1
|
Wang A, Zhou M, Chen Q, Jin H, Xu G, Guo R, Wang J, Lai R. Functional Analyses of Three Targeted DNA Antimicrobial Peptides Derived from Goats. Biomolecules 2023; 13:1453. [PMID: 37892141 PMCID: PMC10605153 DOI: 10.3390/biom13101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
With the increase in drug-resistant bacteria, new antibacterial drugs have emerged as a prominent area of research and development. Antimicrobial peptides (AMPs), as innate immune agents, have garnered significant attention due to their potent, rapid, and broad-spectrum antibacterial activity. This study focused on investigating the functionality of three AMPs (CATH 1, CATH 2, and MAP34-B) derived from goat submandibular glands. Among these AMPs, CATH 2 and MAP34-B exhibited direct antibacterial activity against both Gram-negative and Gram-positive bacteria, primarily targeting the bacterial membrane. Additionally, these two AMPs were found to have the potential to induce reactive oxygen species (ROS) production in bacterial cells and interact with bacterial genome DNA, which may play a crucial role in their mechanisms of action. Furthermore, both CATH 1 and CATH 2 demonstrated significant antioxidant activity, and all three AMPs exhibited potential anti-inflammatory activity. Importantly, the cytotoxic activity of these AMPs against mammalian cells was found to be weak, and their hemolytic activity was extremely low. Overall, the characteristics of these three AMPs found in goat submandibular glands offer new insights for the study of host protection from an immunological perspective. They hold promise as potential candidates for the development of novel antibacterial agents, particularly in the context of combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Mengying Zhou
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271000, China;
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (A.W.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
3
|
Bourganou MV, Kontopodis E, Tsangaris GT, Pierros V, Vasileiou NGC, Mavrogianni VS, Fthenakis GC, Katsafadou AI. Unique Peptides of Cathelicidin-1 in the Early Detection of Mastitis-In Silico Analysis. Int J Mol Sci 2023; 24:10160. [PMID: 37373309 DOI: 10.3390/ijms241210160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Based on the results of previously performed clinical studies, cathelicidin-1 has been proposed as a potential biomarker for the early diagnosis of mastitis in ewes. It has been hypothesized that the detection of unique peptides (defined as a peptide, irrespective of its length, that exists in only one protein of a proteome of interest) and core unique peptides (CUPs) (representing the shortest peptide that is unique) of cathelicidin-1 may potentially improve its identification and consequently the diagnosis of sheep mastitis. Peptides of sizes larger than those of the size of CUPs, which include consecutive or over-lapping CUPs, have been defined as 'composite core unique peptides' (CCUPs). The primary objective of the present study was the investigation of the sequence of cathelicidin-1 detected in ewes' milk in order to identify its unique peptides and core unique peptides, which would reveal potential targets for accurate detection of the protein. An additional objective was the detection of unique sequences among the tryptic digest peptides of cathelicidin-1, which would improve accuracy of identification of the protein when performing targeted MS-based proteomics. The potential uniqueness of each peptide of cathelicidin-1 was investigated using a bioinformatics tool built on a big data algorithm. A set of CUPs was created and CCUPs were also searched. Further, the unique sequences in the tryptic digest peptides of cathelicidin-1 were also detected. Finally, the 3D structure of the protein was analyzed from predicted models of proteins. In total, 59 CUPs and four CCUPs were detected in cathelicidin-1 of sheep origin. Among tryptic digest peptides, there were six peptides that were unique in that protein. After 3D structure analysis of the protein, 35 CUPs were found on the core of cathelicidin-1 of sheep origin and among them, 29 were located on amino acids in regions of the protein with 'very high' or 'confident' estimates of confidence of the structure. Ultimately, the following six CUPs: QLNEQ, NEQS, EQSSE, QSSEP, EDPD, DPDS, are proposed as potential antigenic targets for cathelicidin-1 of sheep. Moreover, another six unique peptides were detected in tryptic digests and offer novel mass tags to facilitate the detection of cathelicidin-1 during MS-based diagnostics.
