1
|
Visockis M, Ruzgys P, Gelažunaitė S, Vykertas S, Šatkauskas S. Application of pulsed electric field (PEF) as a strategy to enhance aminoglycosides efficacy against Gram-negative bacteria. Bioelectrochemistry 2025; 164:108935. [PMID: 39933400 DOI: 10.1016/j.bioelechem.2025.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
In this study, two aminoglycosides (AGs), Kanamycin and Gentamicin, with similar modes of action and molecular weights, were combined with PEF treatment to enhance the inactivation of E. coli cells. Various PEF strengths were applied to assess the combined effect. To compare the inactivation efficacy of different AGs, bacterial growth measurements in suspension were performed at 3 and 10 h intervals over a 10-h period after PEF treatment. Interestingly, it was found that the additive effect of PEF treatment on E. coli growth inhibition was significantly greater with Kanamycin (IC50) than with Gentamicin (IC50). Further analysis revealed that the combined treatment with Kanamycin (IC50) was most effective within a timeframe of around 3 h. Our findings suggest that PEF treatment can significantly enhance the efficacy of AGs against Gram-negative bacteria; however, the extent of the additive effect varies depending on the specific antibiotic and the intensity of the applied PEF treatment.
Collapse
Affiliation(s)
- Mindaugas Visockis
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Simona Gelažunaitė
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Salvijus Vykertas
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, Akademija, Kaunas District, LT-53361, Lithuania.
| |
Collapse
|
2
|
Zhuo G, Xiong F, Ping-Ping W, Chin-Ping T, Chun C. Ultrasonic collaborative pulse extraction of sugarcane polyphenol with good antiaging and α-glucosidase inhibitory activity. Int J Biol Macromol 2025; 297:139930. [PMID: 39824408 DOI: 10.1016/j.ijbiomac.2025.139930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Sugarcane, as one important and heavily planted industrial crop, is meaningful to develop its byproducts. In this paper, the ultrasonic collaborative pulse was beneficial for the yield improvement and good bioactivity protection. The sugarcane polyphenol extract (SPE) yield reached 2.42 ± 0.08 mg/g DW at the optimized conditions: pulse time of 60 s, pulse intensity of 2 kV/cm, ultrasonic time of 90 min, and ultrasonic power of 120 W. The SPE contained the total phenolic content of 6.01 ± 0.12 mg GAE/g extract and total flavonoids content of 7.15 ± 0.24 mg RE/g extract. The SPE was mainly composed of chlorogenic acid, schaftoside, hyperoside, quercitrin, and trans-3-hydroxycinnamic acid with 10.24 %, 14.92 %, 4.22 %, 12.05 %, 25.54 %, respectively. The SPE showed good radical scavenging activity with ORAC value of 134.57 μmol/g. The SPE could reduce the oxidative stress and extend the mean lifespan of nematodes by 7.19 % in vivo through increasing the activity of SOD and CAT to decrease the ROS level and MDA content. In addition, the SPE showed strong α-glucosidase inhibitory activity with IC50 of 0.53 mg/mL in a mixed inhibition type, which suggested that the SPE had good hypoglycemic potential.
Collapse
Affiliation(s)
- Gu Zhuo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Wang Ping-Ping
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
3
|
Svoboda P, Ovesná J, Helmer Š, Stránská M. Pulsed Electric Field Treatment Modulates Gene Expression and Stress Responses in Fusarium-Infected Malting Barley. PLANTS (BASEL, SWITZERLAND) 2025; 14:668. [PMID: 40094521 PMCID: PMC11901457 DOI: 10.3390/plants14050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Malting is a critical step in barley (Hordeum vulgare) processing, transforming grain into a key raw material for brewing and food production. However, the process is often compromised by Fusarium spp., pathogens responsible for Fusarium Head Blight, which reduces grain quality and safety. Pulsed electric field (PEF) treatment, a promising non-thermal technology, has been studied for its potential to inactivate microbial pathogens and mitigate infection-related stress. In this study, we investigated transcriptional responses in barley infected with Fusarium spp. during malting, both with and without PEF treatment. RNA sequencing identified over 12,000 differentially expressed genes (DEGs) across four malting stages, with the third stage (24 h of germination) showing the highest transcriptional activity. DEGs were significantly enriched in pathways related to oxidative stress management and abscisic acid signaling, underscoring their importance in stress adaptation. Barley treated with PEF exhibited fewer DEGs in later malting stages compared to untreated samples, suggesting that PEF alleviates stress induced by both Fusarium infection and the malting process. Enrichment analysis further revealed that PEF treatment up-regulated stress-related pathways while down-regulating genes associated with photosynthesis and cell wall biogenesis. These findings provide novel insights into barley stress responses during malting and highlight the potential of PEF as a tool for enhancing malt quality under stress conditions.
Collapse
Affiliation(s)
- Pavel Svoboda
- Department of Molecular Genetics, Czech Agrifood Research Center (former Crop Research Institute), Drnovská 507, 161 06 Prague, Czech Republic;
| | - Jaroslava Ovesná
- Department of Molecular Genetics, Czech Agrifood Research Center (former Crop Research Institute), Drnovská 507, 161 06 Prague, Czech Republic;
| | - Štěpán Helmer
- Department of Molecular Genetics, Czech Agrifood Research Center (former Crop Research Institute), Drnovská 507, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Faculty of Agrobiology, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic
| | - Milena Stránská
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic;
| |
Collapse
|
4
|
Visockis M, Ruzgys P, Gelažunaitė S, Vykertas S, Šatkauskas S. Detection of Gram-positive and Gram-negative bacteria membrane permeabilization induced by pulsed electric field using electrochemical admittance spectroscopy. Bioelectrochemistry 2025; 161:108835. [PMID: 39442497 DOI: 10.1016/j.bioelechem.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Electrochemical impedance or admittance spectroscopy (EIS or EAS) has been widely used for decades, offering a label-free, rapid, real-time, and non-destructive assay for optically opaque and turbid bacterial solutions. However, PEF-induced changes in the bacterial envelope can present challenges in detecting the extent of membrane permeabilization in both Gram-positive and Gram-negative bacteria due to their distinct morphological properties. Here, we used a new approach for detecting bacterial membrane permeabilization induced by PEF using electrochemical admittance spectroscopy (EAS). The metabolic activity results have shown that the larger L. d. bulgaricus bacteria was found to be significantly more resistant to PEF strengths ranging from 4 to 16 kV/cm than the smaller E. coli bacteria at shorter PEF treatment durations (10 × 10 µs pulses). Interestingly, the difference in the increase of the admittance magnitude and a decrease in phase angle between the PEF treatment times of 10 × 10 µs and 10 × 100 µs pulses at different PEF strengths was more pronounced for E. coli bacteria samples. Our results demonstrate that EAS is more effective in comparing the degree of membrane permeabilization of Gram-positive and Gram-negative bacteria when longer PEF treatment durations are applied.
Collapse
Affiliation(s)
- Mindaugas Visockis
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Paulius Ruzgys
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Simona Gelažunaitė
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Salvijus Vykertas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania
| | - Saulius Šatkauskas
- Research Institute of Natural Sciences and Technology, Vytautas Magnus University, Universiteto str. 10, Akademija, Kaunas District LT-53361, Lithuania.
| |
Collapse
|
5
|
Razola-Díaz MDC, Sevenich R, Schlüter OK, Verardo V, Gómez-Caravaca AM. Improving Olive Leaf Phenolic Extraction with Pulsed Electric Field Technology Pre-Treatment. Foods 2025; 14:368. [PMID: 39941961 PMCID: PMC11816887 DOI: 10.3390/foods14030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
The olive leaf is one of the main by-products from the olive oil industry. This by-product is a rich source of phenolic compounds that have been shown to possess beneficial health activities, which are due in part to their antioxidant activities. Therefore, the revaluation of this by-product would be of great importance for the food industry. For this reason, this study focuses on the pretreatment of olive leaves with a technology based on the use of pulsed electric fields (PEF) and their following extraction by ultrasounds in order to obtain an extract enriched in phenolic compounds. A Box-Behnken design of 15 experiments with three independent factors has been carried out: electric field strength (kV/cm), frequency (Hz) and total treatment time (s). The response variables were the sum of phenolic compounds, hydroxytyrosol and oleuropein measured by HPLC-MS-ESI-TOF and the antioxidant activity measured by DPPH. The validity of the experimental design was confirmed by ANOVA and the optimal conditions were established by using the response surface methodology in combination with a desirability function. The PEF optimal conditions were 0.6 kV/cm at 90 Hz for 11 s, which allowed for obtaining an olive leaf extract with 26.8, 21.7 and 15.6% higher contents of hydroxytyrosol, oleuropein and total phenolic compounds, respectively, compared to the non-treated sample with PEF. The antioxidant activity measured by DPPH was increased significantly by 32.3%. The data confirmed that the pre-treatment with PEF under these optimal conditions has proven to be effective in improving the extraction of phenolic compounds in olive leaves.
