1
|
Jiao Y, Sun X, Dong X, Yin J, Li Z, Zhang K, Altaf MM, Li D, Zhu Z. Enhancing mango yield and soil health with organic and slow-release fertilizers: A multifaceted evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175297. [PMID: 39127209 DOI: 10.1016/j.scitotenv.2024.175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/04/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Excessive utilization of chemical fertilizers in mango orchards not only hampers the attainment of sustainable harvests but also poses significant ecological detriments. This investigation proposes a promising solution by advocating the judicious replacement of chemical fertilizers with organic fertilizer (OF) and slow-release fertilizer (SRF), with potential to bolster soil health and augment crop productivity. In light of the promise held by these alternatives, it is imperative to establish detailed fertilization protocols for enhanced sustainable practices in mango farming. This two-year field study employed a comprehensive suite of seven fertilization strategies, unveiling that a 25 % chemical fertilizers substitution with OF and SRF improved mango yields by 12.5 % and 11.3 %, respectively, over standard practices. Additionally, these approaches substantially augmented the nutritional quality of mangoes, evident from Vitamin C enhancements of 53.9 % to 56.9 %, and improvements in sugar-to-acid ratio (19.2 %-30.3 %) and solid-to-acid ratio (12.1 %-25.3 %). Notably, the application of OF and SRF led to increased leaf nitrogen and phosphorus concentrations, while simultaneously reducing soil phosphorus and potassium levels. Furthermore, these fertilizers fostered the growth of beneficial soil microorganisms, namely Actinobacteria and Proteobacteria, and strengthened the synergy within the soil bacterial community, hence optimizing bacterial competition and nutrient cycling. The study proposes that the adoption of OF or SRF can effectively regulate soil nutrient balance, promote resilient and functional soil bacterial ecosystems, and ultimately improve mango yield and fruit quality. It recommends a fertilization scheme incorporating 25 % organic or slow-release nitrogen to align with ecological sustainability goals, promoting a more vigorous and resilient soil and crop system.
Collapse
Affiliation(s)
- Yangqiu Jiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China; Jincheng Association for Science and Technology, Jincheng 048000, Shanxi Province, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Xuezhi Dong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Jing Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China; Shandong Vicome Greenland Chemical Co., Ltd, Jinan 250204, Shandong Province, China
| | - Zhidong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518000, Guangdong Province, China
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China.
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan Province, China.
| |
Collapse
|
2
|
Guo L, Liang K, Huang X, Mai W, Duan X, Wu F. Morin Treatment Delays the Ripening and Senescence of Postharvest Mango Fruits. Foods 2023; 12:4251. [PMID: 38231649 DOI: 10.3390/foods12234251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
A 0.005% and 0.01% morin treatment was applied to treat mango fruits stored under ambient conditions (25 ± 1 °C) with 85-90% relative humidity, and the effects on quality indexes, enzyme activity related to antioxidation and cell wall degradation, and gene expressions involved in ripening and senescence were explored. The results indicate that a 0.01% morin application effectively delayed fruit softening and yellowing and sustained the nutritional quality. After 12 days of storage, the contents of soluble sugar and carotenoid in the treatment groups were 68.54 mg/g and 11.20 mg/100 g, respectively, lower than those in control, while the vitamin C content in the treatment groups was 0.58 mg/g, higher than that in control. Moreover, a morin application successively enhanced the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), but reduced the activity of polygalacturonase (PG) and pectin lyase (PL). Finally, real-time PCR and correlation analysis suggested that morin downregulated the ethylene biosynthesis (ACS and, ACO) and signal transduction (ETR1, ERS1, EIN2, and ERF1) genes, which is positively associated with softening enzymes (LOX, EXP, βGal, and EG), carotenoid synthesis enzymes (PSY and, LCYB), sucrose phosphate synthase (SPS), and uncoupling protein (UCP) gene expressions. Therefore, a 0.01% morin treatment might efficiently retard mango fruit ripening and senescence to sustain external and nutritional quality through ethylene-related pathways, which indicates its preservation application.