Collapse
Affiliation(s)
- Maria V Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelos Kontopodis
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vasileios Pierros
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
4
|
Leite ML, Duque HM, Rodrigues GR, da Cunha NB, Franco OL. The LL-37 domain: a clue to cathelicidin immunomodulatory response? Peptides 2023; 165:171011. [PMID: 37068711 DOI: 10.1016/j.peptides.2023.171011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Host defense peptides (HDPs) are naturally occurring polypeptide sequences that, in addition to being active against bacteria, fungi, viruses, and other parasites, may stimulate immunomodulatory responses. Cathelicidins, a family of HDPs, are produced by diverse animal species, such as mammals, fish, birds, amphibians, and reptiles, to protect them against pathogen infections. These peptides have variable C-terminal domains responsible for their antimicrobial and immunomodulatory activities and a highly conserved N-terminal pre-pro region homologous to cathelin. Although cathelicidins are the major components of innate immunity, the molecular basis by which they induce an immune response is still unclear. In this review, we will address the role of the LL-37 domain and its SK-24, IV-20, FK-13 and LL-37 fragments in the immunity response. Other cathelicidins also share structural and functional characteristics with the LL-37 domain, suggesting that these fragments may be responsible for interaction between these peptides and receptors in humans. Fragments of the LL-37 domain can give us clues about how homologous cathelicidins, in general, induce an immune response. AVAILABILITY OF DATA AND MATERIAL: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasília, Brasil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.
| |
Collapse
|
5
|
Shen S, Sun Y, Ren F, Blair JMA, Siasat P, Fan S, Hu J, He J. Characteristics of antimicrobial peptide OaBac5mini and its bactericidal mechanism against Escherichia coli. Front Vet Sci 2023; 10:1123054. [PMID: 36908510 PMCID: PMC9995905 DOI: 10.3389/fvets.2023.1123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Antimicrobial peptides (AMPs) play an important role in defending against the attack of pathogenic microorganisms. Among them, the proline-rich antibacterial peptides (PrAMPs) have been attracting close attention due to their simple structure, strong antibacterial activity, and low cell toxicity. OaBac5mini is an active fragment of the sheep-derived OaBac5 belonging to the PrAMPs family. Methods In this study, the antibacterial activity of OaBac5mini was investigated by testing the MICs against different stains of E. coli and S. aureus as well as the time-kill curve. The bactericidal mechanism was explored by determining the effect of OaBac5mini on the cell membrane. The stability and biosafety were also evaluated. Results The susceptibility test demonstrated that OaBac5mini showed potent antibacterial activity against the multidrug-resistant (MDR) E. coli isolates. It is noticeable that the absence of inner membrane protein SbmA in E. coli ATCC 25922 caused the MIC of OaBac5mini to increase 4-fold, implying OaBac5mini can enter into the cytoplasm via SbmA and plays its antibacterial activity. Moreover, the antibacterial activity of OaBac5mini against E. coli ATCC 25922 was not remarkably affected by the serum salts except for CaCl2 at a physiological concentration, pH, temperature, repeated freeze-thawing and proteases (trypsin < 20 μg/mL, pepsin or proteinase K). Time-kill curve analysis showed OaBac5mini at the concentration of 200 μg/mL (8 × MICs) could effectively kill E. coli ATCC 25922 after co-incubation for 12 h. In addition, OaBac5mini was not hemolytic against rabbit red blood cells and also was not cytotoxic to porcine small intestinal epithelial cells (IPEC-J2). Bioinformatic analysis indicated that OaBac5mini is a linear peptide with 8 net positive charges. Furthermore, OaBac5mini significantly increased the outer membrane permeability and impaired the inner membrane integrity and ultrastructure of E. coli ATCC25922. Conclusion OaBac5mini is a stable and potent PrAMP that kills E. coli by two different modes of action - inhibiting intracellular target(s) and damaging cell membrane.
