juice. Lett Appl Microbiol 2021; 73:159-167. [PMID: 33894066 DOI: 10.1111/lam.13487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022]
Abstract
High pressure homogenization (HPH) offers new opportunities for food pasteurization/sterilization. Escherichia coli and Staphylococcus aureus suspended in phosphate buffered saline (PBS) buffer, milk and apple juice at initial concentration of ~106 log10 CFU per ml were subjected to HPH treatments up to 200 MPa with inlet temperatures at 4-40°C. After HPH at 200 MPa with the inlet temperature at 40°C, the count of E. coli suspended in PBS, milk and apple juice reduced by 3·42, 3·67 and 3·19 log10 CFU per ml respectively while the count of S. aureus decreased by 2·21, 1·02 and 2·33 log10 CFU per ml respectively suggesting that S. aureus was more resistant. The inactivation data were well fitted by the polynomial equation. Milk could provide a protective effect for S. aureus against HPH. After HPH at 200 MPa with the inlet temperature at 20°C, the cell structure of E. coli was destroyed, while no obvious damages were found for S. aureus.
Collapse
Affiliation(s)
- P Dong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture, China Agricultural University, Beijing, China.,Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - B Zhou
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture, China Agricultural University, Beijing, China
| | - H Zou
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Y Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture, China Agricultural University, Beijing, China
| | - X Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture, China Agricultural University, Beijing, China
| | - X Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Y Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing of Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Samani SS, Khojastehnezhad A, Ramezani M, Alibolandi M, Yazdi FT, Mortazavi SA, Khoshbin Z, Abnous K, Taghdisi SM. Ultrasensitive detection of micrococcal nuclease activity and Staphylococcus aureus contamination using optical biosensor technology-A review. Talanta 2021; 226:122168. [DOI: 10.1016/j.talanta.2021.122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
|
19
|
Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 2021; 20:1800-1828. [PMID: 33594773 DOI: 10.1111/1541-4337.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
20
|
Hsiao YT, Chen BY, Huang HW, Wang CY. Inactivation Mechanism of Aspergillus flavus Conidia by High Hydrostatic Pressure. Foodborne Pathog Dis 2021; 18:123-130. [PMID: 33544050 DOI: 10.1089/fpd.2020.2825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the inactivation mechanism of Aspergillus flavus conidia by high hydrostatic pressure (HHP). Activity counts, scanning electron microscopic (SEM) analysis, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to study the effects of the HHP treatment on the morphology and protein composition of A. flavus spores. The results showed that that a 3-min-lasting 600 MPa treatment could completely abolish 107 colony-forming units/mL of live fungi. Furthermore, we also observed that lower spore viability corresponded to a higher Propidium Iodide absorption rate. The SEM images revealed that HHP disrupted the spore morphology and resulted in pore formation that led to the release of intracellular molecules, such as nucleic acids and proteins. The nucleic acid and protein concentration in the spore suspension increased in parallel with the increasing treatment pressure. The SDS-PAGE analysis showed that there were differences in the protein bands between the HHP-treated and untreated A. flavus spores, as the HHP treatment caused partial protein degradation and extracellular release. Therefore, the results of this study proved that high pressure could induce a morphological disruption in the internal and external cellular structures and degrade intracellular and extracellular proteins leading to an inactive state in A. flavus.