Collapse
Affiliation(s)
- Lihong Guo
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Kaiqi Liang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Xiaochun Huang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Weiqian Mai
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fuwang Wu
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| |
Collapse
|
3
|
Ke Y, Chen J, Dai T, Liang R, Liu W, Liu C, Deng L. Developing industry-scale microfluidization for cell disruption, biomolecules release and bioaccessibility improvement of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 387:129649. [PMID: 37558104 DOI: 10.1016/j.biortech.2023.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
To facilitate biomolecules extraction and bioaccessibility of Chlorella pyrenoidosa, a novel industry-scale microfluidization (ISM) was used to disrupt cells effectively. Microscope images showed ISM damaged cell integrity, disorganized cell wall structure, pulverized cell membrane and promoted the release of intracellular components. The decrease of particle size and the increase of ζ-potential also confirmed the cell disruption. The cell breakage ratio of sample treated at 120 MPa was 98%. Compared with untreated samples, total soluble solid content and protein extraction rate of the sample treated at 120 MPa increased by 2 °Brix and 12%. Protein was degraded by ISM, the release of intracellular protein and the reduction of molecular weight increased protein digestibility by 20% in in vitro gastric phase. Lipid yield and chlorophyll b content were also increased by ISM. These results provided a new solution to cell disruption of microalgae and expanded the application field of ISM.
Collapse
Affiliation(s)
- Yingying Ke
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Jun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Lizhen Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
4
|
Li C, Dai T, Deng L, Shuai X, He X, Li T, Liu C, Chen J. A novel whole peanut butter refined by stirred media mill: The size, microstructure, rheology, nutrients, and flavor. J Food Sci 2023; 88:3879-3892. [PMID: 37458306 DOI: 10.1111/1750-3841.16688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 09/14/2023]
Abstract
A novel whole peanut butter (PB) was developed using an emerging technology called stirred media mill (SMM). The impact of SMM on the size, microstructure, rheology, nutrient, and flavor of PB was investigated. The SMM treatment significantly decreased the particle size of PB, damaged cell structure, and released the oil body from cells. The apparent viscosity of PB decreased with the grinding process. Visual inspection revealed that the colloidal stability of PB was improved. The fatty acid composition was not affected by the grinding process. However, the tocopherol contents of the extracted oil slightly increased. Electronic nose and GC-MS analysis indicated that SMM could alter the flavor of PB after grinding for 45 min. Overall, SMM was a potential process technology to manufacture stable nut butter with smooth texture and delightful flavor profile.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Lizhen Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaohong He
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Hu K, Chen D, Chen M, Xiang A, Xie B, Suna Z. Effect of high pressure processing on gastrointestinal fate of carotenoids in mango juice: Insights obtained from macroscopic to microscopic scales. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Guo X, Dai T, Deng L, Liang R, He X, Li T, Liu C, Chen J. Structure characteristics and physicochemical property of starch, dietary fiber, protein in purple corn flour modified by low temperature impact mill. Int J Biol Macromol 2023; 226:51-60. [PMID: 36464195 DOI: 10.1016/j.ijbiomac.2022.11.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
The structural changes of macromolecules (starch, dietary fiber and protein) in purple corn flour (PCF) modified by a low temperature impact mill (LTIM) at different air classifier speed (ACS) were investigated. LTIM changed the multi-scale structure of starch, which was characterized by increased starch damage, stronger destruction of relative crystallinity (from 37.85 % to 15.53 %) and short-range ordered structure (R1047/1022, from 1.21 to 0.73) with the increased ACS. The structure of dietary fiber was also destroyed on multi-level, including decreased particle size, destructive morphology, and slightly changed crystalline structure. Additionally, LTIM showed high damage on the senior structure (surface hydrophobicity, disulfide bond, secondary structure) of protein. Due to the structure changes modified by LTIM, starch, dietary fiber and protein played different role on hydration property of PCF. Starch had positive effect, while dietary fiber and protein had negative effect. Our experimental results may provide valuable information for further analysis of other quality changes (oil holding capacity, cation exchange capacity, ability to produce high-quality dough or end-out products, etc.) of purple corn flour after LTIM treatment.
