1
|
Kaynarca GB. Characterization and molecular docking of sustainable wine lees and gelatin-based emulsions: innovative fat substitution. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7429-7440. [PMID: 38702916 DOI: 10.1002/jsfa.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The present study aimed to determine how various amounts (0.00, 0.58, 1.52 and 4.50 g 100 g-1) of wine lees (WL), which contains numerous essential components, impact the emulsifying properties of fish gelatin (FG) at a low concentration (0.5 g 100 g-1) in the high-fat phase (65 g 100 g-1). This study conducted rheology, physicochemical technical and characterization analyses on the emulsions to provide sustainable and innovative approaches for spreadable oils. RESULTS The addition of WL to FG emulsions improved oxidative stability, emulsion stability and bioactive compounds. The zeta potential (-101 ± 5.62 mV) of 0.58 g 100 g-1 WL-containing emulsion (PE1) was found to be high, whereas particle size (347.6 ± 5.25 nm) and polydispersity index (0.50) were statistically low. It was also found that the addition of WL improved the intermolecular interactions, crystallinity and microstructural properties of the emulsions. All these results were supported by simulating the molecular configuration between FG and WL. The compounds gallic acid, caffeic acid, myricetin, quercetin and resveratrol showed a strong affinity to FG, with free binding energies of -5.50, -5.88, -6.53, -6.68 and -6.66 kcal mol-1, respectively. CONCLUSION As a result, WL-supported FG has the potential to be used as an alternative to egg proteins to develop sustainable low-cost spreadable emulsions. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kirklareli, Turkey
| |
Collapse
|
2
|
Kamer DDA, Kaynarca GB, Yılmaz OŞ, Gümüş T. Waste to value: Enhancing xanthan gum hydrogel with wine lees extract for optimal performance. Int J Biol Macromol 2024; 259:129342. [PMID: 38216009 DOI: 10.1016/j.ijbiomac.2024.129342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
The current study investigated the potential of utilizing wine lees extract (WLE) from red wine to enhance the sustainability and cost-effectiveness of xanthan gum (XG). A novel hydrogel system was successfully generated by cross-linking WLE and XG. Response surface methodology (RSM) was used to thoroughly analyze the characteristics of this novel hydrogel to understand its behavior and possible applications. Consistency index (K), flow behavior index (n), water holding capacity (%), and oil binding capacity (%) of the cross-linked hydrogels were optimized, and the best formulation was determined to be 0.81 % XG + 0.67 % WLE and crosslink temperature of 47 °C. The addition of WLE (0-1 % w/v) to different concentrations of XG (0-1 % w/v) was found to have a notable impact on the rheological properties, but changes in cross-link temperature (45-65 °C) did not have a significant effect. The activation energy was increased by incorporating WLE at XG concentration above 0.5 %, indicating a more robust and stable structure. FTIR and SEM analyses confirmed the chemical bonding structure of the optimum hydrogel. Incorporating WLE could significantly improve the functional properties of XG hydrogels, allowing the development of healthier product formulations.
Collapse
Affiliation(s)
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | - Oylum Şimal Yılmaz
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Tuncay Gümüş
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey.
| |
Collapse
|
3
|
Gumus T, Kaynarca GB, Kamer DDA. Optimization of an edible film formulation by incorporating carrageenan and red wine lees into fish gelatin film matrix. Int J Biol Macromol 2024; 258:128854. [PMID: 38123042 DOI: 10.1016/j.ijbiomac.2023.128854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The study aimed to use response surface methodology (RSM) to create and understand a novel edible film made from fish gelatin (FG). This film includes wine lees (WL) and carrageenan (CAR). The concentrations of WL (0, 1, 2, and 3 %) and CAR (0, 1, and 3 %) were considered independent variables. The process variable combinations for the optimal response functions were 1.926 % WL and 3 % CAR, forming soft and rigid films with low tensile strength (TS) and high elongation at break (EAB%). Based on the evaluation of each response, FG film had the highest TS value, FG/CAR(3 %) film had the maximum EAB, and FG/WL (3 %)/CAR (3 %) film had the lowest vapor permeability (WVP) and the highest opacity (OP). The incorporation of WL considerably improved the functional properties of these films, enabling strong antioxidant activity and high phenolic content. Characterization of the films with analytical techniques: Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis demonstrated a considerable interaction between WL and FG, indicating a high level of compatibility between the two substances. Our data suggest that the formulation of edible films can be adjusted to fit the specific requirements of the design.
