1
|
Sirohi R, Negi T, Rawat N, Sagar NA, Sindhu R, Tarafdar A. Emerging technologies for the extraction of bioactives from mushroom waste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1069-1082. [PMID: 38562595 PMCID: PMC10981648 DOI: 10.1007/s13197-023-05855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 04/04/2024]
Abstract
Extraction of bioactive compounds for application in nutraceuticals is gaining popularity. For this, there is a search for low-cost substrates that would make the end product and the process more economical. Mushroom waste (stalk, cap, stem etc.) is one such high valued substrate that has received much attention recently due to its rich reserves of terpenoids, polyphenols, sesquiterpenes, alkaloids, lactones, sterols, antioxidative vitamins, anthocyanidins, glycoproteins and polysaccharides, among others. However, there is a need to identify green and hybrid technologies that could make the bioactive extraction process from these substrates safe, efficient and sustainable. To this effect, many emerging technologies (supercritical fluid, ultrasound-, enzyme- and microwave-assisted extraction) have been explored in the last decade which have shown potential for scale-up with high productivity. This review systematically discusses such technologies highlighting the current challenges faced during waste processing and the research directives needed for further advancements in the field.
Collapse
Affiliation(s)
- Ranjna Sirohi
- College of Horticulture, Rajasthan Agricultural Research Institute, Jaipur, Rajasthan 302 018 India
- Sri Karan Narendra Agriculture University, Jobner, Rajasthan 303329 India
| | - Taru Negi
- Department of Food Science and Technology,, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145 India
| | - Neha Rawat
- Department of Food Science and Technology,, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145 India
| | - Narashans Alok Sagar
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali, Punjab India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala 691505 India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| |
Collapse
|
2
|
Silva M, Ramos AC, Lidon FJ, Reboredo FH, Gonçalves EM. Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach. Foods 2024; 13:1464. [PMID: 38790763 PMCID: PMC11120248 DOI: 10.3390/foods13101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a significant challenge in advancing the industry. Implementing pre- and postharvest strategies for Pleurotus ostreatus (Jacq.) P. Kumm (oyster mushroom) within a circular economy framework involves optimizing resource use, minimizing waste, and creating a sustainable and environmentally friendly production system. This review aimed to analyze the development and innovation of the different themes and trends by bibliometric analysis with a critical literature review. Furthermore, this review outlines the cultivation techniques for Pleurotus ostreatus, encompassing preharvest steps such as spawn production, substrate preparation, and the entire mushroom growth process, which includes substrate colonization, fruiting, harvesting, and, finally, the postharvest. While novel methodologies are being explored for maintaining quality and extending shelf-life, the evaluation of the environmental impact of the entire mushroom production to identify areas for improvement is needed. By integrating this knowledge, strategies can be developed for a more sustainable and circular approach to Pleurotus ostreatus mushroom cultivation, promoting environmental stewardship and long-term viability in this industry.
Collapse
Affiliation(s)
- Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando J. Lidon
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Xiang F, Liu Z, Hu H, Mitra P, Ma X, Zhu J, Shi A, Wang Q. Advances of blend films based on natural food soft matter: Multi-scale structural analysis. Int J Biol Macromol 2024; 258:128770. [PMID: 38104689 DOI: 10.1016/j.ijbiomac.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The blend films made of food soft matter are of growing interest to the food packaging industries as a pro-environment packaging option. The blend films have become a novel pattern to replace traditional plastics gradually due to their characteristics of biodegradability, sustainability, and environmental friendliness. This review discussed the whole process of the manufacturing of food soft matter blend films from the raw material to the application due to multi-scale structural analysis. There are 3 stages and 12 critical analysis points of the entire process. The raw material, molecular self-assembly, film-forming mechanism and performance test of blend films are investigated. In addition, 11 kinds of blend films with different functional properties by casting are also preliminarily described. The industrialization progress of blend films can be extended or facilitated by analysis of the 12 critical analysis points and classification of the food soft matter blend films which has a great potential in protecting environment by developing sustainable packaging solutions.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food, and Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