Collapse
Affiliation(s)
- Shanshan Shen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Fei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Siasat
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Shuaiqi Fan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Junping He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
6
|
Kopeikin PM, Zharkova MS, Kolobov AA, Smirnova MP, Sukhareva MS, Umnyakova ES, Kokryakov VN, Orlov DS, Milman BL, Balandin SV, Panteleev PV, Ovchinnikova TV, Komlev AS, Tossi A, Shamova OV. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Front Cell Infect Microbiol 2020; 10:552905. [PMID: 33194795 PMCID: PMC7604311 DOI: 10.3389/fcimb.2020.552905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
Proline-rich antimicrobial peptides (PR-AMPs) having a potent antimicrobial activity predominantly toward Gram-negative bacteria and negligible toxicity toward host cells, are attracting attention as new templates for developing antibiotic drugs. We have previously isolated and characterized several bactenecins that are promising in this respect, from the leukocytes of the domestic goat Capra hircus: ChBac5, miniChBac7.5N-α, and -β, as well as ChBac3.4. Unlike the others, ChBac3.4 shows a somewhat unusual pattern of activities for a mammalian PR-AMP: it is more active against bacterial membranes as well as tumor and, to the lesser extent, normal cells. Here we describe a SAR study of ChBac3.4 (RFRLPFRRPPIRIHPPPFYPPFRRFL-NH2) which elucidates its peculiarities and evaluates its potential as a lead for antimicrobial or anticancer drugs based on this peptide. A set of designed structural analogues of ChBac3.4 was explored for antibacterial activity toward drug-resistant clinical isolates and antitumor properties. The N-terminal region was found to be important for the antimicrobial action, but not responsible for the toxicity toward mammalian cells. A shortened variant with the best selectivity index toward bacteria demonstrated a pronounced synergy in combination with antibiotics against Gram-negative strains, albeit with a somewhat reduced ability to inhibit biofilm formation compared to native peptide. C-terminal amidation was examined for some analogues, which did not affect antimicrobial activity, but somewhat altered the cytotoxicity toward host cells. Interestingly, non-amidated peptides showed a slight delay in their impact on bacterial membrane integrity. Peptides with enhanced hydrophobicity showed increased toxicity, but in most cases their selectivity toward tumor cells also improved. While most analogues lacked hemolytic properties, a ChBac3.4 variant with two additional tryptophan residues demonstrated an appreciable activity toward human erythrocytes. The variant demonstrating the best tumor/nontumor cell selectivity was found to more actively initiate apoptosis in target cells, though its action was slower than that of the native ChBac3.4. Its antitumor effectiveness was successfully verified in vivo in a murine Ehrlich ascites carcinoma model. The obtained results demonstrate the potential of structural modification to manage caprine bactenecins’ selectivity and activity spectrum and confirm that they are promising prototypes for antimicrobial and anticancer drugs design.
Collapse
Affiliation(s)
- Pavel M Kopeikin
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Maria S Zharkova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander A Kolobov
- Laboratory of Peptide Chemistry, State Research Institute of Highly Pure Biopreparations, Saint Petersburg, Russia
| | - Maria P Smirnova
- Laboratory of Peptide Chemistry, State Research Institute of Highly Pure Biopreparations, Saint Petersburg, Russia
| | - Maria S Sukhareva
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina S Umnyakova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Vladimir N Kokryakov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Dmitriy S Orlov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Boris L Milman
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Sergey V Balandin
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Panteleev
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Ovchinnikova
- Science-Educational Center, M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksey S Komlev
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Olga V Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
7
|
Yang L, Sun Y, Xu Y, Hang B, Wang L, Zhen K, Hu B, Chen Y, Xia X, Hu J. Antibacterial Peptide BSN-37 Kills Extra- and Intra-Cellular Salmonella enterica Serovar Typhimurium by a Nonlytic Mode of Action. Front Microbiol 2020; 11:174. [PMID: 32117178 PMCID: PMC7019029 DOI: 10.3389/fmicb.2020.00174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