Collapse
Affiliation(s)
- María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (M.d.C.R.-D.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento s/n., 18100 Granada, Spain
| | - Robert Sevenich
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Alle 100, D-14469 Potsdam, Germany
| | - Oliver K. Schlüter
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Alle 100, D-14469 Potsdam, Germany
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (M.d.C.R.-D.); (V.V.)
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento s/n., 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento s/n., 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
6
|
Milanezzi GC, Silva EK. Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohydr Polym 2025; 348:122793. [PMID: 39562069 DOI: 10.1016/j.carbpol.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 11/21/2024]
Abstract
Starch, a polysaccharide primarily composed of amylose and amylopectin, serves as a critical energy source in plants. However, its native properties often limit its application in the food industry. To overcome these limitations, starch modification is essential for enhancing its technological characteristics. In this context, this review explored the impacts of pulsed electric field (PEF) technology on starch modification. PEF, along with other electrotechnologies, utilizes high-voltage electrical pulses to induce structural and chemical changes in starch granules, leading to improvements in properties such as gelatinization, solubility, viscosity, and swelling capacity. Although PEF is a non-thermal process, it enables significant structural and physicochemical modifications in starch. By avoiding high temperatures that can cause changes in color, flavor, and degradation of essential nutrients, PEF-modified starch results in better preservation of nutritional and sensory qualities, while also enhancing its performance in various industrial processes. Despite its advantages, challenges such as the need for standardized protocols and potential unwanted side reactions at high intensities remain. This review examined the effectiveness of PEF in modifying starch for enhanced technological applications in the food industry, addressing both its benefits and limitations. Additionally, the article provided a foundational overview of starch, including its chemical structure, functionalities, and sources, both conventional and non-conventional, ensuring a comprehensive understanding of how PEF can be applied to optimize starch properties for industrial use.
Collapse
Affiliation(s)
- Gabriela Carolina Milanezzi
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil.
| |
Collapse
|
7
|
Niu D, Feng X, Zhang A, Li K, Wang LH, Zeng XA, Wang S. Revealing the synergistic antibacterial mechanisms of resveratrol (RES) and pulsed electric field (PEF) against Acetobacter sp. Food Res Int 2024; 197:115237. [PMID: 39577929 DOI: 10.1016/j.foodres.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
In the wine industry, Acetobacter sp. is a typical spoilage microorganism responsible for increased volatile acids and wine spoilage. This study investigated the impact of combined treatment using varying concentrations of resveratrol (RES) and pulsed electric field (PEF) on the bactericidal efficacy, intracellular enzyme activities, and cellular metabolism of Acetobacter sp. The results from the Weibull mathematical model revealed a notable enhancement in the bactericidal effectiveness of the RES and PEF treatments with increasing RES concentration. In addition, the synergies between RES and PEF might not only resulted in the deactivation of Alcohol dehydrogenase (ADH) and Aldehyde dehydrogenase (ALDH) of Acetobacter sp., but also induced modifications in the secondary and tertiary structures of intracellular enzymes as evidenced by fluorescence, ultraviolet, fourier transform infrared, and circular dichroism spectra. Furthermore, metabolomics results showed that 1,910 metabolites exhibited differential expression, with 1,118 metabolites being down-regulated and 792 metabolites being up-regulated. After the synergies between RES and PEF, 17 biochemical pathways were significantly changed, mainly involving amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, nucleotide metabolism, etc. These findings demonstrated that the combined treatment of RES and PEF can effectively suppress the growth of Acetobacter sp. and the inactivation mechanism of Acetobacter sp. by PEF in conjunction with RES was revealed.
Collapse
Affiliation(s)
- Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Xiaoqin Feng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ailin Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lang-Hong Wang
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Science and Engineering, Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Sweers L, Mishyna M, Ahrné L, Boom R, Fogliano V, Patra T, Lakemond C, Keppler J. Pulsed electric field processing of edible insect slurries induces thermally-assisted microbial inactivation. Curr Res Food Sci 2024; 10:100940. [PMID: 39703210 PMCID: PMC11653145 DOI: 10.1016/j.crfs.2024.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Insect-based food ingredients are emerging as sustainable protein sources, but their production requires ensuring microbial safety and inactivation of endogenous enzymes to avoid undesirable proteolysis, without compromising protein structure. While traditional thermal processing affects the protein structure, the potential of pulsed electric field (PEF) technology to inactivate microorganisms in lesser mealworm and house cricket slurries at pH 3 while simultaneously retaining the native protein structure is yet unexplored. Lesser mealworm and house cricket slurries at pH 3 were subjected to continuous and batch PEF treatments with varying intensities (0-450 kJ/kg). Microbial inactivation (aerobes, anaerobes, yeasts, and moulds), temperature changes, protein solubility, protein structure (SDS-PAGE and FTIR), and endogenous protease activity were assessed. For both insect species, high-intensity PEF (>150 kJ/kg) achieved up to 5 log microbial reduction, but increased temperatures up to 75 °C, altering protein structure. Low-intensity PEF did not affect protein conformation and protease activity, but was not effective in microbial inactivation (<1 log reduction). We conclude that while PEF can effectively inactivate microorganisms, it cannot be considered a non-thermal method for the present sample conditions due to the temperature increase at higher intensities. PEF could be well-suitable for incorporation in hurdle techniques, such as combinations with moderate heating. Future research should investigate synergistic effects of PEF, also for using alternative PEF set-ups, with other mild processing techniques for effective microbial inactivation while preserving native protein structure. Furthermore, optimal PEF intensities for enhanced protein solubility should be explored.
Collapse
Affiliation(s)
- L.J.H. Sweers
- Food Process Engineering Group, Wageningen University and Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - M. Mishyna
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - L.M. Ahrné
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958, Frederiksberg C, Denmark
| | - R.M. Boom
- Food Process Engineering Group, Wageningen University and Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - V. Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - T. Patra
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958, Frederiksberg C, Denmark
| | - C.M.M. Lakemond
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| | - J.K. Keppler
- Food Process Engineering Group, Wageningen University and Research, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
9
|
Salee N, Naruenartwongsakul S, Chaiyana W, Yawootti A, Suthapakti K, Simapaisarn P, Chaisan W, Utama-Ang N. Enhancing catechins, antioxidant and sirtuin 1 enzyme stimulation activities in green tea extract through pulse electric field-assisted water extraction: Optimization by response surface methodology approach. Heliyon 2024; 10:e36479. [PMID: 39253176 PMCID: PMC11382074 DOI: 10.1016/j.heliyon.2024.e36479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Green tea is an economic resource in Thailand because it is derived from smallholder agriculture and has expanded into food production. The purpose of this study is to optimize the parameters of pulsed electric field (PEF) assisted green tea extraction to produce a natural health product. A central composite design was involved to determine the effect of independent variables, including the intensity of electric field (I; 3-5 kV/cm), number of pulses (Np; 1000 to 3000 pulses) and green tea-to-water ratio (GT/W; 0.05-0.15 g/mL) on catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC) and epigallocatechin gallate (EGCG), total phenolic compound, antioxidant and sirtuin 1 enzyme stimulating activities. The results indicated that the Np had the most significant impact (p < 0.05) on the content of catechin and its derivatives and sirtuin 1 enzyme stimulating activity. The observations revealed that the I had a greater impact on antioxidant activities compared to the Np. The optimal conditions for PEF using the response surface method were determined to be I of 5 kV/cm, Np of 3000 pulses, GT/W of 0.14 g/mL and specific energy of 27 kJ/kg. Under the optimized conditions, the content of C, EC, ECG, EGC and EGCG were 7.34 ± 0.33, 11.26 ± 0.25, 3.75 ± 0.13, 7.53 ± 0.77 and 37.78 ± 0.58 mg/g extract, respectively. Furthermore, it was observed that green tea extract exhibited the ability to modulate the deacetylation activity of the sirtuin 1 enzyme, with a value of 22.63 ± 0.17 FIR. The results emphasized that the PEF led to achieving better responses compared to without pre-treatment using the PEF. Therefore, innovative technologies as PEF can be utilized for green tea extraction to produce natural ingredients, which can contribute to improved accessibility to healthcare. Additionally, the implementation of innovation techniques, such as PEF, in the extraction industry can enhance productivity growth and economic development.