Collapse
Affiliation(s)
- Tuncay Gumus
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | | |
Collapse
|
4
|
Bianchi F, Cervini M, Giuberti G, Simonato B. The Potential of Wine Lees as a Fat Substitute for Muffin Formulations. Foods 2023; 12:2584. [PMID: 37444321 PMCID: PMC10340648 DOI: 10.3390/foods12132584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The current study evaluates the prospect of wine lees (WL), a costless by-product from Amarone winemaking, as a fat replacer in muffin formulation. WL have elsewhere replaced sunflower oil, allowing the creation of 0, 25, 50, 75, and 100% fat-substituted muffins named ML0, ML25, ML50, ML75, and ML100, respectively. Batter rheology, in addition to the textural and colorimetric characteristics, the pore dimension, and the sensory aspect of the different formulations were evaluated. The batter consistency (K) of fat-replaced muffins was lower than that of the control, while the hardness and chewiness of the end products were higher. ML25 and ML50 samples reached the highest volume, while the baking loss decreased due to WL's fiber components. ML25, ML50, ML75, and ML100 accounted for caloric reductions of 9, 18, 22, and 26%, respectively, compared to full-fat muffins. Muffins with WL showed a darker crust and crumb as lightness (L*) decreased. Moreover, a* parameter increased with the increment of WL in the formulation, leading to a redder and less yellow-hued fat-replaced muffin. In conclusion, WL could effectively replace fat in the 25-50% range in muffins, achieving a final product with reduced calories, a higher dietary fiber content, higher volume, and promising sensory aspects.
Collapse
Affiliation(s)
- Federico Bianchi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Mariasole Cervini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.C.); (G.G.)
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.C.); (G.G.)
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
5
|
Cataldo E, Fucile M, Manzi D, Masini CM, Doni S, Mattii GB. Sustainable Soil Management: Effects of Clinoptilolite and Organic Compost Soil Application on Eco-Physiology, Quercitin, and Hydroxylated, Methoxylated Anthocyanins on Vitis vinifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:708. [PMID: 36840056 PMCID: PMC9967315 DOI: 10.3390/plants12040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Climate change and compostinS1g methods have an important junction on the phenological and ripening grapevine phases. Moreover, the optimization of these composting methods in closed-loop corporate chains can skillfully address the waste problem (pomace, stalks, and pruning residues) in viticultural areas. Owing to the ongoing global warming, in many wine-growing regions, there has been unbalanced ripening, with tricky harvests. Excessive temperatures in fact impoverish the anthocyanin amount of the must while the serious water deficits do not allow a correct development of the berry, stopping its growth processes. This experiment was created to improve the soil management and the quality of the grapes, through the application of a new land conditioner (Zeowine) to the soil, derived from the compost processes of industrial wine, waste, and zeolite. Three treatments on a Sangiovese vineyard were conducted: Zeowine (ZW) (30 tons per ha), Zeolite (Z) (10 tons per ha), and Compost (C) (20 tons per ha). During the two seasons (2021-2022), measurements were made of single-leaf gas exchange and leaf midday water potential, as well as chlorophyll fluorescence. In addition, the parameters of plant yield, yeast assimilable nitrogen, technological maturity, fractionation of anthocyanins (Cyanidin-3-glucoside, Delphinidin-3-glucoside, Malvidin-3-acetylglucoside, Malvidin-3-cumarylglucoside, Malvidin-3-glucoside, Peonidin-3-acetylglucoside, Peonidin-3-cumarylglucoside, Peonidin-3-glucoside, and Petunidin-3-glucoside), Caffeic Acid, Coumaric Acid, Gallic Acid, Ferulic Acid, Kaempferol-3-O-glucoside, Quercetin-3-O-rutinoside, Quercetin-3-O-glucoside, Quercetin-3-O-galactoside, and Quercetin-3-O-glucuronide were analyzed. The Zeowine and zeolite showed less negative water potential, higher photosynthesis, and lower leaf temperature. Furthermore, they showed higher levels of anthocyanin accumulation and a lower level of quercetin. Finally, the interaction of the beneficial results of Zeowine (soil and grapevines) was evidenced by the embellishment of the nutritional and water efficiency, the minimizing of the need for fertilizers, the closure of the production cycle of waste material from the supply chain, and the improvement of the quality of the wines.
