1
|
Parrella JA, Leggette HR, Lu P, Wingenbach G, Baker M, Murano E. Nanofood insights: A survey of U.S. consumers' attitudes toward the use of nanotechnology in food processing. Appetite 2024; 201:107613. [PMID: 39067483 DOI: 10.1016/j.appet.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Novel applications of nanotechnology in food processing hold tremendous potential to revolutionize the food industry and address challenges in food security and public health. Understanding and addressing consumers' evolving attitudes toward the use of nanotechnology in food processing is important to promote the technology's adoption and inform the development of regulatory frameworks that align with societal values. We used a survey research design to explore U.S. consumers' attitudes toward such uses of nanotechnology. Through the literature, we identified various cognitive and affective factors that have influenced, or have the potential to influence, consumers' attitudes, and we used those factors to develop a comprehensive regression model. We collected data from a national sample of U.S. consumers (N = 1071). The regression model accounted for 64.22% of the variance in attitudes toward nanotechnology (adjusted R2 = 62.94%). Perceived benefits, subjective norms, institutional trust, and subjective knowledge significantly and positively influenced participants' attitudes toward the use of nanotechnology in food processing while perceived risks and food technology neophobia significantly and negatively influenced participants' attitudes. These results suggest that communication strategies should emphasize consumer-centric benefits of nanotechnology, mitigate perceived risks, leverage social influences, and prioritize food safety-related messaging from institutional bodies.
Collapse
Affiliation(s)
- Jean A Parrella
- Department of Agricultural Leadership, Education, and Communications, Texas A&M University, Agriculture and Life Sciences Building, 600 John Kimbrough Blvd., College Station, TX, 77843, USA.
| | - Holli R Leggette
- Department of Agricultural Leadership, Education, and Communications, Texas A&M University, Agriculture and Life Sciences Building, 600 John Kimbrough Blvd., College Station, TX, 77843, USA.
| | - Peng Lu
- Department of Agricultural Leadership, Education, and Communications, Texas A&M University, Agriculture and Life Sciences Building, 600 John Kimbrough Blvd., College Station, TX, 77843, USA.
| | - Gary Wingenbach
- Department of Agricultural Leadership, Education, and Communications, Texas A&M University, Agriculture and Life Sciences Building, 600 John Kimbrough Blvd., College Station, TX, 77843, USA.
| | - Matt Baker
- Department of Agricultural Leadership, Education, and Communications, Texas A&M University, Agriculture and Life Sciences Building, 600 John Kimbrough Blvd., College Station, TX, 77843, USA.
| | - Elsa Murano
- Department of Food Science and Technology, Texas A&M University, Centeq Building, 1500 Research Pkwy b130, College Station, TX, 77845, USA.
| |
Collapse
|
2
|
Haygood KJF, Harnany D, Jamasri, Santos GNC, Muflikhun MA. Promising CO 2 gas sensor application of zinc oxide nanomaterials fabricated via HVPG technique. Heliyon 2024; 10:e36692. [PMID: 39263073 PMCID: PMC11386046 DOI: 10.1016/j.heliyon.2024.e36692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Highly effective gas sensors for detecting a range of hazardous and toxic gases were successfully applied in the present study using Zinc oxide (ZnO) nanomaterials. In this work, the horizontal vapor phase growth (HVPG) technique was perfectly capable of the synthesis of zinc oxide (ZnO) nanomaterials. The effect of the growth time with different dwell times was discussed by comparing the SEM-EDX analysis and photoluminescence characterization of the samples. Magnetic field (AMF) was also incorporated to determine the effect of AMF on the synthesis of ZnO nanomaterials. The results showed that the ZnO nanorods and root-like shapes are formed with more than 5 μm length and a few nm diameters. The optimum parameter showed the sensors are shiner than the less effective sensor when applied. The introduction of an external magnetic field led to a reduced energy band gap by a maximum of 15 %. The non-AMF band gap energy value is observed to be between 3.51 and 3.58 eV, while the value obtained using AMF is found to be between 2.94 and 3.22 eV. During the CO2 gas sensor test, AMF ZnO nanomaterial samples exhibited higher voltage and gradient compared to non-AMF samples.