Collapse
Affiliation(s)
- Nuttinee Salee
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Srisuwan Naruenartwongsakul
- Division of Food Engineering Development Technology, Faculty of Agro-Industry, Chiang Mai University, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Thailand
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
| | - Kanyarat Suthapakti
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Piyawan Simapaisarn
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Worrapob Chaisan
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| | - Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| |
Collapse
|
10
|
Psarianos M, Iranshahi K, Rossi S, Gottardi D, Schlüter O. Quality evaluation of house cricket flour processed by electrohydrodynamic drying and pulsed electric fields treatment. Food Chem 2024; 441:138276. [PMID: 38215501 DOI: 10.1016/j.foodchem.2023.138276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024]
Abstract
House crickets are expected to play a significant role in the future food sector. Electrohydrodynamic (EHD) drying offers an environmentally friendly alternative to conventional drying methods. Pulsed electric fields (PEF) is a non-thermal process that facilitates conventional processes. EHD was applied to house crickets with and without PEF pretreatment, and the effect of PEF and EHD on the quality of the insects was evaluated. PEF pretreatment positively affected the oven drying at 60 °C by reducing its duration and thus decreasing the energy consumption by 14.22%. Moisture removal of EHD was not sufficient to replace oven drying, but when combined with oven drying, the overall energy consumption was reduced by >50%. PEF processing also increased the protein solubility (53.07% higher than the respective control) and antioxidant activity (24.05% higher than the respective control) of the oven-dried samples and reduced the histamine content of the EHD-dried samples (25.87% lower than the respective control).
Collapse
Affiliation(s)
- Marios Psarianos
- Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Kamran Iranshahi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH-Zurich, Zurich 8092, Switzerland.
| | - Samantha Rossi
- University of Bologna, Department of Agricultural and Food Sciences, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Davide Gottardi
- University of Bologna, Department of Agricultural and Food Sciences, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Oliver Schlüter
- Horticultural Engineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Bologna, Department of Agricultural and Food Sciences, Piazza Goidanich 60, 47521 Cesena, Italy.
| |
Collapse
|
11
|
Poli G, Bologna E, Saguy IS. Possible interactions between selected food processing and medications. Front Nutr 2024; 11:1380010. [PMID: 38680533 PMCID: PMC11045975 DOI: 10.3389/fnut.2024.1380010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
The impact of food processing on drug absorption, metabolism, and subsequent pharmacological activity is a pressing yet insufficiently explored area of research. Overlooking food-processing-drug interactions can significantly disrupt optimal clinical patient management. The challenges extend beyond merely considering the type and timing of food ingestion as to drug uptake; the specific food processing methods applied play a pivotal role. This study delves into both selected thermal and non-thermal food processing techniques, investigating their potential interference with the established pharmacokinetics of medications. Within the realm of thermal processing, conventional methods like deep fat frying, grilling, or barbecuing not only reduce the enteric absorption of drugs but also may give rise to side-products such as acrylamide, aldehydes, oxysterols, and oxyphytosterols. When produced in elevated quantities, these compounds exhibit enterotoxic and pro-inflammatory effects, potentially impacting the metabolism of various medications. Of note, a variety of thermal processing is frequently adopted during the preparation of diverse traditional herbal medicines. Conversely, circumventing high heat through innovative approaches (e.g., high-pressure processing, pulsed electric fields, plasma technology), opens new avenues to improve food quality, efficiency, bioavailability, and sustainability. However, it is crucial to exercise caution to prevent the excessive uptake of active compounds in specific patient categories. The potential interactions between food processing methods and their consequences, whether beneficial or adverse, on drug interactions can pose health hazards in certain cases. Recognizing this knowledge gap underscores the urgency for intensified and targeted scientific inquiry into the multitude of conceivable interactions among food composition, processing methods, and pharmaceutical agents. A thorough investigation into the underlying mechanisms is imperative. The complexity of this field requires substantial scrutiny and collaborative efforts across diverse domains, including medicine, pharmacology, nutrition, food science, food technology, and food engineering.
Collapse
Affiliation(s)
- Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Turin, Italy
| | - Ettore Bologna
- Medical Service Fondazione Piera Pietro and Giovanni Ferrero, Alba, Italy
| | - I. Sam Saguy
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
12
|
De Gol C, Moodycliffe A, den Besten HMW, Zwietering MH, Beyrer M. Pulsed electric field treatment for preservation of Chlorella suspensions and retention of gelling capacity. Food Res Int 2024; 182:114154. [PMID: 38519182 DOI: 10.1016/j.foodres.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/04/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Pulsed electric field (PEF) processing has emerged as an alternative to thermal pasteurization for the shelf-life extension of heat-sensitive liquids at industrial scale. It offers the advantage of minimal alteration in physicochemical characteristics and functional properties. In this study, a pilot-scale continuous PEF processing (Toutlet < 55 °C) was applied to microalgae Chlorella vulgaris (Cv) suspensions (pH = 6.5), which was proposed as a functional ingredient for plant-based foods. Cv suspensions were inoculated with three distinct food spoilage microorganisms (Pseudomonas guariconensis, Enterobacter soli and Lactococcus lactis), isolated from the Cv biomass. PEF treatments were applied with varying electric field strength Eel of 16 to 28 kV/cm, pulse repetition rate f of 100 to 140 Hz, with a pulse width τ of 20 μs and an inlet product temperature Tin of 30 °C. The aim was to evaluate the PEF-induced microbial reduction and monitor the microbial outgrowth during a 10-day cold storage period (10 °C). Maximum inactivation of 4.1, 3.7 and 3.6 logs was achieved (28 kV/cm and 120 Hz) for the investigated isolates, respectively. Under these conditions, the critical electric field strengths Ecrit, above which inactivation was observed, ranged from 22.6 to 24.6 kV/cm. Moreover, repeated PEF treatment resulted in similar inactivation efficiency, indicating its potential to enhance shelf-life further.
Collapse
Affiliation(s)
- Cora De Gol
- University of Applied Sciences and Arts Western Switzerland, School of Engineering, Sion, Switzerland; Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Ailsa Moodycliffe
- University of Applied Sciences and Arts Western Switzerland, School of Engineering, Sion, Switzerland
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Michael Beyrer
- University of Applied Sciences and Arts Western Switzerland, School of Engineering, Sion, Switzerland.
| |
Collapse
|
13
|
Rrucaj E, Carpentieri S, Scognamiglio M, Siano F, Ferrari G, Pataro G. Sustainable Valorization of Industrial Cherry Pomace: A Novel Cascade Approach Using Pulsed Electric Fields and Ultrasound Assisted-Extraction. Foods 2024; 13:1043. [PMID: 38611349 PMCID: PMC11012044 DOI: 10.3390/foods13071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, a two-stage cascade extraction process utilizing pulsed electric fields (PEF) (3 kV/cm, 10 kJ/kg) for initial extraction, followed by ultrasound (US) (200 W, 20 min)-assisted extraction (UAE) in a 50% (v/v) ethanol-water mixture (T = 50 °C, t = 60 min), was designed for the efficient release of valuable intracellular compounds from industrial cherry pomace. The extracted compounds were evaluated for total phenolic content (TPC), flavonoid content (FC), total anthocyanin content (TAC), and antioxidant activity (FRAP), and were compared with conventional solid-liquid extraction (SLE). Results showed that the highest release of bioactive compounds occurred in the first stage, which was attributed to the impact of PEF pre-treatment, resulting in significant increases in TPC (79%), FC (79%), TAC (83%), and FRAP values (80%) of the total content observed in the post-cascade PEF-UAE process. The integration of UAE into the cascade process further augmented the extraction efficiency, yielding 21%, 49%, 56%, and 26% increases for TPC, FC, TAC, and FRAP, respectively, as compared to extracts obtained through a second-stage conventional SLE. HPLC analysis identified neochlorogenic acid, 4-p-coumaroylquinic, and cyanidin-3-O-rutinoside as the predominant phenolic compounds in both untreated and cascade-treated cherry pomace extracts, and no degradation of the specific compounds occurred upon PEF and US application. SEM analysis revealed microstructural changes in cherry pomace induced by PEF and UAE treatments, enhancing the porosity and facilitating the extraction process. The study suggests the efficiency of the proposed cascade PEF-UAE extraction approach for phenolic compounds from industrial cherry pomace with potential applications to other plant-based biomasses.