Collapse
Affiliation(s)
- Eleonora Cataldo
- DAGRI, Department of Agriculture, Food, Environment, and Forestry Sciences and Technologies, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | - Maddalena Fucile
- DAGRI, Department of Agriculture, Food, Environment, and Forestry Sciences and Technologies, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| | | | | | - Serena Doni
- CNR IRET, Via Moruzzi, 1, 56124 Pisa, PI, Italy
| | - Giovan Battista Mattii
- DAGRI, Department of Agriculture, Food, Environment, and Forestry Sciences and Technologies, University of Florence, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
6
|
Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Characterization of white and rosé sparkling wine lees surface volatiles. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Cava is a sparkling wine that requires a second fermentation in the bottle. Its volatile fraction is conditioned by different parameters (grape, vinification process, fermentative yeast, and aging time). During the autolysis process, yeasts release compounds into the wine, but lees can adsorb certain compounds on their surface. Therefore, the aim of this work was to characterize different white and rosé Cavas, and their lees. For this, white Cavas (CGR1: 40 months; CR1: 16 months) and rosé Cavas (CRR1: multivarietal coupage; CRR2: monovarietal; both 20 months) were studied. Once disgorged, lees were freeze-dried (L-CGR1, L-CR1, L-CRR1 and L-CRR2). In addition, lees waste from the winery were collected. pH, total polyphenol index (TPI) and colour intensity (CI) of Cavas and lees were determined. The volatile fraction was analysed by Head-Space Solid Phase Microextraction followed by gas chromatography coupled to mass spectrometry. Lees showed higher values than their respective Cavas for TPI and CI, especially in the case of the L-CGR1. Most of the volatiles were identified both in Cavas and their lees, esters being the main compounds. Therefore, lees can retain phenolic and volatile compounds on their surface, which could be of interest as a new ingredient in the food industry.
Collapse
|
7
|
Potential Prebiotic Effect of Cava Lees: Changes in Gut Microbiota. FERMENTATION 2022. [DOI: 10.3390/fermentation8110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lees are a winery by-product with a fiber-rich composition that could have a potential prebiotic effect on gut microbiota. Prebiotics cannot be digested by humans but can be used by bacteria found in the large intestine. To evaluate the potential prebiotic effect of lees, they were administered to Wistar rats for 14 days. Feces were collected daily, and DNA was extracted and analyzed by shot gun sequencing. The supplementation with lees did not affect weight, food intake, or water consumption of the studied rats. It was found that lees promoted the increase of relative abundance of probiotic bacteria belonging to the Lactobacillaceae family, as well as other potentially probiotic species such as Blautia hansenii, Roseburia intestinalis, and Ruminococcus obeum. Moreover, lees supplementation also reduced the abundance of certain pathogenic bacteria. In conclusion, lees can improve the presence of beneficial bacteria in the gastrointestinal tract and can be re-valorized as a new ingredient in food formulation.
Collapse
|
8
|
By-Product Revalorization: Cava Lees Can Improve the Fermentation Process and Change the Volatile Profile of Bread. Foods 2022; 11:foods11091361. [PMID: 35564084 PMCID: PMC9099486 DOI: 10.3390/foods11091361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Wine lees are a by-product that represents a 25% of the total winery waste. Although lees are rich in antioxidant compounds and dietary fiber, they have no added value and are considered a residue. The aim of this study was to evaluate the effect of Cava lees (0 and 5% w/w) on microbial populations during sourdough and bread fermentation and the volatile fraction of the final bread. The results showed that 5% Cava lees promoted the growth of both lactic acid bacteria (LAB) and yeast in short fermentations (bread) but did not improve microbial growth in long fermentations (sourdough). Regarding volatile compounds, the addition of Cava lees increased the concentration of volatiles typically found in those products. Also, some compounds reported in sparkling wines were also identified in samples with Cava lees adsorbed on their surface. To sum up, the addition of Cava lees to sourdough and, especially, bread formulation may be a new strategy to revalorize such by-product.
Collapse
|