Collapse
Affiliation(s)
| | - Dinny Harnany
- Mechanical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia
| | - Jamasri
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia
| | | | - Muhammad Akhsin Muflikhun
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Altemimi AB, Farag HAM, Salih TH, Awlqadr FH, Al-Manhel AJA, Vieira IRS, Conte-Junior CA. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024; 16:636. [PMID: 38474764 DOI: 10.3390/nu16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nanotechnology in human nutrition represents an innovative advance in increasing the bioavailability and efficiency of bioactive compounds. This work delves into the multifaceted dietary contributions of nanoparticles (NPs) and their utilization for improving nutrient absorption and ensuring food safety. NPs exhibit exceptional solubility, a significant surface-to-volume ratio, and diameters ranging from 1 to 100 nm, rendering them invaluable for applications such as tissue engineering and drug delivery, as well as elevating food quality. The encapsulation of vitamins, minerals, and antioxidants within NPs introduces an innovative approach to counteract nutritional instabilities and low solubility, promoting human health. Nanoencapsulation methods have included the production of nanocomposites, nanofibers, and nanoemulsions to benefit the delivery of bioactive food compounds. Nutrition-based nanotechnology and nanoceuticals are examined for their economic viability and potential to increase nutrient absorption. Although the advancement of nanotechnology in food demonstrates promising results, some limitations and concerns related to safety and regulation need to be widely discussed in future research. Thus, the potential of nanotechnology could open new paths for applications and significant advances in food, benefiting human nutrition.
Collapse
Affiliation(s)
- Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Halgord Ali M Farag
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Tablo H Salih
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
- Harem Research Center, Department of Nutrition and Diet Therapy, Harem Hospital, Sulaimani 46001, Iraq
| | - Farhang H Awlqadr
- Halabja Research Center, Halabja Technical College Applied Science, Sulaimani Polytechnic University, Sulaimani 46002, Iraq
| | | | - Italo Rennan Sousa Vieira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
4
|
Pérez-Esteve É, Alcover A, Barat JM, Fernández-Segovia I. What do Spanish consumers think about employing nanotechnology in food packaging? Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Anboo S, Lau SY, Kansedo J, Yap P, Hadibarata T, Jeevanandam J, Kamaruddin AH. Recent advancements in enzyme-incorporated nanomaterials: Synthesis, mechanistic formation, and applications. Biotechnol Bioeng 2022; 119:2609-2638. [PMID: 35851660 PMCID: PMC9543334 DOI: 10.1002/bit.28185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Over the past decade, nanotechnology has been developed and employed across various entities. Among the numerous nanostructured material types, enzyme-incorporated nanomaterials have shown great potential in various fields, as an alternative to biologically derived as well as synthetically developed hybrid structures. The mechanism of incorporating enzyme onto a nanostructure depends on several factors including the method of immobilization, type of nanomaterial, as well as operational and environmental conditions. The prospects of enzyme-incorporated nanomaterials have shown promising results across various applications, such as biocatalysts, biosensors, drug therapy, and wastewater treatment. This is due to their excellent ability to exhibit chemical and physical properties such as high surface-to-volume ratio, recovery and/or reusability rates, sensitivity, response scale, and stable catalytic activity across wide operating conditions. In this review, the evolution of enzyme-incorporated nanomaterials along with their impact on our society due to its state-of-the-art properties, and its significance across different industrial applications are discussed. In addition, the weakness and future prospects of enzyme-incorporated nanomaterials were also discussed to guide scientists for futuristic research and development in this field.