Collapse
Affiliation(s)
- Ervehe Rrucaj
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
| | - Mariarosa Scognamiglio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
| | - Francesco Siano
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, AV, Italy;
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
14
|
Bocker R, Silva EK. Pulsed electric field technology as a promising pre-treatment for enhancing orange agro-industrial waste biorefinery. RSC Adv 2024; 14:2116-2133. [PMID: 38196909 PMCID: PMC10775899 DOI: 10.1039/d3ra07848e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024] Open
Abstract
In the processing of orange juice, 50-70% of the fresh fruit weight is converted into organic waste. Orange processing waste (OPW) primarily consists of peels, seeds, and pulp. Improper disposal of this residue can lead to greenhouse gas emissions, environmental pollution, and the wastage of natural resources. To address this ecological issues, recent research has focused on developing innovative process designs to maximize the valorization of OPW through biorefinery strategies. However, the current challenge in implementing these methods for industrial waste management is their significant energy consumption. In response to these challenges, recent studies have explored the potential of employing pulsed electric field (PEF) technology as a pre-treatment to improve energy efficiency in biorefinery processes. This non-thermal and emerging technology can enhance the mass transfer of intracellular components via electroporation of cell walls, thereby resulting in shorter processing times, lower energy inputs, greater retention of thermosensitive components, and higher extraction yields. In this regard, this review offers a comprehensive discussion on the innovative biorefinery strategies to the valorization of OPW, with a specific focus on recent studies assessing the technical feasibility of methodologies for the extraction of phytochemical compounds, dehydration processes, and bioconversion methods. Recent studies that discussed the potential of PEF technology to reduce energy demand by increasing the mass transfer of biological tissues were emphasized.
Collapse
Affiliation(s)
- Ramon Bocker
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP) Rua Monteiro Lobato, 80 Campinas-SP CEP:13083-862 Brazil
| | - Eric Keven Silva
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP) Rua Monteiro Lobato, 80 Campinas-SP CEP:13083-862 Brazil
| |
Collapse
|
15
|
Majid I, Khan S, Aladel A, Dar AH, Adnan M, Khan MI, Mahgoub Awadelkareem A, Ashraf SA. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2157492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ishrat Majid
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Shafat Khan
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Alanoud Aladel
- Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Arras, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
16
|
Signori E. Electroporation as a cutting edge technique shaping the future of food processing: Comment on: "Advances in pulsed electric stimuli as a physical method for treating liquid foods" by Farzan Zare, Negareh Ghasemi, Nidhi Bansal, Hamid Hosano. Phys Life Rev 2023; 47:3-5. [PMID: 37651759 DOI: 10.1016/j.plrev.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Affiliation(s)
- E Signori
- CNR Institute of Translational Pharmacology, Via del Fosso del Cavaliere 100, 00133 Roma, Italy.
| |
Collapse
|
17
|
Barbosa C, Araújo A, Fernandes P, Romão A, Alves MR. The Impact of Goat Milk Pretreatment with Pulsed Electric Fields on Cheese Quality. Foods 2023; 12:4193. [PMID: 38231669 DOI: 10.3390/foods12234193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 01/19/2024] Open
Abstract
To reduce the microbial load in goat's milk, which is less thermally stable than cow's milk, an alternative processing method was used in this study. This involved treating the milk with pulsed electric fields (PEFs) (at 10 kV·cm-1, with 50 µs pulses for 3 Hz) and then heat-treating it at 63 °C for 6.0 s, as well as using heat treatment alone at 75 °C for 3.4 s. Cheeses were made using both types of milk treatment, and samples were collected after 5, 15, and 25 days of ripening for DNA extraction and purification, followed by high-throughput sequencing on the MiSeq Illumina sequencing platform. Analysis of the bacterial populations in the two types of cheese using various diversity indices revealed no significant differences in species richness and abundance, although there was a trend for the PEF-treated cheese to have a less diverse set of species with an uneven distribution of relative abundance. However, when examining the composition of the microbial communities in the two types of cheese using Weighted UniFrac analysis and Analysis of Similarities, there were significant differences in the presence and abundance of various species, which could have implications for the development of starter cultures. Concerning physicochemical properties (pH, aw, moisture content, total acidity and L, and a and b color parameters), the results also reveal that, generally, no significant differences were found, except for the color parameter, where cheeses treated with PEF demonstrated more whiteness (L) and yellowness (b) during ripening. Sensory scores for typicity (caprylic, goaty, and acetic) increased over time, but between treatments, only small differences were perceived by panellists in cheese with 5 days of ripening. Concerning texture firmness and cohesiveness, the PEF+HT samples presented lower values than the HT samples, even over storage time. In general, concerning quality parameters, similar behavior was observed between the treatments during the ripening period.
Collapse
Affiliation(s)
- Carla Barbosa
- CISAS, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347 Viana do Castelo, Portugal
- LAQV-REQUIMTE, Associated Laboratory for Green Chemistry-Network of Chemistry and Technology, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Alberta Araújo
- CISAS, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347 Viana do Castelo, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Av. do Atlântico 644, 4900-348 Viana do Castelo, Portugal
| | - Paulo Fernandes
- CISAS, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347 Viana do Castelo, Portugal
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Av. do Atlântico 644, 4900-348 Viana do Castelo, Portugal
| | - Alexandre Romão
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Av. do Atlântico 644, 4900-348 Viana do Castelo, Portugal
| | - Manuel Rui Alves
- CISAS, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347 Viana do Castelo, Portugal
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Av. do Atlântico 644, 4900-348 Viana do Castelo, Portugal
| |
Collapse
|
18
|
Vaiciuleviciute R, Uzieliene I, Bernotas P, Novickij V, Alaburda A, Bernotiene E. Electrical Stimulation in Cartilage Tissue Engineering. Bioengineering (Basel) 2023; 10:bioengineering10040454. [PMID: 37106641 PMCID: PMC10135934 DOI: 10.3390/bioengineering10040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Electrical stimulation (ES) has been frequently used in different biomedical applications both in vitro and in vivo. Numerous studies have demonstrated positive effects of ES on cellular functions, including metabolism, proliferation, and differentiation. The application of ES to cartilage tissue for increasing extracellular matrix formation is of interest, as cartilage is not able to restore its lesions owing to its avascular nature and lack of cells. Various ES approaches have been used to stimulate chondrogenic differentiation in chondrocytes and stem cells; however, there is a huge gap in systematizing ES protocols used for chondrogenic differentiation of cells. This review focuses on the application of ES for chondrocyte and mesenchymal stem cell chondrogenesis for cartilage tissue regeneration. The effects of different types of ES on cellular functions and chondrogenic differentiation are reviewed, systematically providing ES protocols and their advantageous effects. Moreover, cartilage 3D modeling using cells in scaffolds/hydrogels under ES are observed, and recommendations on reporting about the use of ES in different studies are provided to ensure adequate consolidation of knowledge in the area of ES. This review brings novel insights into the further application of ES in in vitro studies, which are promising for further cartilage repair techniques.
