1
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
2
|
Adamek M, Zvonkova M, Buresova I, Buran M, Sevcikova V, Sebestikova R, Adamkova A, Skowronkova N, Mlcek J. Use of a Thermodynamic Sensor in Monitoring Fermentation Processes in Gluten-Free Dough Proofing. SENSORS (BASEL, SWITZERLAND) 2023; 23:534. [PMID: 36617133 PMCID: PMC9823817 DOI: 10.3390/s23010534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Dough fermentation in gluten-free bakery products is problematic due to the absence of gluten, which provides advantageous rheological properties. A thermodynamic sensor (TDS) system combined with an electronic nose was tested as an alternative to conventional methods monitoring dough development based on mechanical properties. In the first part, the configuration of the sensors in the thermodynamic system and their response to different heat-source positions, which significantly affect the output signal from the measurement system, were investigated. The practical contribution lies in the application of the measurements to the example of gluten-free doughs with and without edible insect enrichment. An optimized configuration of the thermodynamic system (one sensor on the inner wall of the container at the bottom and another in the middle of the container closer to the top of the dough) in combination with an experimental electronic nose was used for the aforementioned measurement. In some cases, up to 87% correlation between the signal from the TDS and the signals from a professional rheofermentometer Rheo F-4 (Chopin) was demonstrated. The differences between the results can be explained by the use of different techniques. Using a combination of sensor systems in one place, one time and one sample can lead to more comprehensive and robust results. Furthermore, it was shown that the fermentation activity increased in corn dough with the addition of insects compared to dough without the addition. In rice flour dough with the addition of edible insects, fermentation activity was similar to that of the flour without the addition.
Collapse
Affiliation(s)
- Martin Adamek
- Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Magdalena Zvonkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Iva Buresova
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Martin Buran
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Veronika Sevcikova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Romana Sebestikova
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Anna Adamkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Nela Skowronkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic
| |
Collapse
|
3
|
Pan J, Xu H, Cheng Y, Mintah BK, Dabbour M, Yang F, Chen W, Zhang Z, Dai C, He R, Ma H. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022; 11:foods11192931. [PMID: 36230006 PMCID: PMC9562009 DOI: 10.3390/foods11192931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the recent increase in the human population and the associated shortage of protein resources, it is necessary to find new, sustainable, and natural protein resources from invertebrates (such as insects) and underutilized plants. In most cases, compared to plants (e.g., grains and legumes) and animals (e.g., fish, beef, chicken, lamb, and pork), insect proteins are high in quality in terms of their nutritional value, total protein content, and essential amino acid composition. This review evaluates the recent state of insects as an alternative protein source from production to application; more specifically, it introduces in detail the latest advances in the protein extraction process. As an alternative source of protein in food formulations, the functional characteristics of edible insect protein are comprehensively presented, and the risk of allergy associated with insect protein is also discussed. The biological activity of protein hydrolyzates from different species of insects (Bombyx mori, Hermetia illucens, Acheta domesticus, Tenebrio molitor) are also reviewed, and the hydrolysates (bioactive peptides) are found to have either antihypertensive, antioxidant, antidiabetic, and antimicrobial activity. Finally, the use of edible insect protein in various food applications is presented.
Collapse
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Qaluobia P.O. Box 13736, Egypt
| | - Fan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhaoli Zhang
- School of Food Science and Engineering, Yangzhou University, 196 Huayang West Road, Yangzhou 225127, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: or ; Tel./Fax: +86-(511)-8878-0201
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
4
|
Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods 2022; 11:foods11142142. [PMID: 35885385 PMCID: PMC9324883 DOI: 10.3390/foods11142142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
The current market trends in modern sedentary lifestyles drive the development of new functional products able to fulfill consumers’ demand for a healthy diet. Whole wheat bread contains more protein and fiber than white bread; however, it could be improved in terms of protein content and quality. Cricket powder, which contains high protein (55.11, wt%), could be used as an alternative source to tackle those deficiencies in such bread. Hence, the study aimed to apply cricket powder in the whole wheat bread formula to enrich protein content, indispensable amino acids and determine their physico-chemical properties, consumers’ acceptance, and shelf-life storage. The results showed that all enriched bread presented high protein (18.97−25.94, wt%), fat (10.91−15.07, wt%), and ash (2.09−2.33, wt%) with the increment of the cricket powder than those of the control bread. Enriched breads’ crust colors were not significantly different (p > 0.05), while crumb colors were darker (L* = 55.64−64.48) compared to the control (L* = 69.98). Enriched bread had a hard texture and required a lot of chewing force compared to the control. Furthermore, all samples yielded a shelf-life of 5 days when monitoring the mold growth. From the results, the bread enriched with 20% cricket powder yielded the best consumers’ acceptance score of 77%. It was predominantly high in indispensable amino acids such as leucine, phenylalanine, lysine, and arginine. Therefore, cricket powder could be a novel alternative protein source and successfully utilized in whole wheat bread to enhance its protein content and indispensable amino acids with consumers’ acceptance responding to the current market trend.
Collapse
|
5
|
Enrichment of wheat flour with Spirulina. Evaluation of thermal damage to essential amino acids during bread preparation. Food Res Int 2022; 157:111357. [DOI: 10.1016/j.foodres.2022.111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
|
6
|
Can Karaca A, Nickerson M, Caggia C, Randazzo CL, Balange AK, Carrillo C, Gallego M, Sharifi-Rad J, Kamiloglu S, Capanoglu E. Nutritional and Functional Properties of Novel Protein Sources. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Amjad K. Balange
- Technology, ICAR-Central Institute of Fisheries EducationDepartment of Post-Harvest, Mumbai, India
| | - Celia Carrillo
- Bromatología, Facultad de Ciencias, Universidad de BurgosÁrea de Nutrición y , Burgos, Spain
| | - Marta Gallego
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa, Turkey
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|