1
|
Lin H, Kehinde O, Lin C, Fei M, Li R, Zhang X, Yang W, Li J. Mechanically strong micro-nano fibrillated cellulose paper with improved barrier and water-resistant properties for replacing plastic. Int J Biol Macromol 2024; 263:130102. [PMID: 38342270 DOI: 10.1016/j.ijbiomac.2024.130102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Replacing nonbiodegradable plastics with environmentally friendly cellulose materials has emerged as a key trend in environmental protection. This study highlights the development of a strong and hydrophobic micro-nano fibrillated cellulose paper (MNP) through the incorporation of micro-nano fibrillated cellulose fiber (MNF) and chitin nanocrystal (Ch), followed by the impregnation of polymethylsiloxane (PMHS). A low-acid, heat-assisted colloidal grinding strategy was employed to prepare MNF with a high aspect ratio effectively. Ch was incorporated as a reinforcing matrix into the cellulose fiber scaffold through straightforward mechanical mixing and mechanical hot-pressing treatments. Compared to pure MNP, the 5Ch-MNP exhibited a 25 % improvement in tensile strength, reaching 170 MPa, and showed enhanced barrier properties against oxygen and water vapor. The impregnation of PMHS rapidly confers environmentally resistant hydrophobic properties to 1 % PMHS-5Ch-MNP, leading to a water contact angle exceeding 112°, and a 290 % increase in tensile strength under wet conditions. Additionally, the paper demonstrated excellent antibacterial adhesion properties, with the adhesion rates for E. coli and S. aureus exceeding 98 %. This study successfully produced functional cellulose paper with remarkable mechanical properties and barrier properties, as well as hydrophobicity, using a simple, efficient, and environmentally friendly method, making it a promising substitute for petroleum-based plastics.
Collapse
Affiliation(s)
- Huiping Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Olonisakin Kehinde
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Chengwei Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Mingen Fei
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Ran Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Xinxiang Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Wenbin Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China.
| | - Jian Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; Northeast Forestry University, Haerbin 150040, China.
| |
Collapse
|
2
|
Chirilli C, Torri L. Effect of Biobased Cling Films on Cheese Quality: Color and Aroma Analysis for Sustainable Food Packaging. Foods 2023; 12:3672. [PMID: 37835325 PMCID: PMC10572124 DOI: 10.3390/foods12193672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Biobased and biodegradable polymeric materials are a sustainable alternative to the conventional plastics used in food packaging. This study investigated the possible effect of biobased cling films derived from renewable and circular and sustainable sources on key cheese sensory parameters (appearance and odor) able to influence consumer acceptance or rejection of a food product over time. For this purpose, a semi-hard cheese was selected as food model and stored for 14 days at 5 °C wrapped with five cling films: two bio-plastic materials from renewable circular and sustainable sources (R-BP1 and R-BP2), one bio-plastic film from a non-renewable source (NR-BP), and two conventional cling films (LDPE and PVC). Three analytical approaches (image analysis, electronic nose, and sensory test) were applied to evaluate the variation and the acceptability in terms of appearance and odor of the cheese. In preserving cheese color, the R-BP1 and RBP2 films were comparable to LDPE film, while NR-BP film was comparable to PVC film. In terms of odor preservation, R-BP2 film was comparable to LDPE and PVC. The consumer test showed that appearance and odor scores were higher for cheeses stored in R-BP1 and R-BP2 films than NR-BP film. Moreover, in terms of odor, R-BP1 film performed better than conventional films. This study shows how biodegradable cling films from renewable circular and sustainable resources could have comparable performance to conventional plastics (LDPE and PVC) used in the food sector.