Collapse
Affiliation(s)
- Xiaojuan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lizhen Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaohong He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Liu B, Xin Q, Zhang M, Chen J, Lu Q, Zhou X, Li X, Zhang W, Feng W, Pei H, Sun J. Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods 2022; 12:foods12010173. [PMID: 36613389 PMCID: PMC9818659 DOI: 10.3390/foods12010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Mango (Mangifera indica L.) is an important tropical fruit with a delicate taste, pleasant aroma, and high nutritional value. In recent years, with the promotion of the rural revitalization strategy and the development of the poverty alleviation industry, China has gradually become an important mango producer. However, the short shelf life of mango fruit, the difficulty in regulating the postharvest quality, and the lack of preservation technology are the main problems that need to be solved in China's mango industry. In this paper, the physiological changes and mechanisms of mango during postharvest ripening were summarized, including sugar and acid changes, pigment synthesis and accumulation, and aroma formation and accumulation. The physical, chemical, and biological technologies (such as endogenous phytohormones, temperature, light, chemical preservatives, and edible coatings) commonly used in the regulation of mango postharvest ripening and their action principles were emphatically expounded. The shortcomings of the existing mango postharvest ripening regulation technology and physiological mechanism research were analyzed in order to provide a reference for the industrial application and development of mango postharvest.
Collapse
Affiliation(s)
- Bangdi Liu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qi Xin
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Min Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jianhu Chen
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qingchen Lu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xinqun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiangxin Li
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wanli Zhang
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wei Feng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Haisheng Pei
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jing Sun
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Correspondence:
| |
Collapse
|
8
|
Industry-Scale Microfluidizer: a Novel Technology to Improve Physiochemical Qualities and Volatile Flavor of Whole Mango Juice. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Chen F, Chen Y, Wang Y, Ding S, Qin Y, Jiang L, Wang R. High pressure processing improves the texture quality of fermented minced pepper by maintaining pectin characteristics during storage. J Food Sci 2022; 87:2427-2439. [PMID: 35590481 DOI: 10.1111/1750-3841.16182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
Texture quality affects the sensory and market acceptance of fermentation minced pepper (FMP), but it will deteriorate during storage. Thus, high pressure processing (HPP) and thermal pasteurization (TP) were used to improve the texture quality of FMP during storage. The results showed that variations in texture quality and pectin characteristics under HPP and TP treatments were similar during storage. The hardness, cell wall material (CWM) and sodium carbonate-soluble pectin (SSP) content, water-soluble pectin (WSP) molecular weight (Mw ) decreased, while WSP content and sodium chelate-soluble pectin (CSP) Mw increased after storage. HPP-treated FMP showed higher hardness (66.64-85.95 N) than that in TP-treated one (57.23-62.72 N) during storage. Rhamnose (Rha), arabinose, mannose, and glucose were the crucial compositions in three pectins, and their total molar ratios, respectively, reached 89.19% and 87.97% after HPP and TP treatment. However, the molar ratio of most monosaccharide in three pectins decreased after storage. Atomic force microscope images indicated the short chains and branch structures increased but aggregates decreased in most pectin components during storage. Pearson correlation analysis demonstrated FMP hardness was extremely (p < 0.01) positively correlated with CWM and SSP content, and extremely (p < 0.01) negatively correlated with WSP content. Compared to TP treatment, HPP presented higher hardness, SSP content and Mw , Rha content, CSP Mw , and lower WSP content during storage. Hence, HPP was an effective method to improve the texture quality of FMP by maintaining pectin characteristics during storage. PRACTICAL APPLICATION: Softening is one of the main factors affecting market value and consumer preferences for FMP, and it is closely related to the modification and depolymerization of pectin. Changes of texture quality and pectin properties in HPP- and TP-treated FMP during storage were assessed, including hardness, the content, monosaccharide compositions, Mw distribution, and nanostructure of WSP, SSP, and CSP. Compared to TP treatment, HPP could effectively improve the texture quality of FMP by inhibiting pectin degradation during storage. All the findings presented in this study would help to provide new insights into regulating the texture quality of FMP.
Collapse
Affiliation(s)
- Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuyu Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yingrui Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yeyou Qin
- Hunan Tantanxiang Food Biotechnology Co., Ltd, Changsha, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|