Collapse
Affiliation(s)
- Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, 08410 Vilnius, Lithuania
- Faculty of Electronics, High Magnetic Field Institute, Vilnius Gediminas Technical University, Plytines g. 27, 10105 Vilnius, Lithuania
| | - Aidas Alaburda
- Life Sciences Center, Institute of Biosciences, Vilnius University, Sauletekio al. 7, 10257 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu g. 5, 08410 Vilnius, Lithuania
- VilniusTech, Faculty of Fundamental Sciences, Sauletekio al. 11, 10223 Vilnius, Lithuania
| |
Collapse
|
19
|
Zhou J, Hung YC, Xie X. Application of electric field treatment (EFT) for microbial control in water and liquid food. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130561. [PMID: 37055970 DOI: 10.1016/j.jhazmat.2022.130561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 06/19/2023]
Abstract
Water disinfection and food pasteurization are critical to reducing waterborne and foodborne diseases, which have been a pressing public health issue globally. Electrified treatment processes are emerging and have become promising alternatives due to the low cost of electricity, independence of chemicals, and low potential to form by-products. Electric field treatment (EFT) is a physical pathogen inactivation approach, which damages cell membrane by irreversible electroporation. EFT has been studied for both water disinfection and food pasteurization. However, no study has systematically connected the two fields with an up-to-date review. In this article, we first provide a comprehensive background of microbial control in water and food, followed by the introduction of EFT. Subsequently, we summarize the recent EFT studies for pathogen inactivation from three aspects, the processing parameters, its efficacy against different pathogens, and the impact of liquid properties on the inactivation performance. We also review the development of novel configurations and materials for EFT devices to address the current challenges of EFT. This review introduces EFT from an engineering perspective and may serve as a bridge to connect the field of environmental engineering and food science.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
20
|
Axelrod RD, Baumgartner J, Beyrer M, Mathys A. Experimental and simulation-based investigation of the interplay between factor gradients following pulsed electric field treatments triggering whey protein aggregation. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
22
|
Stühmeier-Niehe C, Lass L, Brocksieper M, Chanos P, Hertel C. Pre-Treatment of Starter Cultures with Mild Pulsed Electric Fields Influences the Characteristics of Set Yogurt. Foods 2023; 12:foods12030442. [PMID: 36765971 PMCID: PMC9913929 DOI: 10.3390/foods12030442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate the effect of pulsed electric field (PEF) pre-treatment of a dairy starter culture of Lactobacillus delbrueckii subsp. bulgaricus LB186 and Streptococcus thermophilus ST504 on the fermentation and final product characteristics of set-style yogurt. The effects of PEF treatment parameters, voltage (4-20 kV), pulse number (20-80 pulses), frequency (1-21 Hz), and pulse (5-8 µs) width on pH development, cell counts, and proteolytic activity, as well as on texture and degree of syneresis in yogurt were investigated by use of a two-level full factorial design. Pulse frequency and pulse width had a significant effect on the yogurt stiffness (p < 0.05) and the interaction of voltage and frequency had a significant effect on both stiffness and proteolytic activity (p < 0.05). Further experiments confirmed that pre-treatment of the dairy culture with specific PEF parameters immediately before addition to milk could accelerate fermentation of, increase stiffness of, and reduce syneresis in the final yogurt. This effect of the PEF-pre-treated culture was partially retained even after flash-freezing and 14 days of storage of the culture at -20 °C. The effects were attributed to responses to oxidative stress induced by the PEF pre-treatment.
Collapse
Affiliation(s)
- Corinna Stühmeier-Niehe
- Department of Biotechnology, German Institute of Technologies (DIL), Professor-von Klitzing Str. 7, 49610 Quakenbrück, Germany
- Elea Technology GmbH, Professor-von Klitzing Str. 9, 49610 Quakenbrück, Germany
| | - Luca Lass
- Applied Life Sciences, Hochschule Emden-Leer, Constantiaplatz 4, 26723 Emden, Germany
| | - Miriam Brocksieper
- Faculty of Agriculture, Rheinische Friedrich-Wilhelms-Universität, Regina-Pacis Weg 3, 53113 Bonn, Germany
| | - Panagiotis Chanos
- Department of Biotechnology, German Institute of Technologies (DIL), Professor-von Klitzing Str. 7, 49610 Quakenbrück, Germany
- Correspondence:
| | - Christian Hertel
- Department of Biotechnology, German Institute of Technologies (DIL), Professor-von Klitzing Str. 7, 49610 Quakenbrück, Germany
| |
Collapse
|
23
|
SALEE N, NARUENARTWONGSAKUL S, CHAIYANA W, YAWOOTTI A, HUNSAKUL K, TINPOVONG B, UTAMA-ANG N. Comparison of pulse electric field, microwave and ultrasonic pretreatment prior to black rice extraction on antioxidant and sirtuin1 enzyme stimulating activities. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
24
|
Kadem ZA, Al-Hilphy AR, Alasadi MH, Gavahian M. Combination of ohmic heating and subcritical water to recover amino acids from poultry slaughterhouse waste at a pilot-scale: new valorization technique. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:24-34. [PMID: 36618035 PMCID: PMC9813292 DOI: 10.1007/s13197-022-05556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023]
Abstract
Considering the global need for waste valorization and enhancing resource efficiency, this study investigated the possibility of recovering amino acids from underutilized chicken heads and legs as poultry by-products. In this sense, a new combined technique was developed based on ohmic heating (OH) and subcritical water (SCW), i.e., OHSCW. Besides, the effects of OH at different electric field strengths (5.71, 7.14, and 8.57 V/cm) and times (15, 30, and 45 min) were compared with the control treatment (SCW equipped with conventional heating, without OH) at a temperature of 140 °C. The results showed that the come-up time using OHSCW, at electric field strengths of 7.14 and 8.57 V/cm, was less than the control method by 17 and 75%, respectively. The lowest specific energy consumption was 403.68 kJ/kg which was 59.22% less than the control method. The highest energy efficiency was 93.88% at the electric field strength of 8.57 V/cm which was superior to that of the control treatment, i.e., 47.13%. The amounts of total amino acids recovered by OHSCW, at an electric field strength of 8.57 V/cm, were higher than the control method by 70.48%. OHSCW at an electric field strength of 5.71 V/cm yielded the maximum recovery efficiency of amino acids (79.40%) while recovery efficiency in control treatment was 15.48%. Besides, the results of Amino acid Analyzer (AAA) showed that the recovered amino acids include asparagine, serine, glutamine, glycine, threonine, histidine, cysteine, alanine, aspartic, tryptophan, arginine, tyrosine, valine, methionine, isoleucine, leucine, and phenylalanine. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05556-4.
Collapse
Affiliation(s)
- Zainab Ali Kadem
- Department of Animal Production, College of Agriculture, University of Basrah, Basrah, Iraq
| | | | - Majid H. Alasadi
- Department of Animal Production, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201 Taiwan
| |
Collapse
|
25
|
Ricós-Muñoz N, Rivas Soler A, Castagnini JM, Moral R, Barba FJ, Pina-Pérez MC. Improvement of the probiotic growth-stimulating capacity of microalgae extracts by pulsed electric fields treatment. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
27
|
Changes in Starch In Vitro Digestibility and Properties of Cassava Flour Due to Pulsed Electric Field Processing. Foods 2022; 11:foods11223714. [PMID: 36429307 PMCID: PMC9689122 DOI: 10.3390/foods11223714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The research aimed to investigate the effect of pulsed electric field (PEF) treatment on cassava flour at mild intensities (1, 2, and 4 kV/cm) combined with elevated levels of specific energy input (250−500 kJ/kg). Influences on starch digestibility, morphological characteristics, birefringence, short-range order and thermal properties were evaluated. Application of PEF at energy input no greater than 250 kJ/kg had negligible influence on the different starch digestion fractions of cassava flour but raised the rapidly digestible starch fraction at a combined electric field strength >1 kV/cm and energy input >350 kJ/kg. Morphological evaluation revealed that at this PEF combination, cassava starch’s external structure was consistently altered with swelling and disintegration, albeit some granules remained intact. Consequently, this led to disruption in the internal crystalline structure, supported by progressive loss of birefringence and significantly lower absorbance ratio at 1047/1022 cm−1. These physical and microstructural changes of the inherent starch promoted the shift in gelatinization temperatures to a higher temperature and reduced the gelatinization enthalpy. The study demonstrated that PEF can be utilized to change the starch fraction of cassava flour, which is driven by electric field strength and specific energy input, causing changes in the starch-related properties leading to increased digestibility.
Collapse
|
28
|
Punthi F, Yudhistira B, Gavahian M, Chang CK, Cheng KC, Hou CY, Hsieh CW. Pulsed electric field-assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Compr Rev Food Sci Food Saf 2022; 21:5109-5130. [PMID: 36199192 DOI: 10.1111/1541-4337.13052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Drying is a key processing step for plant-based foods. The quality of dried products, including the physical, nutritional, microbiological, and sensory attributes, is influenced by the drying method used. Conventional drying technologies have low efficiency and can negatively affect product quality. Recently, pulsed electric field (PEF)-assisted techniques are being explored as a novel pretreatment for drying. This review focuses on the application of PEF as pretreatment for drying plant-based products, the preservation effects of this pretreatment, and its underlying mechanisms. A literature search revealed that PEF-assisted drying is beneficial for maintaining the physicochemical properties of the dried products and preserving their color and constituent chemical compounds. PEF-assisted drying promotes rehydration and improves the kinetics of drying. Unlike conventional technologies, PEF-assisted drying enables selective cell disintegration while maintaining product quality. Before the drying process, PEF pretreatment inactivates microbes and enzymes and controls respiratory activity, which may further contribute to preservation. Despite numerous advantages, the efficiency and applicably of PEF-assisted drying can be improved in the future.