Collapse
Affiliation(s)
- Shamini Anboo
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Sie Yon Lau
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Jibrail Kansedo
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Pow‐Seng Yap
- Department of Civil EngineeringXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Tony Hadibarata
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | | | - Azlina H. Kamaruddin
- School of Chemical EngineeringUniversiti Sains MalaysiaSeberang Perai SelatanPenangMalaysia
| |
Collapse
|
6
|
Willingness to Pay for Safe Chicken Meat in Bangladesh: A Contingent Valuation Approach. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3262245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The poultry meat industry is primarily dominated by broilers, and conventional broiler meat is claimed to be malicious to human health and environment since it is produced using hazardous feeds and other dietary supplements. This study aimed to evaluate consumers’ willingness to pay (WTP) for safe broiler chicken meat following a contingent valuation model (CVM). Also, consumers’ consumption and different types of perceptions on safe broiler meat were assessed from the data collected among 300 consumers in Bangladesh. Consumers’ health and environmental perception of safe broiler meat are found to be high, indicating that they are more concerned about these attributes in the case of consuming broiler meat. The results reveal that conventional broiler meat losses its appeal to consumers after a certain income level and is mainly consumed by lower- and middle-income groups. This study divulges a unanimous demand for safe broiler meat among the consumers who intend to consume about 36% higher than their present consumption level if the availability was ensured in their local market. The average WTP premium for safe broiler meat is estimated to be about BDT 39.87 per kg. The consumers’ WTP is positively influenced by their education, income level, the current consumption of broiler chicken meat, health perception, and taste and nutrition perception. This study recommends meat producers, entrepreneurs, and farmers adjust their production and marketing plans by incorporating suitable quality control procedures to meet the unfilled consumer demand for safer broiler meat. Besides, slow-growing safer broiler chicken needs to be introduced to improve meat’s taste and nutritional aspects.
Collapse
|
7
|
Dhanjal DS, Mehra P, Bhardwaj S, Singh R, Sharma P, Nepovimova E, Chopra C, Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. Int J Nanomedicine 2022; 17:2505-2533. [PMID: 35677678 PMCID: PMC9170235 DOI: 10.2147/ijn.s363282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parul Mehra
- Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| |
Collapse
|
8
|
What Do the Public Want to Know about Farming and Why? Findings from a Farmer-Initiated Public Consultation Exercise in Ireland. SUSTAINABILITY 2022. [DOI: 10.3390/su14095391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
With advances in information communication technologies and sustainability-driven changes in consumer behavior, farmer–citizen communication is a communicative dyad that is receiving attention. Farmers and citizens view farming practices through very different lenses of prior knowledge, experiences, beliefs, and values, presenting unique communication challenges. Dialogue-based communication can help to build empathy and trust. Initiated by a committee of farmers, a public consultation exercise was carried out to facilitate citizens to deliberate over farming and farming practices in Ireland to better understand their views and perspectives, and identify information needs and knowledge gaps. Employing a participatory deliberative approach, 10 focus groups were carried out with members of the public (n = 65) carefully selected to represent diverse demographics in the general population. Findings are structured around two central themes. ‘Bridging the disconnect’ reflects the strong support found across the focus groups for farmer-led dialogic communication with citizens on farming practices. ‘Understanding knowledge gaps’ revealed the nature and underlying motivations of public information needs and knowledge gaps in specific areas: (1) the basics of farming; (2) the life of the farmer; (3) minding animals; (4) minding the environment; and (5) buying local and natural. Dialogue-based communication between farmers and citizens offers opportunities for supporting connected and sustainable food and farming systems through value-driven and responsive behavior change.