Abstract
The increasing rates of resistance to traditional anti-Salmonella agents have made the treatment of invasive salmonellosis more problematic, which necessitates the search for new antimicrobial compounds. In this study, the action mode of BSN-37, a novel antibacterial peptide (AMP) from bovine spleen neutrophils, was investigated against Salmonella enterica serovar Typhimurium (S. Typhimurium). Minimum inhibitory concentrations (MICs) and time-kill kinetics of BSN-37 were determined. The cell membrane changes of S. Typhimurium CVCC541 (ST) treated with BSN-37 were investigated by testing the fluorescence intensity of membrane probes and the release of cytoplasmic β-galactosidase activity. Likewise, cell morphological and ultrastructural changes were also observed using scanning and transmission electron microscopes. Furthermore, the cytotoxicity of BSN-37 was detected by a CCK-8 kit and real-time cell assay. The proliferation inhibition of BSN-37 against intracellular S. Typhimurium was performed in Madin-Darby canine kidney (MDCK) cells. The results demonstrated that BSN-37 exhibited strong antibacterial activity against ST (MICs, 16.67 μg/ml), which was not remarkably affected by the serum salts at a physiological concentration. However, the presence of CaCl2 led to an increase in MIC of BSN-37 by about 4-fold compared to that of ST. BSN-37 at the concentration of 100 μg/ml could completely kill ST after co-incubation for 6 h. Likewise, BSN-37 at different concentrations (50, 100, and 200 μg/ml) could increase the outer membrane permeability of ST but not impair its inner membrane integrity. Moreover, no broken and ruptured cells were found in the figures of scanning and transmission electron microscopes. These results demonstrate that BSN-37 exerts its antibacterial activity against S. Typhimurium by a non-lytic mode of action. Importantly, BSN-37 had no toxicity to the tested eukaryotic cells, even at a concentration of 800 μg/ml. BSN-37 could significantly inhibit the proliferation of intracellular S. Typhimurium.
Collapse
Affiliation(s)
- Lei Yang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ke Zhen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Bing Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanan Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
8
|
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40:488-505. [PMID: 31592585 PMCID: PMC6822926 DOI: 10.24272/j.issn.2095-8137.2019.062] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Zhi-Ye Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
9
|
Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis. Antimicrob Agents Chemother 2018; 62:AAC.00534-18. [PMID: 29844040 DOI: 10.1128/aac.00534-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/19/2018] [Indexed: 11/20/2022] Open
Abstract
Unlike most antimicrobial peptides (AMPs), the main mode of action of the subclass of proline-rich antimicrobial peptides (PrAMPs) is not based on disruption of the bacterial membrane. Instead, PrAMPs exploit the inner membrane transporters SbmA and YjiL/MdtM to pass through the bacterial membrane and enter the cytosol of specific Gram-negative bacteria, where they exert an inhibitory effect on protein synthesis. Despite sharing a high proline and arginine content with other characterized PrAMPs, the PrAMP Bac5 has a low sequence identity with them. Here we investigated the mode of action of three N-terminal Bac5 fragments, Bac5(1-15), Bac5(1-25), and Bac5(1-31). We show that Bac5(1-25) and Bac5(1-31) retained excellent antimicrobial activity toward Escherichia coli and low toxicity toward eukaryotic cells, whereas Bac5(1-15) was inactive. Bac5(1-25) and Bac5(1-31) inhibited bacterial protein synthesis in vitro and in vivo Competition assays suggested that the binding site of Bac5 is within the ribosomal tunnel, where it prevents the transition from the initiation to the elongation phase of translation, as reported for other PrAMPs, such as the bovine PrAMP Bac7. Surprisingly, unlike Bac7, Bac5(1-25) exhibited species-specific inhibition, being an excellent inhibitor of protein synthesis on E. coli ribosomes but a poor inhibitor on Thermus thermophilus ribosomes. This indicates that while Bac5 most likely has an overlapping binding site with Bac7, the mode of interaction is distinct, suggesting that Bac5 fragments may be interesting alternative lead compounds for the development of new antimicrobial agents.