Collapse
Affiliation(s)
- Yun-Ting Hsiao
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Bang-Yuan Chen
- Department of Food Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Hsiao-Wen Huang
- Department of Animal science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| |
Collapse
|
21
|
Khouryieh HA. Novel and emerging technologies used by the U.S. food processing industry. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102559] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Galvão FDO, Dantas FGDS, Santos CRDL, Marchioro SB, Cardoso CAL, Wender H, Sangalli A, Almeida-Apolonio AAD, Oliveira KMPD. Cochlospermum regium (Schrank) pilger leaf extract inhibit methicillin-resistant Staphylococcus aureus biofilm formation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113167. [PMID: 32730885 DOI: 10.1016/j.jep.2020.113167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cochlospermum regium, known as "algodãozinho", is an important plant belonging to Brazilian biodiversity used in traditional medicine to treat infections, wounds and skin conditions. AIM OF THE STUDY To assess the effects of aqueous and ethanolic extracts from C. regium leaves on methicillin-resistant Staphylococcus aureus planktonic cells and biofilm formation. MATERIAL AND METHODS The phytochemical characterization of the extracts was carried out by quantification of flavonoids, phenols and tannins and HPLC-DAD. Minimum inhibitory concentrations, cell viability, and enzyme activity inhibition were determined in planktonic cells exposed to C. regium extracts. The effect of the extracts on biofilms was assessed by quantifying colony-forming units (CFUs) and the extracellular matrix, and by visualizing the biofilm structure using scanning electron microscopy. RESULTS Leaf extract contents showed high concentration of phenols and the gallic and ellagic acids were identified. The extracts showed potent antimicrobial activities at concentrations ranging from 62.5-250 μg/mL, and decreased coagulase activity. In addition, the extracts prevented biofilm formation, and the aqueous extract completely inhibited its formation. CONCLUSIONS C. regium extracts stand out as promising alternative treatments for the prevention and treatment of methicillin-resistant Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Fernanda de Oliveira Galvão
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Fabiana Gomes da Silva Dantas
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | | | - Silvana Beutinger Marchioro
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Claudia Andrea Lima Cardoso
- Departamento de Química, Universidade Estadual de Mato Grosso Do Sul (UEMS), Dourados, Mato Grosso do Sul, Brazil
| | - Heberton Wender
- Instituto de Física, Universidade Federal Do Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Andréia Sangalli
- Faculdade Intercultural Indígena, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | | | - Kelly Mari Pires de Oliveira
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil; Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
23
|
Bacillus cereus spores and Staphylococcus aureus sub. aureus vegetative cells inactivation in human milk by high-pressure processing. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Tran T, Lafarge C, Pradelles R, Perrier-Cornet JM, Cayot N, Loupiac C. Effect of high hydrostatic pressure on the structure of the soluble protein fraction in Porphyridium cruentum extracts. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Fraqueza M, Martins C, Gama L, Fernandes M, Fernandes M, Ribeiro M, Hernando B, Barreto A, Alfaia A. High hydrostatic pressure and time effects on hygienic and physical characteristics of natural casings and condiments used in the processing of cured meat sausage. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Guillou S, Membré JM. Inactivation of Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica under High Hydrostatic Pressure: A Quantitative Analysis of Existing Literature Data. J Food Prot 2019; 82:1802-1814. [PMID: 31545104 DOI: 10.4315/0362-028x.jfp-19-132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High hydrostatic pressure processing (HPP) is a mild preservation technique, and its use for processing foods has been widely documented in the literature. However, very few quantitative synthesis studies have been conducted to gather and analyze bacterial inactivation data to identify the mechanisms of HPP-induced bacterial inactivation. The purpose of this study was to conduct a quantitative analysis of three-decimal reduction times (t3δ) from a large set of existing studies to determine the main influencing factors of HPP-induced inactivation of three foodborne pathogens (Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica) in various foods. Inactivation kinetics data sets from 1995 to 2017 were selected, and t3δ values were first estimated by using the nonlinear Weibull model. Bayesian inference was then used within a metaregression analysis to build and test several models and submodels. The best model (lowest error and most parsimonious) was a hierarchical mixed-effects model including pressure intensity, temperature, study, pH, species, and strain as explicative variables and significant factors. Values for t3δ and ZP associated with inactivation under HPP were estimated for each bacterial pathogen, with their associated variability. Interstudy variability explained most of the variability in t3δ values. Strain variability was also important and exceeded interstudy variability for S. aureus, which prevented the development of an overall model for this pathogen. Meta-analysis is not often used in food microbiology but was a valuable quantitative tool for modeling inactivation of L. monocytogenes and Salmonella in response to HPP treatment. Results of this study could be useful for refining quantitative assessment of the effects of HPP on vegetative foodborne pathogens or for more precisely designing costly and labor-intensive experiments with foodborne pathogens.
Collapse
Affiliation(s)
- Sandrine Guillou
- SECALIM, INRA, Oniris, Université Bretagne Loire, Nantes 44307, France (ORCID: https://orcid.org/0000-0002-0607-9229 [S.G.])
| | - Jeanne-Marie Membré
- SECALIM, INRA, Oniris, Université Bretagne Loire, Nantes 44307, France (ORCID: https://orcid.org/0000-0002-0607-9229 [S.G.])
| |
Collapse
|
27
|
Tran T, Denimal E, Lafarge C, Journaux L, Lee JA, Winckler P, Perrier-Cornet JM, Pradelles R, Loupiac C, Cayot N. Effect of high hydrostatic pressure on extraction of B-phycoerythrin from Porphyridium cruentum: Use of confocal microscopy and image processing. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Xiang Q, Liu X, Liu S, Ma Y, Xu C, Bai Y. Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Wu T, Ge Y, Li Y, Xiang Y, Jiang Y, Hu Y. Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. Int J Biol Macromol 2018; 120:1072-1079. [DOI: 10.1016/j.ijbiomac.2018.08.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/27/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
|
30
|
Nanoemulsions of Mentha piperita L. essential oil in combination with mild heat, pulsed electric fields (PEF) and high hydrostatic pressure (HHP) as an alternative to inactivate Escherichia coli O157: H7 in fruit juices. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Borda d’ Água R, Branquinho R, Duarte MP, Maurício E, Fernando AL, Martins R, Fortunato E. Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis. NEW J CHEM 2018. [DOI: 10.1039/c7nj03418k] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibacterial fabric using a simple, reproducible and low cost technique to synthesize high-quality ZnONPs was prepared and characterized.