Collapse
|
9
|
Gómez-Llorente H, Hervás P, Pérez-Esteve É, Barat JM, Fernández-Segovia I. Nanotechnology in the agri-food sector: Consumer perceptions. NANOIMPACT 2022; 26:100399. [PMID: 35560291 DOI: 10.1016/j.impact.2022.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this work was to evaluate Spanish consumers' opinions on using nanotechnology in food processing and packaging. For this purpose, a literature review was carried out in the main research database to determine the most widespread uses of nanotechnology in the food industry and the most promising developments. Of all the nanotechnology uses in food, five areas of application were identified: developing new ingredients or additives, formulating new antimicrobial systems, and designing new processing methods, sensors and packaging with nanostructured materials. Subsequently, a consumers' opinion study was carried out by means of a survey, in which the opinions and purchase intention of a representative product of all five categories were evaluated, as well as the neophobia level to new food technologies. All the products obtained positive evaluations, and the applications in which nanotechnology did not form part of food were generally better valued than those in which it did form part. The respondents had a medium neophobia level, with an average score of 4.59 (out of 7 points), being consumers with more knowledge about new technologies the least neophobic and those who gave products higher scores. This study provides relevant information for using nanotechnology in the food processing and packaging sector.
Collapse
Affiliation(s)
- Héctor Gómez-Llorente
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Pau Hervás
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Édgar Pérez-Esteve
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Jose M Barat
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Isabel Fernández-Segovia
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
10
|
Aguilar-Pérez KM, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight of nanotechnological processing for nano-fortified functional foods and nutraceutical-opportunities, challenges, and future scope in food for better health. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34817310 DOI: 10.1080/10408398.2021.2004994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the twenty-first century food sector, nanotechnological processing is a new frontier that has vibrant impact on enhancing the food quality, nutritional value, food safety, and nano-fortified functional foods aspects. In addition, the added-value of various robust nano-scale materials facilitates the targeted delivery of nutraceutical ingredients and treatment of obesity and comorbidities. The recent advancement in nanomaterial-assisted palatability enhancement of healthy foods opened up a whole new area of research and development in food nanoscience. However, there is no comprehensive review available on promises of nanotechnology in the food industry in the existing literature. Thus, herein, an effort has been made to cover this leftover literature gap by spotlighting the new nanotechnological frontier and their future scope in food engineering for better health. Following a brief introduction, promises of nanotechnology have revolutionized the twenty-first century food sector of the modern world. Next, recent and relevant examples discuss the exploitation and deployment of nanomaterials in food to attain certain health benefits. A detailed insight is also given by discussing the role of nano-processing in nutraceutical delivery to treat obesity and comorbidities. The latter half of the work focuses on improving healthy foods' palatability and food safety aspects to meet the growing consumer demands. Furthermore, marketed products and public acceptance of nanotechnologically designed food items as well as future prospects are also covered herein.
Collapse
Affiliation(s)
- Katya M Aguilar-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | - Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
11
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
12
|
Grieger KD, Merck AW, Cuchiara M, Binder AR, Kokotovich A, Cummings CL, Kuzma J. Responsible innovation of nano-agrifoods: Insights and views from U.S. stakeholders. NANOIMPACT 2021; 24:100365. [PMID: 35559824 DOI: 10.1016/j.impact.2021.100365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 06/15/2023]
Abstract
To date, there has been little published work that has elicited diverse stakeholder views of nano-agrifoods and of how nano-agrifoods align with the goals of responsible innovation. This paper aims to fill this research gap by investigating views of nano-agrifoods, how well their development adheres to principles of responsible innovation, and potential challenges for achieving responsible nano-agrifood innovation. Using an online engagement platform, we find that U.S. stakeholder views of responsible innovation were dominated by environmental, health, and safety (EHS) contexts, considerations of societal impacts, opportunities for stakeholder engagement, and responding to societal needs. These views overlap with scholarly definitions of responsible innovation, albeit stakeholders were more focused on impacts of products, while the field of responsible innovation strives for more "upstream" considerations of the process of innovation. We also find that views of nano-agrifoods differed across applications with dietary supplements and improved whitening of infant formula viewed least favorably, and environmental health or food safety applications viewed most favorably. These findings align with the larger body of literature, whereby stakeholders are expected to be more supportive of nanotechnology used in agricultural applications compared to directly within food and food supplements. Overall, participants indicated they held relatively neutral views on research and innovation for nano-agrifoods being conducted responsibly, and they identified key challenges to ensuring their responsible innovation that were related to uncertainties in EHS studies, the need for public understanding and acceptance, and adequate regulation. In light of these results, we recommend future research efforts on EHS impacts and risk-benefit frameworks for nano-agrifoods, better understanding stakeholder views on what constitutes effective regulation, and addressing challenges with effective regulation and responsible innovation practices.