4
|
Guo J, Zhang M, Fang Z. Valorization of mushroom by-products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5593-5605. [PMID: 35460088 DOI: 10.1002/jsfa.11946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
With the rapid growth of the global economy and the global population, the production of solid waste has increased remarkably. Mushrooms are gaining popularity among researchers for their ability to turn waste into nutrients. However, a large number of by-products are produced during the industrial processing of mushrooms. Traditional waste management, focusing on the utilization and disposal of mushroom by-products, has attracted the attention of researchers. Meanwhile, the circular economy has become a multidisciplinary research field, and the valorization of mushroom by-products is a very important part of circular economy research. Various mushroom by-products of mushroom are reviewed in this paper. By-products are used in food as raw materials or functional components, in livestock and poultry feed after grinding/fermentation, and as electrochemical materials and papermaking materials. The by-products can also be used to produce ethanol and other biological sources of energy, as absorbing substances in sewage treatment, and as fertilizer in soil amendment. Mushroom processing by-products can be applied in various fields. To improve production efficiency, new extraction technology (including supercritical fluid technology and microwave extraction technology) can be adopted to increase the bioactive substance content in the by-products. Choosing appropriate processing temperature, time, and other processing conditions can also enhance product quality. Finally, more research is needed on the cost-effective utilization of the by-products and the feasibility of industrialization. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Yan T, Liu R, Shi L, Wang Y, Meng X, Shen Y. Superfine grinding improves the physicochemical, sensory and functional characteristics of
Hanfu
apple pomace. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tingcai Yan
- College of Food Science Shenyang Agricultural University, 120 Dongling Road Shenyang Liaoning 110866 China
| | - Ran Liu
- College of Food Science Shenyang Agricultural University, 120 Dongling Road Shenyang Liaoning 110866 China
| | - Lin Shi
- College of Food Science Shenyang Agricultural University, 120 Dongling Road Shenyang Liaoning 110866 China
| | - Yanqun Wang
- College of Food Science Shenyang Agricultural University, 120 Dongling Road Shenyang Liaoning 110866 China
| | - Xianjun Meng
- College of Food Science Shenyang Agricultural University, 120 Dongling Road Shenyang Liaoning 110866 China
| | - Yixiao Shen
- College of Food Science Shenyang Agricultural University, 120 Dongling Road Shenyang Liaoning 110866 China
| |
Collapse
|
6
|
Mycofabrication of Mycelium-Based Leather from Brown-Rot Fungi. J Fungi (Basel) 2022; 8:jof8030317. [PMID: 35330319 PMCID: PMC8950489 DOI: 10.3390/jof8030317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022] Open
Abstract
Sustainable substitutes for leather can be made from mushroom mycelium, which is an environmentally friendly alternative to animal and synthetic leather. Mycelium-based leather is derived from Polyporales, in which lignocellulosic material is used as the substrate. The plasticizing and crosslinking of mycelial mats with various reagents might affect the leather properties and mycelial architecture. This study investigated the physicochemical and mechanical properties of mycelium-based leather (MBL) samples, including the hygroscopic nature, thermal stability, cell wall chemistry, density, micromorphology, tensile strength, elongation rate, and Young’s modulus. Micromorphological observations confirmed the mycelial networks and their binding performance, verifying their efficacy as a substitute leather. The most significant effects were observed after treatment with 20% polyethylene glycol, which resulted in an increase in Young’s modulus and tensile strength. Furthermore, the samples generally exhibited a high density (1.35, 1.46 g/cm3) and tensile strength (7.21 ± 0.93, 8.49 ± 0.90 MPa), resembling leather. The tear strength reached as low as 0.5–0.8 N/mm. However, the tensile and tear strength may be affected by leather processing and the tuning of mycelial growth. Nevertheless, high-density mycelia are shown to be suitable for the production of MBL, while mycofabrication and strain selection are sustainable for novel industrial applications of MBL.