Collapse
|
10
|
Bah CSF, Bekhit AEDA, McConnell MA, Carne A. Generation of bioactive peptide hydrolysates from cattle plasma using plant and fungal proteases. Food Chem 2016; 213:98-107. [PMID: 27451160 DOI: 10.1016/j.foodchem.2016.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
Abstract
Four protease preparations from plant and fungal sources (papain, bromelain, FP400 and FPII) were used to hydrolyse plasma which was separated from slaughterhouse cattle blood. The o-phthaldialdehyde assay was used to follow the release of TCA-soluble peptides over a 24h period. Hydrolysis profiles were displayed using SDS-PAGE. The in vitro antioxidant and antimicrobial activities of the hydrolysates were determined. The results showed that hydrolysates of cattle plasma generated with fungal protease FPII had higher antioxidant activities. Overall than hydrolysates generated with papain, bromelain and FP400. None of the hydrolysates demonstrated antimicrobial activity. The FPII peptide hydrolysate was fractionated using gel permeation chromatography, OFFGEL isoelectric focusing and RP-HPLC. The RP-HPLC fraction with highest antioxidant activity contained 15 novel peptide sequences. The use of protease FPII to hydrolyse cattle plasma resulted in a hydrolysate with high antioxidant properties and unique peptide sequences.
Collapse
Affiliation(s)
- Clara S F Bah
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | | | - Michelle A McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Castañeda-Sánchez JI, Domínguez-Martínez DA, Olivar-Espinosa N, García-Pérez BE, Loroño-Pino MA, Luna-Herrera J, Salazar MI. Expression of Antimicrobial Peptides in Human Monocytic Cells and Neutrophils in Response to Dengue Virus Type 2. Intervirology 2016; 59:8-19. [PMID: 27318958 DOI: 10.1159/000446282] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The innate immune response is remarkably important for controlling infections. Information about the participation of antimicrobial peptides (AMPs) in response to dengue virus (DENV) is scarce. The aim of this study was to examine the AMP response to DENV-2 in human THP-1 cells and neutrophils. METHODS Protein and mRNA levels of two AMPs - hBD-1 and cathelicidin LL-37 - were assessed in DENV-infected macrophage-like THP-1 cells using qRT-PCR and indirect immunofluorescence. Also, mRNA levels of α-defensins (hDEFAs) and LL-37 were examined by qRT-PCR in human neutrophils taken from peripheral blood and treated with DENV-2. RESULTS mRNA expression of hBD-1 rose in THP-1 cells at 24-72 h, while protein expression increased later, from 48 to 72 h after infection. Cathelicidin LL-37 mRNA expression of DENV-infected THP-1 cells was observed at 6-48 h after infection, while protein levels increased importantly up to 72 h after infection. Regarding neutrophils, the mRNA expression of hDEFAs and LL-37 increased slightly at 2 and 5 h after the contact with DENV-2. CONCLUSION THP-1 cells and human neutrophils strongly respond to DENV by producing AMPs: hBD-1 and LL-37 for the THP-1 cells and hDEFAs and LL-37 for neutrophils. However, the direct effect of these molecules on DENV particles remains unclear.
Collapse
Affiliation(s)
- Jorge I Castañeda-Sánchez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Lemes AC, Sala L, Ores JDC, Braga ARC, Egea MB, Fernandes KF. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste. Int J Mol Sci 2016; 17:E950. [PMID: 27322241 PMCID: PMC4926483 DOI: 10.3390/ijms17060950] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022] Open
Abstract
Bioactive peptides are considered the new generation of biologically active regulators that not only prevent the mechanism of oxidation and microbial degradation in foods but also enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review article emphasizes recent advances in bioactive peptide technology, such as: (i) new strategies for transforming bioactive peptides from residual waste into added-value products; (ii) nanotechnology for the encapsulation, protection and release of controlled peptides; and (iii) use of techniques of large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ailton Cesar Lemes
- Federal University of Rio Grande, Chemistry and Food School, Rio Grande 96201-900, Brazil.
| | - Luisa Sala
- Federal University of Rio Grande, Chemistry and Food School, Rio Grande 96201-900, Brazil.
| | - Joana da Costa Ores
- Federal University of Rio Grande, Chemistry and Food School, Rio Grande 96201-900, Brazil.
| | | | - Mariana Buranelo Egea
- Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde 75901-970, Brazil.