Collapse
Affiliation(s)
| | - Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy;
| |
Collapse
|
3
|
Bangar SP, Whiteside WS, Kajla P, Tavassoli M. Value addition of rice straw cellulose fibers as a reinforcer in packaging applications. Int J Biol Macromol 2023:125320. [PMID: 37307977 DOI: 10.1016/j.ijbiomac.2023.125320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The potential use of agro-waste in food packaging applications is receiving remarkable attention due to its sustainable approach and biodegradable properties. As typical lignocellulosic biomass, rice straw (RS) is widely produced but is usually abandoned and burned, causing tremendous environmental concerns. The exploration of using RS as the source of biodegradable packaging materials is promising for economically converting this agricultural waste into packaging material, thereby providing a considerable solution for RS disposal and an alternative solution to synthetic plastic waste. Polymers have been infused with nanoparticles, fibers, and whiskers, along with plasticizers and cross-linkers, and fillers like nanoparticles and fibers. They have also been blended with natural extracts, essential oils, and other synthetic and natural polymers to improve RS properties. There is still much research to be done before this biopolymer can be applied at an industrial level in food packaging. In this respect, RS can be valued for packaging to add value to these underutilized residues. This review article focuses on the extraction methods and functionality of cellulose fibers and their nanostructured forms from RS and their utilization in packaging applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson 29634, USA.
| | - William Scott Whiteside
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson 29634, USA
| | - Priyanka Kajla
- Guru Jambheshwar University of Science &Technology, Hisar, 125001, Haryana, India
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
de Sousa FDB. Consumer Awareness of Plastic: an Overview of Different Research Areas. CIRCULAR ECONOMY AND SUSTAINABILITY 2023:1-25. [PMID: 37360378 PMCID: PMC10039692 DOI: 10.1007/s43615-023-00263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Plastic makes our society more practical and safer. It is hard to consider eliminating plastic in some sectors, such as the medical field. However, after use, plastic waste becomes a global problem without precedents, and when not properly disposed of, it can cause several socio-environmental problems. Some possible solutions are recycling, the circular economy, proper waste management, and consumer awareness. Consumers play a crucial role in preventing problems caused by plastic. In this work, consumer awareness of plastic is discussed according to the point of view of the research areas-environmental science, engineering, and materials science-based on the analysis of the main authors' keywords obtained in a literature search in the Scopus database. Bibliometrix analyzed the Scopus search results. The results showed that each area presents different concerns and priorities. The current scenario, including the main hotspots, trends, emerging topics, and deficiencies, was obtained. On the contrary, the concerns from the literature and those of the daily lives of consumers do not seem to fit in, which creates a gap. By reducing this gap, the distance between consumers awareness and their behavior will be smaller.
Collapse
Affiliation(s)
- Fabiula Danielli Bastos de Sousa
- Technology Development Center, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, 96010-610 Pelotas, RS Brazil
- Center of Engineering, Modeling and Applied Social Science, Universidade Federal do ABC, Avenida dos Estados, 5001, 09210-580 SP Santo André, Brazil
| |
Collapse
|
5
|
Degradation behavior of multilayer packaging films in the presence of a highly acidic sauce. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Ezati P, Rhim JW. Pectin/carbon quantum dots fluorescent film with ultraviolet blocking property through light conversion. Colloids Surf B Biointerfaces 2022; 219:112804. [PMID: 36084511 DOI: 10.1016/j.colsurfb.2022.112804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
Carbon quantum dots (CQDs) were synthesized using glucose as a carbon source through a hydrothermal method. CQDs showed negligible cytotoxicity to L929 cells even after prolonged exposure of 72 h. The addition of CQD did not affect the pectin film's mechanical properties, water contact angle, and thermal stability. However, the CQD-added composite film generates reactive oxygen species (ROS), providing high antibacterial activity against pathogenic bacteria (L. monocytogenes and E. coli) and antifungal activity against mold (Aspergillus flavus), where a 100% eradication of bacteria and fungi population was observed. Also, the addition of CQD strengthens the antioxidant activity of the composite films by 95%. Further, the CQD-added pectin film converted ultraviolet rays into blue light, which improved the film's UV protection properties. Therefore, the pectin/CQD film has a high potential for a light conversion active packaging film that may prevent the deterioration of high-fat foods.