Collapse
|
7
|
|
8
|
Sani IK, Geshlaghi SP, Pirsa S, Asdagh A. Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106719] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Mendes JF, Norcino LB, Martins HH, Manrich A, Otoni CG, Carvalho EEN, Piccolli RH, Oliveira JE, Pinheiro ACM, Mattoso LHC. Development of quaternary nanocomposites made up of cassava starch, cocoa butter, lemongrass essential oil nanoemulsion, and brewery spent grain fibers. J Food Sci 2021; 86:1979-1996. [PMID: 33822378 DOI: 10.1111/1750-3841.15689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
We report on production of novel quaternary nanocomposite films based on thermoplastic starch (TPS, 8% w/v) derived from cassava, cocoa butter, (CB, 30% wt.%), and lemongrass essential oil (LEO, 1:1) nanoemulsions reinforced with different concentrations of brewery spent grain (BSG, 5 or 10 wt.%) fibers, by continuous casting. The chemical composition, the morphological, thermal, mechanical properties, film barrier, biodegradability in the vegetable compound, in addition to the application in chocolates, have been widely studied. The addition of CB, LEO, and BSG caused relevant changes in the starch-based films, such as increased extensibility (from 2.4-BSG5 to 9.4%-BSG10) and improved barrier to moisture (2.9 and 2.4 g.mm.kPa-1 .h-1 .m-2 ). Contrastingly, the thermal stability of the starch film was slightly decreased. The biodegradability of the herein developed quaternary nanocomposite films was the same as that of TPS films, eliminating concerns on the supplementation with active ingredients that are expected to have some biocidal effect. Despite checking antimicrobial activity only by contact under the biocomposites, chocolates packed with the films were well accepted by consumers, especially the samples of white chocolate stored in the BSG5 biocomposite. Overall, this new approach towards quaternary active, biodegradable films produced in a pilot-scale lamination unit was successful in either improving or at least maintaining the essential properties of TPS-based films for food packaging applications, while providing them with unique features and functionalities. PRACTICAL APPLICATION: This contribution relates to new approach toward quaternary films produced in a pilot-scale lamination unit. It relates to sustainability as it is both biodegradable and based on plant biomass, as well as produced via a clean, through high-yield process. The four components of the edible films we developed provide it with good in properties performance, as both a passive barrier (i.e. purely physical), and active, related to the sensory attributes of food, essential to be applied in food packaging. The valorization of a BSG also adds to the relevance of our contribution within the circular bioeconomy framework.
Collapse
Affiliation(s)
- Juliana Farinassi Mendes
- Food Department, Graduate Program in Food Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Laís Bruno Norcino
- Forest Sciences Department, Graduate Program in Biomaterials Engineering, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Heloísa Helena Martins
- Food Department, Graduate Program in Food Sciences, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Anny Manrich
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, São Paulo, Brazil
| | - Caio Gomide Otoni
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Anis A, Pal K, Al-Zahrani SM. Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications. Polymers (Basel) 2021; 13:575. [PMID: 33672974 PMCID: PMC7917627 DOI: 10.3390/polym13040575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The wastage of food products is a major challenge for the food industry. In this regard, the use of edible films and coatings have gained much attention due to their ability to prevent the spoilage of the food products during handling, transport, and storage. This has effectively helped in extending the shelf-life of the food products. Among the various polymers, polysaccharides have been explored to develop edible films and coatings in the last decade. Such polymeric systems have shown great promise in microbial food safety applications. The inclusion of essential oils (EOs) within the polysaccharide matrices has further improved the functional properties of the edible films and coatings. The current review will discuss the different types of polysaccharides, EOs, methods of preparing edible films and coatings, and the characterization methods for the EO-loaded polysaccharide films. The mechanism of the antimicrobial activity of the EOs has also been discussed in brief.
Collapse
Affiliation(s)
- Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Saeed M. Al-Zahrani
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
11
|
Xiao J, Zhang M, Wang W, Li S, Wang Y, Du G, Zhang K, Li Y. Using Flammulina velutipes derived chitin-glucan nanofibrils to stabilize palm oil emulsion:A novel food grade Pickering emulsifier. Int J Biol Macromol 2020; 164:4628-4637. [PMID: 32941906 DOI: 10.1016/j.ijbiomac.2020.09.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/01/2022]
Abstract
We herein report chitin-glucan nanofibrils from edible mushroom Flammulina velutipes (CGNFs) as a novel stabilizer for palm oil Pickering emulsion (o/w, 30:70, v:v). Generally, these CGNFs being composed of glucose and glucosamine, are threadlike with 4.9 ± 1.2 nm wide and 222.6 ± 91.9 nm long. They were easily absorbed on the oil-water interface to form a compact layer around the oil droplets referring to Pickering emulsion. This emulsion presented shear-thinning and gel-like behaviors, wherein CGNFs concentration had a profound influence on the emulsion volume, droplet size, and stabilization index. Moreover, CGNFs showed an ability to stabilize the emulsion with a minimum of surface coverage approximately 30%. It indicated that moderate concentration of NaCl improved the emulsification effect, and the emulsion were stable in a large range of pH. These CGNFs are easy to prepare, eco-friendly and sustainable, which provides a potential for large-scale application of Pickering emulsion in food and nutraceuticals fields.
Collapse
Affiliation(s)
- Jing Xiao
- School of Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Ming Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuzhi Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanan Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanhua Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Mesa J, Hinestroza-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020; 25:E3305. [PMID: 32708208 PMCID: PMC7397014 DOI: 10.3390/molecules25143305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.
