1
|
Chaudhary K, Khalid S, Altemimi AB, Abrar S, Ansar S, Aslam N, Hussain M, Aadil RM. Advances in non-thermal technologies: A revolutionary approach to controlling microbial deterioration, enzymatic activity, and maintaining other quality parameters of fresh stone fruits and their processed products. Food Chem 2025; 464:141825. [PMID: 39504893 DOI: 10.1016/j.foodchem.2024.141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Stone fruits and their processed products are highly valued in the whole world for their flavor, aroma, rich nutritional contents, and various health benefits. While large quantities of stone fruits are produced globally, significant losses occur due to improper handling and storage, from production to consumption. This review focuses on the application of advanced non-thermal treatment techniques for whole fresh stone fruits and their processed products. It provides a comprehensive assessment of the factors contributing to spoilage, along with the mechanisms, applications, and limitations of non-thermal techniques in reducing spoilage. Compared to traditional preservation methods, such as the use of artificial food additives, chemicals, thermal treatments, and low-temperature storage, these novel techniques demonstrate better results in minimizing spoilage. Moreover, non-thermal techniques are most sustainable and eco-friendly, as they reduce energy consumption, minimize chemical use, and generate less waste than traditional methods.
Collapse
Affiliation(s)
- Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Saqib Abrar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| |
Collapse
|
2
|
Boateng ID, Li F, Yang XM, Guo D. Combinative effect of pulsed-light irradiation and solid-state fermentation on ginkgolic acids, ginkgols, ginkgolides, bilobalide, flavonoids, product quality and sensory assessment of Ginkgo biloba dark tea. Food Chem 2024; 456:139979. [PMID: 38852441 DOI: 10.1016/j.foodchem.2024.139979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pulsed light (PL) is a prospective non-thermal technology that can improve the degradation of ginkgolic acid (GA) and retain the main bioactive compounds in Ginkgo biloba leaves (GBL). However, only using PL hasn't yet achieved the ideal effect of reducing GA. Fermentation of GBL to make ginkgo dark tea (GDT) could decrease GA. Because different microbial strains are used for fermentation, their metabolites and product quality might differ. However, there is no research on the combinative effect of PL irradiation fixation and microbial strain fermentation on main bioactive compounds and sensory assessment of GDT. In this research, first, Bacillus subtilis and Saccharomyces cerevisiae were selected as fermentation strains that can reduce GA from the five microbial strains. Next, the fresh GBL was irradiated by PL for 200 s (fluences of 0.52 J/cm2), followed by B. subtilis, S. cerevisiae, or natural fermentation to make GDT. The results showed that compared with the control (unirradiated and unfermented GBL) and the only PL irradiated GBL, the GA in GDT using PL + B. subtilis fermentation was the lowest, decreasing by 29.74%; PL + natural fermentation reduced by 24.53%. The total flavonoid content increased by 14.64% in GDT using PL + B. subtilis fermentation, whose phenolic and antioxidant levels also increased significantly. Sensory evaluation showed that the color, aroma, and taste of the tea infusion of PL + B. subtilis fermentation had the highest scores. In conclusion, the combined PL irradiation and solid-state fermentation using B. subtilis can effectively reduce GA and increase the main bioactive compounds, thus providing a new technological approach for GDT with lower GA.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.; Certified Group, 199 W Rhapsody Dr, San Antonio, Texas, TX 78216, United States of America..
| | - Fengnan Li
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China..
| | - Xiao-Ming Yang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China..
| | - Danzhao Guo
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China..
| |
Collapse
|
3
|
Li Z, Li X, Li S, Yang Y, Yan W, Xu H. Bibliometric analysis of electrochemical disinfection: current status and development trend from 2002 to 2022. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111714-111731. [PMID: 37831234 DOI: 10.1007/s11356-023-30117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
The removal of waterborne pathogens from water is critical in preventing the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for disinfection, primarily owing to their simplicity, efficiency, and eco-friendliness. Thus, it is essential to conduct a review about the research progress and hotspots on this promising technique. In this paper, we provided a comprehensive bibliometric analysis to systematically study and analyze the current status, hotspots, and trends in electrochemical disinfection research from 2002 to 2022. This study analyzed literature related to electrochemical disinfection or electrochemical sterilization published in the Web of Science database from 2002 to 2022 using CiteSpace and Biblioshiny R language software packages. The analysis focused on the visualization and assessment of annual publication volume, discipline and journal distribution, collaborative networks, highly cited papers, and keywords to systematically understand the current status and trends of electrochemical disinfection. The results showed that between 2002 and 2022, 1171 publications related to electrochemical disinfection were published, with an exponential increase in the cumulative number of publications (y=17.518e0.2147x, R2= 0.9788). The publications covered 76 disciplines with many articles published in high-impact journals. However, the research power was characterized by a large number of scattered research efforts and insufficient cooperation, indicating the need for further innovative collaboration. The citation analysis and keyword analysis suggest that future development in this field may focus on optimizing electrode materials, investigating the disinfection performance of ·OH based systems, optimizing conditions for actual wastewater treatment, and reducing energy consumption to promote practical applications.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xinyuan Li
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yang Yang
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Xi'an TPRI Water-Management & Environmental Protection Co., Ltd, Xi'an, 710054, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, People's Republic of China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, People's Republic of China.
| |
Collapse
|
4
|
Borges A, Baptista E, Aymerich T, Alves S, Gama L, Fraqueza M. Inactivation of Listeria monocytogenes by pulsed light in packaged and sliced salpicão, a ready-to-eat traditional cured smoked meat sausage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Ribeiro NG, Xavier-Santos D, Campelo PH, Guimarães JT, Pimentel TC, Duarte MCK, Freitas MQ, Esmerino EA, Silva MC, Cruz AG. Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace. LAND 2022. [DOI: 10.3390/land11030331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spatial planning has become an important measure for countries and regions to promote sustainable development. However, there remains a lack of systematic and quantitative research on spatial planning worldwide. In this study, CiteSpace was used to perform bibliometric analysis and visualization research on the Web of Science core collection and China National Knowledge Infrastructure database. It was found that: (1) The number of papers published in global spatial planning research shows an increasing trend, especially after 2018, with China showing an obvious increasing trend. (2) Globally, the United States has the largest number of relevant research results, and Italy has the most cooperation with other countries. The highest research output is from developed countries, while that of developing countries is relatively weak. (3) There is some intersection among countries, disciplines, and authors but it is not strong, indicating that cooperation should be strengthened. (4) Through keyword cluster, timeline, and time zone analysis, global development can be roughly divided into three stages: the first stage is characterized by the study of spatial planning system theory, the second stage is characterized by building green infrastructure and providing ecological services, and the third stage is characterized by an emphasis on public participation and the establishment of justice mechanisms. China’s development corresponds to three stages: the theory and experience learning stage, the spatial planning system focused on economic development stage, and the integration of multiple plans and the sustainable development exploration stage. (5) There are differences in burst words between the world and China, indicating that there are great differences in research hotspots in different countries’ periods and conditions.
Collapse
|