Collapse
Affiliation(s)
- Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Food Science and Technology, Sebelas Maret University, Surakarta, Indonesia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.,Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan, Republic of China.,Department of Optometry, Asia University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
29
|
Kumar S, Nirmal Thirunavookarasu S, Sunil C, Vignesh S, Venkatachalapathy N, Rawson A. Mass transfer kinetics and quality evaluation of tomato seed oil extracted using emerging technologies. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Ronniger M, Aguida B, Stacke C, Chen Y, Ehnert S, Erdmann N, Eschenburg G, Falldorf K, Pooam M, Wing A, Ahmad M. A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures. Bioengineering (Basel) 2022; 9:bioengineering9100595. [PMID: 36290562 PMCID: PMC9598188 DOI: 10.3390/bioengineering9100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of extremely low-frequency electromagnetic field (ELF-MF) exposure on living systems have been widely studied at the fundamental level and also claimed as beneficial for the treatment of diseases for over 50 years. However, the underlying mechanisms and cellular targets of ELF-MF exposure remain poorly understood and the field has been plagued with controversy stemming from an endemic lack of reproducibility of published findings. To address this problem, we here demonstrate a technically simple and reproducible EMF exposure protocol to achieve a standardized experimental approach which can be readily adopted in any lab. As an assay system, we chose a commercially available inflammatory model human cell line; its response to magnetic fields involves changes in gene expression which can be monitored by a simple colorimetric reporter gene assay. The cells were seeded and cultured in microplates and inserted into a custom-built, semi-automated incubation and exposure system which accurately controls the incubation (temperature, humidity, CO2) and magnetic-field exposure conditions. A specific alternating magnetic field (<1.0% spatial variance) including far-field reduction provided defined exposure conditions at the position of each well of the microplate. To avoid artifacts, all environmental and magnetic-field exposure parameters were logged in real time throughout the duration of the experiment. Under these extensively controlled conditions, the effect of the magnetic field on the cell cultures as assayed by the standardized operating procedure was highly reproducible between experiments. As we could fully define the characteristics (frequency, intensity, duration) of the pulsed magnetic field signals at the position of the sample well, we were, for the first time, able to accurately determine the effect of changing single ELF-MF parameters such as signal shape, frequency, intensity and duty cycle on the biological response. One signal in particular (10 Hz, 50% duty cycle, rectangular, bipolar, 39.6μT) provided a significant reduction in cytokine reporter gene expression by 37% in our model cell culture line. In sum, the accuracy, environmental control and data-logging capacity of the semi-automated exposure system should greatly facilitate research into fundamental cellular response mechanisms and achieve the consistency necessary to bring ELF-MF/PEMF research results into the scientific mainstream.
Collapse
Affiliation(s)
- Michael Ronniger
- Sachtleben GmbH, 20251 Hamburg, Germany
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| | - Blanche Aguida
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
| | | | - Yangmengfan Chen
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sabrina Ehnert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | | | | | - Marootpong Pooam
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | | | - Margaret Ahmad
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| |
Collapse
|
31
|
Paraskevopoulou E, Andreou V, Dermesonlouoglou EK, Taoukis PS. Combined effect of pulsed electric field and osmotic dehydration pretreatments on mass transfer and quality of air-dried pumpkin. J Food Sci 2022; 87:4839-4853. [PMID: 36250503 DOI: 10.1111/1750-3841.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Pulsed electric field (PEF) and osmotic dehydration (OD) pretreatment can accelerate the time-consuming drying process and minimize its high energy demands. The effect of PEF and OD pre-processing conditions and osmotic solution composition on mass transfer kinetics (water loss, solid gain, water activity) and quality properties (color, texture, total sensory quality) during OD and subsequent air-drying (AD) of pumpkin was studied. Application of PEF (2.0 kV/cm-1500 pulses) significantly enhanced mass transfer during subsequent air-drying (increased effective diffusivity coefficient Des and drying rate kdrying , respectively). PEF and OD treatments led to a significant reduction of the processing time by 12 and 10%, respectively (p < 0.05). The maximum reduction of processing time by 27% (p < 0.05) (compared to untreated sample) resulted in combined use of PEF and OD as pretreatments prior to AD. When PEF pretreatment was combined with OD prior to AD, the corresponding energy was by 50% less than the respective energy required for nonprocessed samples. PRACTICAL APPLICATION: Pulsed electric fields (PEF) and osmotic dehydration (OD) can be applied for the production of air-dried pumpkin cuts of superior quality (in terms of quality and sensory characteristics) and reduced energy requirements (as a result of total processing time decrease).
Collapse
Affiliation(s)
- Eleni Paraskevopoulou
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| | - Varvara Andreou
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| | - Efimia K Dermesonlouoglou
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| | - Petros S Taoukis
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| |
Collapse
|
32
|
Bocker R, Silva EK. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem X 2022; 15:100398. [PMID: 36211728 PMCID: PMC9532718 DOI: 10.1016/j.fochx.2022.100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Pulsed electric field (PEF) technology enables the extraction of food pigments at lower temperatures. PEF process intensification may reduce the extraction yield depending on the plant matrix. Coupling PEF with other emerging technologies is a smart strategy to extract natural pigments. The application of PEF technology in natural food pigment extraction still requires further studies. Coloring compounds are widely applied to manufacturing foods and beverages. The worldwide food market is replacing artificial colorants with natural alternatives, given the increased consumer demand for natural products. However, these substitutes are still an issue due to their high production cost and low chemical and physical stability. Furthermore, natural pigments are highly sensitive to processes applied in conventional extraction techniques, such as thermal, mechanical, and chemical stresses. In this regard, pulsed electric field (PEF) technology has emerged as a promising non-thermal alternative for recovering and producing natural colorings from food matrices. Its action mechanism on cell structures through the electroporation effect is a smart alternative to overcoming the challenging issues associated with producing natural colorants. In this scenario, this review provides an overview of the PEF assisted extraction of natural pigments and colorants, such as anthocyanins (red-blue-purple), betalains (red), carotenoids (yellow-orange-red), and chlorophylls (green) from plant sources. Moreover, the potential and limitations of this emerging technology to integrate the extraction process of natural colorants were discussed.
Collapse
|
33
|
Carpentieri S, Augimeri G, Ceramella J, Vivacqua A, Sinicropi MS, Pataro G, Bonofiglio D, Ferrari G. Antioxidant and Anti-Inflammatory Effects of Extracts from Pulsed Electric Field-Treated Artichoke By-Products in Lipopolysaccharide-Stimulated Human THP-1 Macrophages. Foods 2022; 11:2250. [PMID: 35954020 PMCID: PMC9368542 DOI: 10.3390/foods11152250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/01/2023] Open
Abstract
In this study, pulsed electric field (PEF-3 kV/cm; 5 kJ/kg) pretreatment was used to intensify the extractability of valuable intracellular compounds from artichoke by-products during a subsequent aqueous extraction (solid-liquid ratio = 1:10 g/mL, T = 20 °C; t = 120 min). Total phenolic content (TPC), antioxidant activity (DPPH, ABTS) and HPLC-PDA analysis of the artichoke extract (AE) and the biological effects on human cell lines were determined. Chlorogenic acid was found to be the most abundant phenolic compound (53% of the TPC) in the AE. The extract showed good antioxidant properties in a concentration-dependent manner. The potential biological effects of AE were investigated using THP-1 macrophages stimulated by lipopolysaccharides (LPS) as an in vitro model system of oxidative stress. Reduced reactive oxygen species production upon treatment with AE was found. Moreover, AE was able to reduce the secretion of the pro-inflammatory mediators Interleukin-6 and Monocyte Chemoattractant Protein-1 in LPS-stimulated macrophages, as determined by qRT-PCR and ELISA assays. These results highlighted the anti-inflammatory and antioxidant properties of the extracts from PEF-treated artichoke by-products, corroborating their potential application as a source of functional ingredients obtained through a feasible and sustainable process.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
34
|
Nabilah UU, Sitanggang AB, Dewanti‐Hariyadi R, Sugiarto AT, Purnomo EH. Meta‐analysis: Microbial inactivation in milk using Pulsed Electric Field (
PEF
). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Uray Ulfah Nabilah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology IPB University Bogor 16680 Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology IPB University Bogor 16680 Indonesia
| | - Ratih Dewanti‐Hariyadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology IPB University Bogor 16680 Indonesia
- Southeast Asian Food and Agricultural Science and Technology Center IPB University Bogor 16680 Indonesia
| | - Anto Tri Sugiarto
- Technical Implementation Unit for Instrumentation Development, BRIN Bandung 40135 Indonesia
| | - Eko Hari Purnomo
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology IPB University Bogor 16680 Indonesia
| |
Collapse
|
35
|
Axelrod R, Beyrer M, Mathys A. Impact of the electric field intensity and treatment time on whey protein aggregate formation. J Dairy Sci 2022; 105:6589-6600. [DOI: 10.3168/jds.2021-21395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022]
|
36
|
Salar FJ, Domínguez-Perles R, García-Viguera C, Fernández PS. Ifs and buts of non-thermal processing technologies for plant-based drinks' bioactive compounds. FOOD SCI TECHNOL INT 2022:10820132221094724. [PMID: 35440183 DOI: 10.1177/10820132221094724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vegetables and fruits contain a variety of bioactive nutrients and non-nutrients that are associated with health promotion. Consumers currently demand foods with high contents of healthy compounds, as well as preserved natural taste and flavour, minimally processed without using artificial additives. Processing alternatives to be applied on plant-based foodstuffs to obtain beverages are mainly referred to as classical thermal treatments that although are effective treatments to ensure safety and extended shelf-life, also cause undesirable changes in the sensory profiles and phytochemical properties of beverages, thus affecting the overall quality and acceptance by consumers. As a result of these limitations, new non-thermal technologies have been developed for plant-based foods/beverages to enhance the overall quality of these products regarding microbiological safety, sensory traits, and content of bioactive nutrients and non-nutrients during the shelf-life of the product, thus allowing to obtain enhanced health-promoting beverages. Accordingly, the present article attempts to review critically the principal benefits and downsides of the main non-thermal processing alternatives (High hydrostatic pressure, pulsed electric fields, ultraviolet light, and ultrasound) to set up sound comparisons with conventional thermal treatments, providing a vision about their practical application that allows identifying the best choice for the sectoral industry in non-alcoholic fruit and vegetable-based beverages.