Collapse
Affiliation(s)
- Khara D Grieger
- Department of Applied Ecology, North Carolina State University, USA; Genetic Engineering and Society Center, North Carolina State University, USA.
| | - Ashton W Merck
- Department of Applied Ecology, North Carolina State University, USA; Genetic Engineering and Society Center, North Carolina State University, USA
| | - Maude Cuchiara
- Department of Materials Science and Engineering, North Carolina State University, USA
| | - Andrew R Binder
- Genetic Engineering and Society Center, North Carolina State University, USA; Department of Communication, North Carolina State University, USA
| | - Adam Kokotovich
- Genetic Engineering and Society Center, North Carolina State University, USA; Department of Forestry and Environmental Resources, North Carolina State University, USA
| | - Christopher L Cummings
- Genetic Engineering and Society Center, North Carolina State University, USA; Gene Edited Foods Program, Iowa State University, USA
| | - Jennifer Kuzma
- Genetic Engineering and Society Center, North Carolina State University, USA; School of Public and International Affairs, North Carolina State University, USA
| |
Collapse
|
13
|
Ramos-de-la-Peña AM, Aguilar O, González-Valdez J. Progress in nanostructure understanding of edible crystalline fats and their application in nano-delivery systems: Cocoa butter as a model. Food Res Int 2021; 147:110561. [PMID: 34399538 DOI: 10.1016/j.foodres.2021.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/30/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Nucleation and crystal growth of edible fats at the nanoscale have received little attention due to analytical limitations. A key factor to modify the properties of edible fats is nanostructure understanding. Progress within the last years will be presented, including analytical techniques used to investigate fat crystallization. Cocoa butter has been the subject of several works due to its properties and its high impact on chocolate manufacturing. Moreover, this vegetable fat has been used as the solid lipid component in nano delivery systems. Since nanoplatelet is the smallest unit in crystalline fats, and the nanoscale is influenced by supersaturation, temperature, shear fields, and surfactants, nanostructure engineering is possible. On its part, cocoa butter has been included in innovative delivery systems along the last years. This review will highlight main results and challenges on these topics.
Collapse
Affiliation(s)
- Ana Mayela Ramos-de-la-Peña
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Oscar Aguilar
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
14
|
Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. SUSTAINABILITY 2021. [DOI: 10.3390/su13116260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agri-food systems (AFS) have been central in the debate on sustainable development. Despite this growing interest in AFS, comprehensive analyses of the scholarly literature are hard to find. Therefore, the present systematic review delineated the contours of this growing research strand and analyzed how it relates to sustainability. A search performed on the Web of Science in January 2020 yielded 1389 documents, and 1289 were selected and underwent bibliometric and topical analyses. The topical analysis was informed by the SAFA (Sustainability Assessment of Food and Agriculture systems) approach of FAO and structured along four dimensions viz. environment, economy, society and culture, and policy and governance. The review shows an increasing interest in AFS with an exponential increase in publications number. However, the study field is north-biased and dominated by researchers and organizations from developed countries. Moreover, the analysis suggests that while environmental aspects are sufficiently addressed, social, economic, and political ones are generally overlooked. The paper ends by providing directions for future research and listing some topics to be integrated into a comprehensive, multidisciplinary agenda addressing the multifaceted (un)sustainability of AFS. It makes the case for adopting a holistic, 4-P (planet, people, profit, policy) approach in agri-food system studies.