| | - Kátia Flávia Fernandes
- Federal University of Goiás, Institute of Biological Sciences II, Goiânia 74001-970, Brazil.
| |
Collapse
|
13
|
Ishida Y, Inouye M. Suppression of the toxicity of Bac7 (1-35), a bovine peptide antibiotic, and its production in E. coli. AMB Express 2016; 6:19. [PMID: 26936849 PMCID: PMC4775720 DOI: 10.1186/s13568-016-0190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/23/2016] [Indexed: 11/10/2022] Open
Abstract
Bac7 (1-35) is an Arg- and Pro-rich peptide antibiotic, produced in bovine cells to protect them from microbial infection. It has been demonstrated to inhibit the protein synthesis in E. coli, leading to cell death. Because of its toxicity, no cost effective methods have been developed for Bac7 production in Escherichia coli for its potential clinical use. Here, we found a method to suppress Bac7 (1-35) toxicity in E. coli to establish its high expression system, in which Bac7 (1-35) was fused to the C-terminal end of protein S, a major spore-coat protein from Myxococcus xanthus, using a linker containing a Factor Xa cleavage site. The resulting His6-PrS2-Bac7 (1-35) (PrS2 is consisted of two N-terminal half domains of protein S connected in tandem) was well expressed using the Single-Protein Production (SPP) system at low temperature and subsequently purified in a single step by using a Ni column. The combination of protein S fusion and its expression in the SPP system at low temperature appeared to suppress Bac7 (1-35) toxicity. Both the purified His6-PrS2-Bac7 (1-35) and His6-PrS2-Bac7 (1-35) treated by Factor Xa were proven to be a potent inhibitor for cell-free protein synthesis.
Collapse
|
14
|
Bah CSF, Bekhit AEDA, Carne A, McConnell MA. Composition and biological activities of slaughterhouse blood from red deer, sheep, pig and cattle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:79-89. [PMID: 25581344 DOI: 10.1002/jsfa.7062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/26/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Animal blood is a large-volume by-product of the meat industry. Besides blood meal fertiliser, blood is marketed for human consumption as a supplement. Minimal comparative work on slaughterhouse animal blood fractions has been carried out. In this study, slaughterhouse deer, sheep, pig and cattle blood parameters were compared. Some blood constituents were determined. Fractionated blood was assessed for antioxidant activity (2,2-diphenyl-1-picrylhydrazyl radical scavenging, oxygen radical scavenging capacity and ferric reducing antioxidant power). Angiotensin converting enzyme (ACE) inhibitory activity and antimicrobial activity were also assessed. RESULTS Serum iron ranged from 35.3 ± 0.6 µmol L(-1) in cattle to 16.3 ± 3.1 µmol L(-1) in deer. Cattle had the highest total plasma proteins (81.7 ± 1.5 g L(-1)). While the plasma fractions contained considerable antioxidant activity, the red blood cell fractions of all four animal species contained higher antioxidant activity (P < 0.05). Negligible levels of ACE inhibitory activity were found for all animal blood fractions. Antimicrobial activity was detected towards Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa with sheep white blood cells from which a crude neutrophil extract was obtained which demonstrated concentration-dependent inhibitory effects on the growth rates of these bacterial strains. CONCLUSION Fractionated animal blood obtained from local slaughterhouses contains native proteins that possess antioxidant activity and antimicrobial activity.