Collapse
Affiliation(s)
- Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
7
|
Albahr Z, Al-Ghamdi S, Tang J, Sablani SS. Pressure-Assisted Thermal Sterilization and Storage Stability of Avocado Puree in High Barrier Polymeric Packaging. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Al-Ghamdi S, Sonar CR, Albahr Z, Alqahtani O, Collins BA, Sablani SS. Pressure-assisted thermal sterilization of avocado puree in high barrier polymeric packaging. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Thanakkasaranee S, Sadeghi K, Seo J. Packaging materials and technologies for microwave applications: a review 1. Crit Rev Food Sci Nutr 2022; 63:6464-6483. [PMID: 35099331 DOI: 10.1080/10408398.2022.2033685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Packaging materials for microwave application should be generally designed based on products properties and processing conditions such as microwavability, susceptibility, processing condition, barrier properties, mechanical properties, storage condition, sustainability, convenience, and so on. Ready-to-eat products are packed in materials that can sustain thermal processing in an industrial oven and warming process in a household oven. In this context, high barrier polymers are versatile microwave packaging materials due to the microwave transparency (unlike metalized film) and high barrier. Additionally, microwave packaging materials used for ready-to-cook are intended to facilitate the microwave heating of the products in a domestic oven. The introduction of a functional feather to microwave packaging tends to improve the microwaving efficiency such as susceptor and shielding in the household oven or self-venting microwave packaging to safely release the internal steam. Furthermore, microwave-assisted thermal processing intends to control microbial contamination, requiring materials with adequate stability during processing and storage. The features of these materials are addressed in this review along with details on the basic requirements and advanced technologies for microwave packaging, microwave processing of prepackaged food, and migration testing. The prospects of microwave packaging materials in the near future are also discussed.
Collapse
Affiliation(s)
- Sarinthip Thanakkasaranee
- School of Agro‑Industry, Faculty of Agro‑Industry, Chiang Mai University, Mae Hia, Muang, Chiang Mai, Thailand
- Department of Packaging, Yonsei University, Wonju-si, Gangwon-do, South Korea
| | - Kambiz Sadeghi
- Department of Packaging, Yonsei University, Wonju-si, Gangwon-do, South Korea
| | - Jongchul Seo
- Department of Packaging, Yonsei University, Wonju-si, Gangwon-do, South Korea
| |
Collapse
|
10
|
A halochromic indicator based on polylactic acid and anthocyanins for visual freshness monitoring of minced meat, chicken fillet, shrimp, and fish roe. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Du L, Yu H, Zhang B, Tang R, Zhang Y, Qi C, Wolcott MP, Yu Z, Wang J. Transparent oxygen barrier nanocellulose composite films with a sandwich structure. Carbohydr Polym 2021; 268:118206. [PMID: 34127230 DOI: 10.1016/j.carbpol.2021.118206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/15/2022]
Abstract
Transparent gas barrier materials have extensive applications in packaging, pharmaceutical preservation, and electronics. Herein, we designed transparent films with a symmetric sandwich structure using layer-by-layer assembly of biaxially oriented polypropylene (BOPP) and acrylic resin (AR) followed by a cellulose nanoparticle (CNP) layer. The BOPP as a substrate created a barrier to hinder the transmission of water molecules to the adhesive AR layer and gas barrier functional CNP layer. The aspect ratio of the CNPs was shown to affect the film microstructure, resulting in different values for the oxygen transmission rate (OTR). The well-organized CNP layer exhibited lower OTR when compared with the network layer. The thickness, density, and porosity of the CNP layer exhibited correlations with OTR. The water molecules were able to flow in through an additional pathway, thus increasing the water vapor transmission rate (WVTR). Moreover, these sandwiched cellulose composite films showed excellent light transmittance and tensile strength.
Collapse
Affiliation(s)
- Lanxing Du
- College of Forestry, Hebei Agriculture University, Baoding 071000, China; College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; Composite Materials and Engineering Center, Washington State University, Pullman, WA 99163, USA.
| | - Haonan Yu
- College of Forestry, Hebei Agriculture University, Baoding 071000, China.
| | - Bohan Zhang
- College of Forestry, Hebei Agriculture University, Baoding 071000, China.
| | - Ruilin Tang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yang Zhang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chusheng Qi
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Michael P Wolcott
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99163, USA.
| | - Zhiming Yu
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jinwu Wang
- Forest Products Laboratory, U. S. Forest Service, Madison, WI 53726, USA.
| |
Collapse
|
12
|
Patel J, Sonar CR, Al-Ghamdi S, Tang Z, Yang T, Tang J, Sablani SS. Influence of ultra-high barrier packaging on the shelf-life of microwave-assisted thermally sterilized chicken pasta. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|