1
|
Zorzi V, Berardinelli A, Gozzi G, Ragni L, Vannini L, Ceccato R, Parrino F. Combined effect of atmospheric gas plasma and UVA light: A sustainable and green alternative for chemical decontamination and microbial inactivation of fish processing water. CHEMOSPHERE 2023; 317:137792. [PMID: 36640987 DOI: 10.1016/j.chemosphere.2023.137792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The simultaneous use of UVA light irradiation coupled with low energy cold plasma generated by a dielectric barrier discharge prototype, results in significant enhancement of efficiency of the integrated process with respect to the sole plasma treatment. This effect has been demonstrated both on microbial inactivation of a food-borne pathogen, i.e. Listeria monocytogenes, and on the degradation of a compound of biological origin such as phenylalanine. In the latter case, the analysis of its reaction intermediates and the spectroscopic identification and quantification of peroxynitrites, allowed to propose mechanistic hypotheses on the nature of the observed synergistic effects. Moreover, it has been demonstrated that the process does not affect the quality of trout fillets, indicating its suitability as a chlorine-free, green, and sustainable tool for the decontamination of fish processing water.
Collapse
Affiliation(s)
- Vittorio Zorzi
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Annachiara Berardinelli
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy; Center Agriculture Food Environment - C3A, University of Trento, Via E. Mach 1, 38010 S, Michele All'Adige (TN), Italy
| | - Giorgia Gozzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, Cesena (FC), Italy
| | - Luigi Ragni
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, Cesena (FC), Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Q. Bucci 336, Cesena (FC), Italy
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, P.zza Goidanich 60, Cesena (FC), Italy; Inter-Departmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Q. Bucci 336, Cesena (FC), Italy
| | - Riccardo Ceccato
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Francesco Parrino
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
2
|
|
3
|
Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108338] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
El Kadri H, Costello KM, Thomas P, Wantock T, Sandison G, Harle T, Fabris AL, Gutierrez-Merino J, Velliou EG. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. Food Res Int 2021; 141:110126. [PMID: 33641993 DOI: 10.1016/j.foodres.2021.110126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a minimal food processing technology of increasing interest in the food industry, as it is mild in nature compared to traditional methods (e.g. pasteurisation) and thus can maintain the food's desirable qualities. However, due to this mild nature, the potential exists for post-treatment microbial survival and/or stress adaptation. Furthermore, biofilm inactivation by CAP is underexplored and mostly studied on specific foods or on plastic/polymer surfaces. Co-culture effects, biofilm age, and innate biofilm-associated resistance could all impact CAP efficacy, while studies on real foods are limited to the food product investigated without accounting for structural complexity. The effect of a Remote and Enclosed CAP device (Fourth State Medicine Ltd) was investigated on Escherichia coli and Listeria innocua grown as planktonic cells and as single or mixed bacterial biofilms of variable age, on a biphasic viscoelastic food model of controlled rheological and structural complexity. Post-CAP viability was assessed by plate counts, cell sublethal injury was quantified using flow cytometry, and biofilms were characterised and assessed using total protein content and microscopy techniques. A greater impact of CAP on planktonic cells was observed at higher air flow rates, where the ReCAP device operates in a mode more favourable to reactive oxygen species than reactive nitrogen species. Although planktonic E. coli was more susceptible to CAP than planktonic L. innocua, the opposite was observed in biofilm form. The efficacy of CAP was reduced with increasing biofilm age. Furthermore, E. coli produced much higher protein content in both single and mixed biofilms than L. innocua. Consequently, greater survival of L. innocua in mixed biofilms was attributed to a protective effect from E. coli. These results show that biofilm susceptibility to CAP is age and bacteria dependent, and that in mixed biofilms bacteria may become less susceptible to CAP. These findings are of significance to the food industry for the development of effective food decontamination methods using CAP.
Collapse
Affiliation(s)
- Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Phillip Thomas
- Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | | | | | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
5
|
Berardinelli A, Hamrouni A, Dirè S, Ceccato R, Camera-Roda G, Ragni L, Palmisano L, Parrino F. Features and application of coupled cold plasma and photocatalysis processes for decontamination of water. CHEMOSPHERE 2021; 262:128336. [PMID: 33182148 DOI: 10.1016/j.chemosphere.2020.128336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Dielectric barrier discharge plasma and photocatalysis have been proposed as tools for decontamination of process water, especially in food industry. The present investigation aims to redefine and identify the features of coupling the two technologies in terms of degradation efficiency of a model compound. Results show that, when the process is carried out in plasma activated water in the presence of irradiated TiO2, the efficiency of the integrated process is lower than the sum of the two processes acting separately. It is proposed that afterglow species, e.g. hydrogen peroxide and/or peroxynitrites could be activated by UVA light irradiation producing hydroxyl radicals in the liquid phase. Even if TiO2 limits this additional effect by acting as UVA screen barrier material, its decontamination efficiency under certain conditions results higher than that obtained with plasma systems. These results open the route to chlorine-free decontamination processes and redefine the application framework of this integrated approach.