Collapse
Affiliation(s)
- Francisco J Salar
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| | - Pablo S Fernández
- Department of Ingeniería Agrónomica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.,Calidad y Evaluación de Riesgos en Alimentos, Unidad Asociada CSIC -UPCT
| |
Collapse
|
37
|
Carpentieri S, Ferrari G, Pataro G. Optimization of Pulsed Electric Fields-Assisted Extraction of Phenolic Compounds From White Grape Pomace Using Response Surface Methodology. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.854968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study was focused on the optimization of the pulsed electric fields (PEF)-assisted extraction process using central composite design for response surface methodology from response surface methodology (RSM) with the aim to sustainably intensify the extractability of phenolic compounds from white grape pomace. The cell disintegration index (Zp) was used as response variable to identify the optimal PEF pre-treatment conditions of grape pomace in terms of field strength (E = 0.5–5 kV/cm) and energy input (WT = 1–20 kJ/kg), to be applied prior to the subsequent solid-liquid extraction (SLE) process. for both untreated and PEF-treated samples SLE process was optimized to determine the most effective combination of extraction temperature (20–50°C), extraction time (30–300 min), and solvent concentration (0–100% ethanol in water). Total phenolic content (TPC), flavonoid content (FC), and antioxidant activity (FRAP) of the obtained extracts were determined. The extracted compounds from untreated and PEF-treated samples at the optimal conditions were analyzed via HPLC-PDA analysis. Results revealed that, at a fixed extraction temperature (50°C), the application of PEF at optimal processing conditions (E = 3.8 kV/cm, WT = 10 kJ/kg) prior to SLE has the potential to reduce the solvent consumption (3–12%) and shorten the extraction time (23–103 min) to obtain the same recovery yield of phenolic compounds. Under optimized conditions, the extracts derived from PEF-treated samples showed significantly higher TPC (8%), FC (31%), and FRAP (36%) values, as compared to the control extraction. HPLC analyses revealed that epicatechin, p-coumaric acid, and quercetin were among the main phenolic compounds extracted, and no degradation phenomena occurred due to PEF application.
Collapse
|
38
|
Kantala C, Supasin S, Intra P, Rattanadecho P. Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods 2022; 11:foods11081102. [PMID: 35454689 PMCID: PMC9031134 DOI: 10.3390/foods11081102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
A pulsed electric field (PEF) is a technology used for microbial inactivation in food and beverages. This study aimed to examine the effect of PEF treatment on microbial inactivation and quality parameters in Thai orange juice (TOJ). The results showed that PEF and conventional thermal pasteurization (CTP) can be performed for inactivation of Staphylococcus aureus and Escherichia coli in TOJ. A 5-log reduction was obtained after 10 pulses of PEF treatment when using and electrical field strength of 30 kV cm−1, and the microbial inactivation by the PEF treatment resulted from the electroporation more than the temperature. Moreover, PEF treatment affects the quality parameters less than CTP. Moreover, PEF treatment did not affect the TOJ quality parameters such as pH, commission international de l’eclairage (CIE), viscosity, and total soluble solid (TSS), but saved vitamin C and all sugar and all mineral (sucrose, glucose, fructose, sodium, lithium, potassium, magnesium, and calcium) values more than CTP treatment.
Collapse
Affiliation(s)
- Chatchawan Kantala
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Centre, Pathum Thani 12121, Thailand; (C.K.); (S.S.)
| | - Supakiat Supasin
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Centre, Pathum Thani 12121, Thailand; (C.K.); (S.S.)
| | - Panich Intra
- Research Unit of Applied Electric Field in Engineering (RUEE), College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50220, Thailand;
| | - Phadungsak Rattanadecho
- Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Rangsit Centre, Pathum Thani 12121, Thailand; (C.K.); (S.S.)
- Correspondence:
| |
Collapse
|
39
|
Impact of Loading Effect from Liquid Foods on the Performance of Unipolar and Bipolar Square Pulse Generator. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Gentès M, Caron A, Champagne CP. Potential applications of pulsed electric field in cheesemaking. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marie‐Claude Gentès
- Saint‐Hyacinthe Development and Research Centre Agriculture and Agri‐Food Canada 3600 Casavant Boulevard West Saint‐Hyacinthe Quebec J2S 8E3 Canada
| | - Annie Caron
- Saint‐Hyacinthe Development and Research Centre Agriculture and Agri‐Food Canada 3600 Casavant Boulevard West Saint‐Hyacinthe Quebec J2S 8E3 Canada
| | - Claude P Champagne
- Saint‐Hyacinthe Development and Research Centre Agriculture and Agri‐Food Canada 3600 Casavant Boulevard West Saint‐Hyacinthe Quebec J2S 8E3 Canada
| |
Collapse
|
41
|
Aşık-Canbaz E, Çömlekçi S, Can Seydim A. Effect of Moderate Intensity Pulsed Electric Field on Shelf-life of Chicken Breast Meat. Br Poult Sci 2022; 63:641-649. [PMID: 35294274 DOI: 10.1080/00071668.2022.2051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Moderate intensity pulsed electric field (MIPEF) is a fairly new research topic for microbial inactivation on muscle foods. In this study, indirect application of MIPEF (2.5 kV/cm, 4.67 kV/cm, 7 kV/cm) was evaluated in terms of the growth of some pathogenic bacteria and the quality characteristics of chicken breast meat during cold storage (4°C). Broth cultures of E. coli and C. jejuni showed a remarkable resistance to MIPEF under 4.67 kV/cm and 7 kV/cm, respectively. The limit for total mesophilic aerobic bacteria (TMAB) count was exceeded in 4.67 and 7 kV/cm applied groups 2 days later than control (C). In the end, almost 2 log differences were determined for total coliform bacteria in 4.67 and 7 kV/cm applied groups as compared to C (p<0.05). Inoculated P. aeruginosa count remained the same whereas L. monocytogenes growth was promoted by 4.67 kV/cm (p<0.05). pH value, CIE L*, b*, C* color values of chicken breast fillets were not affected by MIPEF application while ΔE values showed the maximum change in the C group. This study demonstrated that improved shelf-life of chicken breast fillets was provided by moderate intensity DC-pulses in combination with cold storage.
Collapse
Affiliation(s)
- Emine Aşık-Canbaz
- Department of Food Technology, Sarkikaraagac Vocational School, Isparta University of Applied Sciences, 32200 Isparta-TURKEY
| | - Selçuk Çömlekçi
- Department of Electronics and Communication Engineering, Faculty of Engineering, Süleyman Demirel University, 32200 Isparta-TURKEY
| | - Atıf Can Seydim
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, 32200 Isparta-TURKEY
| |
Collapse
|
42
|
|
43
|
Psarianos M, Dimopoulos G, Ojha S, Cavini ACM, Bußler S, Taoukis P, Schlüter OK. Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat and chitin) and techno-functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Furukawa T, Ueno T, Matsumura M, Amarasiri M, Sei K. Inactivation of antibiotic resistant bacteria and their resistance genes in sewage by applying pulsed electric fields. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127382. [PMID: 34879573 DOI: 10.1016/j.jhazmat.2021.127382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 105 copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments.