Collapse
Affiliation(s)
- Raquel Borda d’ Água
- CENIMAT/i3N Departamento de Ciência dos Materiais
- Faculdade de Ciências e Tecnologia (FCT)
- Universidade NOVA de Lisboa (UNL)
- and CEMOP/UNINOVA
- 2829-516 Caparica
| | - Rita Branquinho
- CENIMAT/i3N Departamento de Ciência dos Materiais
- Faculdade de Ciências e Tecnologia (FCT)
- Universidade NOVA de Lisboa (UNL)
- and CEMOP/UNINOVA
- 2829-516 Caparica
| | - Maria Paula Duarte
- MEtRICs/DCTB
- Faculdade de Ciências e Tecnologia (FCT)
- Universidade NOVA de Lisboa (UNL)
- 2829-516 Caparica
- Portugal
| | | | - Ana Luísa Fernando
- MEtRICs/DCTB
- Faculdade de Ciências e Tecnologia (FCT)
- Universidade NOVA de Lisboa (UNL)
- 2829-516 Caparica
- Portugal
| | - Rodrigo Martins
- CENIMAT/i3N Departamento de Ciência dos Materiais
- Faculdade de Ciências e Tecnologia (FCT)
- Universidade NOVA de Lisboa (UNL)
- and CEMOP/UNINOVA
- 2829-516 Caparica
| | - Elvira Fortunato
- CENIMAT/i3N Departamento de Ciência dos Materiais
- Faculdade de Ciências e Tecnologia (FCT)
- Universidade NOVA de Lisboa (UNL)
- and CEMOP/UNINOVA
- 2829-516 Caparica
| |
Collapse
|
32
|
Zhao L, Qin X, Wang Y, Ling J, Shi W, Pang S, Liao X. CO 2 -assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Kultur G, Misra N, Barba FJ, Koubaa M, Gökmen V, Alpas H. Microbial inactivation and evaluation of furan formation in high hydrostatic pressure (HHP) treated vegetable-based infant food. Food Res Int 2017; 101:17-23. [DOI: 10.1016/j.foodres.2017.07.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
|
34
|
Na S, Kim JH, Rhee YK, Oh SW. Enhancing the antimicrobial activity of ginseng against Bacillus cereus and Staphylococcus aureus by heat treatment. Food Sci Biotechnol 2017; 27:203-210. [PMID: 30263741 DOI: 10.1007/s10068-017-0209-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 11/21/2022] Open
Abstract
This study evaluated the antimicrobial activities [diffusion inhibition zone, minimum inhibitory concentration (MIC), and minimum bactericidal concentration], of heated ginseng extracts (ethanol and methanol). The extract yields, ginsenoside compositions, growth inhibitory effects against Bacillus cereus and Staphylococcus aureus and bacterial cell membrane potential changes, were also investigated. Methanol extracts of heated ginseng, showed higher antimicrobial activity than ethanol extracts. B. cereus was more easily inhibited than S. aureus. Ginseng heated at 100 °C for 2 and 16 h, showed maximum antimicrobial activity against B. cereus and S. aureus, respectively. In the growth inhibitory test, S. aureus and B. cereus were completely inhibited after 2 and 8 h culture at the MIC. The cell membrane potential decreased with increasing concentration of extract, indicating cell metabolism disruption. Ginsenosides Rg3, a potent antibacterial substance, which were absent in non-heated ginseng, were produced by heating ginseng at 100 °C for 4 and 8 h, respectively.
Collapse
Affiliation(s)
- Soyoung Na
- 1Department of Food and Nutrition, Kookmin University, Seoul, 136-702 Republic of Korea
| | - Jin-Hee Kim
- 1Department of Food and Nutrition, Kookmin University, Seoul, 136-702 Republic of Korea
| | - Young Kyoung Rhee
- 2Korea Food Research Institute, Seongnam, Gyeonggi-do Republic of Korea
| | - Se-Wook Oh
- 1Department of Food and Nutrition, Kookmin University, Seoul, 136-702 Republic of Korea
| |
Collapse
|