Collapse
Affiliation(s)
- José Mesa
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Leidy Indira Hinestroza-Córdoba
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
- Grupo de Valoración y Aprovechamiento de la Biodiversidad, Universidad Tecnológica del Chocó. AA.292, Calle 22 No. 18B-10, Quibdó-Chocó CP 270001, Colombia
| | - Cristina Barrera
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Lucía Seguí
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain
| | - Noelia Betoret
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| |
Collapse
|
13
|
Antunes F, Marçal S, Taofiq O, M. M. B. Morais A, Freitas AC, C. F. R. Ferreira I, Pintado M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020; 25:molecules25112672. [PMID: 32526879 PMCID: PMC7321189 DOI: 10.3390/molecules25112672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the food sector is highly concerned with environmental issues and foreseen to develop strategies to reduce waste and losses resulting from activities developed in the food system. An approach is to increment added value to the agro-industrial wastes, which might provide economic growth and environmental protection, contributing to a circular economy. Mushroom by-products represent a disposal problem, but they are also promising sources of important compounds, which may be used due to their functional and nutritional properties. Research has been developed in different fields to obtain value added solutions for the by-products generated during mushroom production and processing. Bioactive compounds have been obtained and applied in the development of nutraceutical and pharmaceutical formulations. Additionally, other applications have been explored and include animal feed, fertilizer, bioremediation, energy production, bio-based materials, cosmetics and cosmeceuticals. The main purpose of this review is to highlight the relevant composition of mushroom by-products and discuss their potential as a source of functional compounds and other applications. Future research needs to explore pilot and industrial scale extraction methods to understand the technological feasibility and the economic sustainability of the bioactive compounds extraction and valorization towards different applications.
Collapse
Affiliation(s)
- Filipa Antunes
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Sara Marçal
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Oludemi Taofiq
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Alcina M. M. B. Morais
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Ana Cristina Freitas
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Manuela Pintado
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
- Correspondence:
| |
Collapse
|
14
|
Producing a novel edible film from mushrooms (L. edodes and F. velutipes) byproducts with a two-stage treatment namely grinding and bleaching. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Yang Y, Wang W, Wu Z, Wang X, Zhang K, Li Y. O/W Pickering emulsions stabilized by Flammulina velutipes polysaccharide nanoparticles as a fat substitute: the effects of phase separation on emulsified sausage's techno-functional and sensory quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:268-276. [PMID: 31512249 DOI: 10.1002/jsfa.10034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The application of Pickering emulsion stabilized by food-derived particles is of great interest in the food field, including meat processing. However, the creaming phenomenon is a thorny problem and may impact the resulting product quality. Here, we used polysaccharide nanoparticles from Flammulina velutipes (FVPN) as a stabilizer to prepare a oil/water Pickering emulsion and partly replace the original fat of common emulsified sausage, focusing on exploring the influence of phase separation on the sausage's techno-functional and sensory quality, with the aim of developing a new alternative fat substitute. RESULTS Reformulated sausages showed increases in moisture (53.24-64.85%) and protein content (11.97-12.76%), but were reduced in fat content (27.28-18.76%). The increased FPOE (FVPN-palm oil emulsion; substitution rate 5-37%) amount in sausages resulted in significantly reduced (P < 0.05) cooking loss (18.87-8.63%). Meanwhile, emulsion improved the springiness and cohesiveness of sausage and significantly reduced (P < 0.05) hardness and chewiness when the replacement amount was less than 20%. Experimental sausages attained a more compact pore structure without harming sensory characteristics. Compared with creaming emulsion, pristine emulsion resulted in a sausage with higher moisture content, lower cooking loss, better elasticity and denser structure. CONCLUSION The characteristics of sausages could be influenced by emulsion stability. Emulsion, especially with no creaming, can be effectively used as fat substitute at a level of 20% or less without adversely affecting the sensory characteristics of emulsified sausages. The incorporation of FPOE provides the potential for developing a new alternative approach for animal fat improvement in meat products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiran Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin, China
| | - Wenhang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zinan Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, China
| | - Xiao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin, China
| | - Kai Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin, China
| | - Yu Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
16
|
Zhang S, Wei F, Han X. An edible film of sodium alginate/pullulan incorporated with capsaicin. NEW J CHEM 2018. [DOI: 10.1039/c8nj04249g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capsaicin, an active ingredient in red pepper, shows great antibacterial activity.
Collapse
Affiliation(s)
- Shen Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Feng Wei
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|