Collapse
Affiliation(s)
- Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan.
| | - Takahisa Ueno
- Department of Electrical and Electronic Engineering, National Institute of Technology, Oita College, 1666 Maki, Oita 870-0152, Japan
| | - Mina Matsumura
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara, Minami 252-0373, Japan
| |
Collapse
|
45
|
Sustainable Electroporator for Continuous Pasteurisation: Design and Performance Evaluation with Orange Juice. SUSTAINABILITY 2022. [DOI: 10.3390/su14031896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroporation is a simple but effective and sustainable food processing way of treating cell membranes with an electric field. It is employed in a variety of ways in the food industry, ranging from shelf-life extension to green extraction. Despite its wide range of applications, electroporators are out of reach for many labs due to their high development costs, and different electroporators have been tailored to specific applications. The designing sequence of an electroporator that takes the geometry of a treatment chamber and its electrical resistance into account for the design of a pulse generator has not been addressed in published literature. To meet this demand, this study presents a straightforward way to develop a simple, affordable, and portable electroporator for liquid food pasteurisation. The proposed electroporator comprises a coaxial treatment chamber with static mixers and a high-voltage Marx bank based on insulated-gate bipolar transistors (IGBTs). The generator has a 4.5 kV output voltage and a peak current rating of 1 kA; however, the modular design allows for a wide range of voltage and current ratings. Treated orange juice using thermal pasteurisation (65 °C, 30 min) was also used for comparison. The performance of the electroporator was studied using chemical and microbial tests. A significant log reduction (5.4 CFU·mL−1) was observed in both the PEF-treated samples with sieves. Additionally, the treated juice visual and chemical color analysis showed that the PEF-treated sample extended the shelf-life after 9 days of storage at 4 °C. This research also examines the energy conversion in these two processing steps. This study assists in developing further electroporators for other food applications with different treatment chambers without compromising the product’s quality.
Collapse
|
46
|
Single-staining flow cytometry approach using SYTOX™ green to describe electroporation effects on Escherichia coli. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Oshin EA, Guo S, Jiang C. Determining tissue conductivity in tissue ablation by nanosecond pulsed electric fields. Bioelectrochemistry 2022; 143:107949. [PMID: 34583212 PMCID: PMC8643318 DOI: 10.1016/j.bioelechem.2021.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/03/2023]
Abstract
Nanosecond pulsed electric field (nsPEF) causes the permeabilization of the cell membrane and has been used to non-thermally treat cancerous tissues. As increased permeabilization in membranes were reported to be accompanied by impedance changes, the ablation effect of nsPEF on tissues can be monitored via the changes in tissue conductivity. In this study, effects of nsPEF on biological tissues were evaluated by determining the conductivities of potato and 4 T1-luc breast tumor tissues ex vivo from a murine model subjected to multiple 100-ns, 1-10 kV pulses. Using a four-needle electrode system with a calibrated electrode constant of 1.1 ± 0.1 cm, the conductivities of tissues was determined from both the network-analyzer measurement, before and after treatment, and voltage-current measurement in real-time. The conductivity of the potato tissue was measured for a frequency range of 0.1-3 MHz, and it increased with increasing pulse number and voltage amplitude. The conductivity of the tumor tissue was also observed to increase with pulse number and pulse voltage over a similar frequency range. In addition, the linear correlation between the ablation area in a treated potato tissue and the conductivity change in the tissue suggests that conductivity analysis of biological tissue under treatment could be a fast and sensitive approach to evaluate the effectiveness of a nsPEF treatment.
Collapse
Affiliation(s)
- Edwin A Oshin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Electrical and Computer Engineering, Old, Dominion University, Norfolk, VA, USA
| | - Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Chunqi Jiang
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Electrical and Computer Engineering, Old, Dominion University, Norfolk, VA, USA.
| |
Collapse
|
48
|
Carpentieri S, Režek Jambrak A, Ferrari G, Pataro G. Pulsed Electric Field-Assisted Extraction of Aroma and Bioactive Compounds From Aromatic Plants and Food By-Products. Front Nutr 2022; 8:792203. [PMID: 35155517 PMCID: PMC8829011 DOI: 10.3389/fnut.2021.792203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, the effect of pulsed electric field (PEF) pre-treatment on the extractability in green solvents (i. e., ethanol–water mixture and propylene glycol) of target aroma and bioactive compounds, such as vanillin from vanilla pods, theobromine and caffeine from cocoa bean shells, linalool from vermouth mixture, and limonene from orange peels, was investigated. The effectiveness of PEF as a cell disintegration technique in a wide range of field strength (1–5 kV/cm) and energy input (1–40 kJ/kg) was confirmed using impedance measurements, and results were used to define the optimal PEF conditions for the pre-treatment of each plant tissue before the subsequent solid–liquid extraction process. The extracted compounds from untreated and PEF-treated samples were analyzed via GC-MS and HPLC-PDA analysis. Results revealed that the maximum cell disintegration index was detected for cocoa bean shells and vanilla pods (Zp = 0.82), followed by vermouth mixture (Zp = 0.77), and orange peels (Zp = 0.55). As a result, PEF pre-treatment significantly enhanced the extraction yield of the target compounds in both solvents, but especially in ethanolic extracts of vanillin (+14%), theobromine (+25%), caffeine (+34%), linalool (+114%), and limonene (+33%), as compared with untreated samples. Moreover, GC-MS and HPLC-PDA analyses revealed no evidence of degradation of individual compounds due to PEF application. The results obtained in this work suggest that the application of PEF treatment before solid–liquid extraction with green solvents could represent a sustainable approach for the recovery of clean labels and natural compounds from aromatic plants and food by-products.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- *Correspondence: Gianpiero Pataro
| |
Collapse
|
49
|
Wu Z, Qiao D, Zhao S, Lin Q, Zhang B, Xie F. Nonthermal physical modification of starch: An overview of recent research into structure and property alterations. Int J Biol Macromol 2022; 203:153-175. [PMID: 35092737 DOI: 10.1016/j.ijbiomac.2022.01.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
To tailor the properties and enhance the applicability of starch, various ways of starch modification have been practiced. Among them, physical modification methods (micronization, nonthermal plasma, high-pressure, ultrasonication, pulsed electric field, and γ-irradiation) are highly potential for starch modification considering its safety, environmentally friendliness, and cost-effectiveness, without generating chemical wastes. Thus, this article provides an overview of the recent advances in nonthermal physical modification of starch and summarizes the resulting changes in the multi-level structures and physicochemical properties. While the effect of these techniques highly depends on starch type and treatment condition, they generally lead to the destruction of starch granules, the degradation of molecules, decreases in crystallinity, gelatinization temperatures, and viscosity, increases in solubility and swelling power, and an increase or decrease in digestibility, to different extents. The advantages and shortcomings of these techniques in starch processing are compared, and the knowledge gap in this area is commented on.
Collapse
Affiliation(s)
- Zhuoting Wu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
50
|
Masotti F, Cattaneo S, Stuknytė M, De Noni I. Current insights into non-thermal preservation technologies alternative to conventional high-temperature short-time pasteurization of drinking milk. Crit Rev Food Sci Nutr 2021; 63:5643-5660. [PMID: 34969340 DOI: 10.1080/10408398.2021.2022596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Milk is an important nutritional food source characterized by a perishable nature and conventionally thermally treated to guarantee its safety. In recent years, an increasing focus on competing non-thermal food processing technologies has been driven mainly by consumers' expectations for minimally processed products. Due to the heat sensitivity of milk, much research interest has been addressed to mild non-thermal pasteurization processing to keep safety, 'fresh-like' taste and to maintain the organoleptic qualities of raw milk. This review provides an overview of the current literature on non-thermal treatments as standalone alternative technologies to high-temperature short-time (HTST) pasteurization of drinking milk. Results of lab-scale experimentations suggest the feasibility of most emerging non-thermal processing technologies, including high hydrostatic pressure, pulsed electric field, cold plasma, cavitation and light-based technologies, as alternative to thermal treatment of drinking milk with premium in shelf life duration. Nevertheless, a series of regulatory, technological and economical hurdles hinder the industrial scaling-up for most of these substitutes. To date, only high hydrostatic pressure treatments are applied as alone alternative to HTSH pasteurization for processing of "cold pasteurized" drinking milk. Milk submitted to HTST treatment combined to ultraviolet light is currently accepted in EU countries as novel food.
Collapse
Affiliation(s)
- Fabio Masotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Stefano Cattaneo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT - University Technological Platforms Office, Università degli Studi di Milano, Milan, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|