Collapse
|
15
|
Patiño-Ruiz D, Meramo-Hurtado SI, Mehrvar M, Rehmann L, Quiñones-Bolaños E, González-Delgado ÁD, Herrera A. Environmental and Exergetic Analysis of Large-Scale Production of Citric Acid-Coated Magnetite Nanoparticles via Computer-Aided Process Engineering Tools. ACS OMEGA 2021; 6:3644-3658. [PMID: 33585745 PMCID: PMC7876683 DOI: 10.1021/acsomega.0c05184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Considering that functional magnetite (Fe3O4) nanoparticles with exceptional physicochemical properties can be highly applicable in different fields, scaling-up strategies are becoming important for their large-scale production. This study reports simulations of scaled-up production of citric acid-coated magnetite nanoparticles (Fe3O4-cit), aiming to evaluate the potential environmental impacts (PEIs) and the exergetic efficiency. The simulations were performed using the waste reduction algorithm and the Aspen Plus software. PEI and energy/exergy performance are calculated and quantified. The inlet and outlet streams are estimated by expanding the mass and energy flow, setting operating parameters of processing units, and defining a thermodynamic model for properties estimation. The high environmental performance of the production process is attributed to the low outlet rate of PEI compared to the inlet rate. The product streams generate low PEI contribution (-3.2 × 103 PEI/y) because of the generation of environmentally friendlier substances. The highest results in human toxicity potential (3.2 × 103 PEI/y), terrestrial toxicity potential (3.2 × 103 PEI/y), and photochemical oxidation potential (2.6 × 104 PEI/y) are attributed to the ethanol within the waste streams. The energy source contribution is considerably low with 27 PEI/y in the acidification potential ascribed to the elevated levels of hydrogen ions into the atmosphere. The global exergy of 1.38% is attributed to the high irreversibilities (1.7 × 105 MJ/h) in the separation stage, especially, to the centrifuge CF-2 (5.07%). The sensitivity analysis establishes that the global exergy efficiency increases when the performance of the centrifuge CF-2 is improved, suggesting to address enhancements toward low disposal of ethanol in the wastewater.
Collapse
Affiliation(s)
- David
Alfonso Patiño-Ruiz
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Samir Isaac Meramo-Hurtado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Industrial, Grupo de Investigación de
Productividad y Gestión Empresarial, Fundación Universitaria Colombo Internacional, 130001 Cartagena, Colombia
| | - Mehrab Mehrvar
- Department
of Chemical Engineering, Ryerson University, M5B 2K3 Toronto, Ontario, Canada
| | - Lars Rehmann
- Department
of Chemical and Biochemical Engineering, University of Western Ontario, N6A 3K7 London, Ontario, Canada
| | - Edgar Quiñones-Bolaños
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Civil, Grupo de Investigación de Modelación
Ambiental, Universidad de Cartagena, 130001 Cartagena, Colombia
| | - Ángel Dario González-Delgado
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| | - Adriana Herrera
- Programa
de Doctorado en Ingeniería, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
- Programa
de Ingeniería Química, Grupo de Nanomateriales e Ingeniería
de Procesos Asistida por Computador, Universidad
de Cartagena, 130010 Cartagena, Colombia
| |
Collapse
|
16
|
Aguirre-Joya JA, Chacón-Garza LE, Valdivia-Najár G, Arredondo-Valdés R, Castro-López C, Ventura-Sobrevilla JM, Aguilar-Gonzáles CN, Boone-Villa D. Nanosystems of plant-based pigments and its relationship with oxidative stress. Food Chem Toxicol 2020; 143:111433. [PMID: 32569796 DOI: 10.1016/j.fct.2020.111433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
Plant-based pigments are widely present in nature, they are classified depending on their chemical structure as tetrapyrroles, carotenoids, polyphenolic compounds, and alkaloids and are extensively used in medicine, food industry, clothes, and others. Recently they have been investigated due to their role in the areas of food processing, food safety and quality, packaging, and nutrition. Many studies indicate a relationship between bioactive pigments and Non-Communicable Diseases derived from oxidative stress. Their biological applications can help in preventing oxidative injuries in the cell caused by oxygen and nitrogen reactive species. Those pigments are easily degraded by light, oxygen, temperature, pH conditions, among others. Nanotechnology offers the possibility to protect bioactive ingredients and increase its bioavailability after oral administration. Safety to humans (mainly evaluated from toxicity data) is the first concern for these products. In the present work, we present a comprehensive outlook of the most important plant-based pigments used as food colorants, the principal nanotechnology systems prepared with them, and the relationship of these compounds with the oxidative stress and related Non-Communicable Disease.