Collapse
Affiliation(s)
- Annachiara Berardinelli
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy; Centro Agricoltura Alimenti Ambiente - C3A, University of Trento, Via E. Mach 1, 38010, S. Michele all'Adige (TN), Italy
| | - Abdessalem Hamrouni
- Laboratoire de Recherche Catalyse et Matériaux pour l'Environnement et les Procédés URCMEP (UR11ES85), Faculté des Sciences de Gabès/Université de Gabès, Campus Universitaire Cité Erriadh, Gabès, 6072, Tunisia
| | - Sandra Dirè
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Riccardo Ceccato
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Giovanni Camera-Roda
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, via Terracini 28, Bologna, 40131, Italy
| | - Luigi Ragni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Piazza Goidanich 60, 47521, Cesena (FC), Italy; Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521, Cesena (FC), Italy
| | - Leonardo Palmisano
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze Ed. 6, Palermo, 90128, Italy
| | - Francesco Parrino
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
6
|
Feizollahi E, Misra NN, Roopesh MS. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 2020; 61:666-689. [PMID: 32208859 DOI: 10.1080/10408398.2020.1743967] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atmospheric cold plasma (ACP) is an emerging technology in the food industry with a huge antimicrobial potential to improve safety and extend the shelf life of food products. Dielectric barrier discharge (DBD) is a popular approach for generating ACP. Thanks to the numerous advantages of DBD ACP, it is proving to be successful in a number of applications, including microbial decontamination of foods. The antimicrobial efficacy of DBD ACP is influenced by multiple factors. This review presents an overview of ACP sources, with an emphasis on DBD, and an analysis of their antimicrobial efficacy in foods in open atmosphere and in-package modes. Specifically, the influence of process, product, and microbiological factors influencing the antimicrobial efficacy of DBD ACP are critically reviewed. DBD ACP is a promising technology that can improve food safety with minimal impact on food quality under optimal conditions. Once the issues pertinent to scale-up of plasma sources are appropriately addressed, the DBD ACP technology will find wider adaptation in food industry.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, NS, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Bahrami A, Moaddabdoost Baboli Z, Schimmel K, Jafari SM, Williams L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Kilonzo-Nthenge A, Liu S, Yannam S, Patras A. Atmospheric Cold Plasma Inactivation of Salmonella and Escherichia coli on the Surface of Golden Delicious Apples. Front Nutr 2018; 5:120. [PMID: 30619867 PMCID: PMC6297369 DOI: 10.3389/fnut.2018.00120] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
The contamination of fruits with human pathogens is a reoccurring concern in the fresh produce industry. Atmospheric cold plasma (ACP) is a potential alternate to customary approaches for non-thermal decontamination of foods. In this study, the efficacy of a dielectric barrier discharge ACP system against Salmonella (Salmonella Typhimurium, ATCC 13311; Salmonella Choleraesuis, ATCC 10708) and Escherichia coli (ATCC 25922, ATCC 11775) was explored. For each bacteria, a two-strain mixture at 8 log10 CFU/ml was spot inoculated on the surface of Golden Delicious apples, air dried, and exposed to ACP at a fixed distance of 35 mm, input power of 200 W for 30, 60, 120, 180, and 240 s. Bacterial inactivation was achieved in all treatment times with highest reduction of 5.3 log10 CFU/cm2 for Salmonella and 5.5 log10 CFU/cm2 for E. coli. Our results showed that reductions were interrelated to exposure time and ranged from 1.3 to 5.3 and 0.6 to 5.5 log10 CFU/cm2 for Salmonella and E. coli, respectively. Salmonella and E. coli significantly decreased (>5.0 log) at 180 and 240 s as compared to 30, 60, and 120 s exposure. Microbial inactivation data was modeled by using Weibull distribution. These findings demonstrate the potential of ACP as a postharvest technology to effectively reduce pathogens on apples, with reference to Salmonella and E. coli.
Collapse
Affiliation(s)
- Agnes Kilonzo-Nthenge
- Department of Human Sciences, Tennessee State University, Nashville, TN, United States
| | - Siqin Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Sudheer Yannam
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Ankit Patras
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
9
|
Ritter AC, Santi L, Vannini L, Beys-da-Silva WO, Gozzi G, Yates J, Ragni L, Brandelli A. Comparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiol 2018; 76:310-318. [DOI: 10.1016/j.fm.2018.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
|
10
|
Trevisani M, Berardinelli A, Cevoli C, Cecchini M, Ragni L, Pasquali F. Effects of sanitizing treatments with atmospheric cold plasma, SDS and lactic acid on verotoxin-producing Escherichia coli and Listeria monocytogenes in red chicory (radicchio). Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|