Collapse
Affiliation(s)
- Jorge A Aguirre-Joya
- School of Health Science, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico
| | - Luis E Chacón-Garza
- School of Health Science, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico
| | - Guillermo Valdivia-Najár
- CONACYT - Department of Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Jalisco, Mexico
| | - Roberto Arredondo-Valdés
- Nanobioscience Group, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico; Research Group of Chemist Pharmacist Biologist, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico
| | - Cecilia Castro-López
- Laboratory of Chemistry and Biotechnology of Dairy Products, Research Centre in Food & Development, A.C (CIAD, A.C.), Gustavo Enrique Astiazarán Rosas Highway, Hermosillo, Sonora, Mexico
| | | | - Cristóbal N Aguilar-Gonzáles
- Food Research Group, Chemistry School, Universidad Autonoma de Coahuila, Blvd. V. Carranza e Ing. J. Cardenas V., Saltillo, Coahuila, Mexico
| | - Daniel Boone-Villa
- School of Medicine North Unit, Universidad Autonoma de Coahuila, Unidad Norte, Piedras Negras, Coahuila, Mexico.
| |
Collapse
|
17
|
Sajdakowska M, Gębski J, Guzek D, Gutkowska K, Żakowska-Biemans S. Dairy Products Quality from a Consumer Point of View: Study among Polish Adults. Nutrients 2020; 12:nu12051503. [PMID: 32455767 PMCID: PMC7285049 DOI: 10.3390/nu12051503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
The aims of the current study were (a) to deepen the understanding of food quality from animal origin with particular emphasis on dairy products, including yoghurt; (b) to determine the level of acceptance of methods and ingredients used to enhance the quality of food from animal origin; (c) to identify how the perception of animal products quality affects the acceptance of changes in production methods and (d) to identify the projective image of consumers purchasing high-quality yoghurt. The data were collected using a CAPI (Computer Assisted Personal Interview) survey on a sample of 983 consumers. The k-means clustering method (k-means clustering algorithm is an unsupervised algorithm that is used to segment the interest area from the background) was used to identify five clusters of consumers. Moreover, the logistic regression models were used in order to examine the impact of opinions related to the quality of product on acceptance of food production methods. The results showed that food quality is generally perceived by consumers using the following attributes: its freshness, naturalness, production method, as well as appearance, taste and smell, but when it comes to the quality of food from animal origin, convenience, connected with the availability, nutritional value and health benefits is of primary importance. The most accepted production method of high-quality food is animal production that takes into consideration the welfare of farm animals. Results also show that the increase in the level of education among the surveyed people contributed to the acceptance of ensuring welfare of farm animals as a method of increasing food quality while consumers′ openness to new products favored the acceptance of adding health-promoting ingredients to livestock feed. As regards the assessment of the level of acceptance of enhancing food with beneficial ingredients, people for whom health aspects were important declared their willingness to accept such a method of increasing food quality. The research findings can be used to develop educational campaigns as well as marketing communication of enterprises operating on the food market. Furthermore, the results could be used to strengthen the competitive position of food enterprises searching for innovative solutions.
Collapse
|
18
|
Young E, Mirosa M, Bremer P. A Systematic Review of Consumer Perceptions of Smart Packaging Technologies for Food. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|