Collapse
Affiliation(s)
- Clara S F Bah
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Michelle A McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Dhaliwal KK, Arora JS, Mukhopadhyay CS, Dubey PP. In Silico Characterization of Functional Divergence of Two Cathelicidin Variants in Indian Sheep. Evol Bioinform Online 2015; 11:189-96. [PMID: 26380546 PMCID: PMC4559185 DOI: 10.4137/ebo.s29779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/05/2015] [Accepted: 07/12/2015] [Indexed: 11/14/2022] Open
Abstract
The present work focuses on the in silico characterization of functional divergence of two ovine cathelicidin coding sequence (cds) variants (ie, Cath1 and Cath2) of Indian sheep. Overlapping partial cds of both the cathelicidin variants were cloned in pJet1.2/blunt vector and sequenced. Evolutionary analysis of the Cath2 and Cath1 indicated that the mammalian cathelicidins clustered separately from avian fowlicidins. The avian fowlicidins, which are very different from mammalian cathelicidins (Caths), clearly displayed signatures of purifying selection. The pairwise sequence alignments of translated amino acid sequences of these two sheep cathelicidins showed gaps in the antimicrobial domain of Cath1 variant; however, the amino terminal cathelin regions of both the Caths were conserved. Amino acid sequence analysis of full-length cathelicidins available at public database revealed that Cath1, Cath2, and Cath7 of different ruminant species (including our Cath1 and Cath2 variants) formed individual clads, suggesting that these types have evolved to target specific types of microbes. In silico analysis of Cath1 and Cath2 peptide sequences indicated that the C-terminal antimicrobial peptide domain of Cath2 is more immunogenic than that of the ovine Cath1 due to its higher positive antigenic index, making Cath1 a promising antigen for production of monoclonal antibodies.
Collapse
Affiliation(s)
- Kamaljeet K Dhaliwal
- School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Ludhiana, Punjab, India
| | - Jaspreet S Arora
- School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Ludhiana, Punjab, India
| | - Chandra S Mukhopadhyay
- School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Ludhiana, Punjab, India
| | - Prem P Dubey
- Department of Animal Genetics and Breeding, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
16
|
Bah CS, Bekhit AEDA, Carne A, McConnell MA. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations. Food Chem 2015; 176:54-63. [DOI: 10.1016/j.foodchem.2014.12.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/24/2014] [Accepted: 12/10/2014] [Indexed: 11/25/2022]
|
17
|
Smolira A, Wessely-Szponder J. Importance of the matrix and the matrix/sample ratio in MALDI-TOF-MS analysis of cathelicidins obtained from porcine neutrophils. Appl Biochem Biotechnol 2014; 175:2050-65. [PMID: 25432341 PMCID: PMC4322226 DOI: 10.1007/s12010-014-1405-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
Qualitative and quantitative mass spectrometric studies of biomolecules for example proteins, peptides, or lipids contained in biological samples like physiologic fluids are very important for many fields of science such as medicine, veterinary medicine, biology, biochemistry, molecular biology, or environmental sciences. In the last two decades, MALDI TOF MS — matrix-assisted laser desorption mass spectrometry, proved to be an especially convenient tool for these analyses. The main advantages of this method are its rapidity and high sensitivity which is particularly appreciated in the case of studies of complex biological specimen. A major challenge for many researchers is to maximize this sensitivity, among others, by appropriate procedures of sample preparation for the measurement. The objective of this work was to optimize these procedures, selecting the optimal matrix and optimum proportions of the sample and the matrix solution in a mixture of both solutions, aiming at the achievement of the maximum intensity of ion current. In this respect, five low molecular mass cathelicidins were studied: prophenin-2, protegrins 1–3, PR-39. All of them were obtained directly from the porcine blood. As a result of studies, the authors determined such experimental conditions when the intensity of investigated ionic current had the highest value.
Collapse
Affiliation(s)
- Anna Smolira
- Department of Molecular Physics, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland,
| | | |
Collapse
|
18
|
Bah CS, Bekhit AEDA, Carne A, McConnell MA. Slaughterhouse Blood: An Emerging Source of Bioactive Compounds. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12013] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Clara S.F. Bah
- Dept. of Food Science; Univ. of Otago; Dunedin; New Zealand
| | | | - Alan Carne
- Dept. of Biochemistry; Univ. of Otago; Dunedin; New Zealand
| | | |
Collapse
|
19
|
Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 2012; 39:10957-70. [PMID: 23065264 PMCID: PMC3487008 DOI: 10.1007/s11033-012-1997-x] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.
Collapse
|
20
|
Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T, Thammasirirak S. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:545-553. [PMID: 21184776 DOI: 10.1016/j.dci.2010.12.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
Four novel antibacterial peptides, Leucrocin I-IV from Siamese crocodile white blood cell extracts were purified by reverse phase high performance liquid chromatography (RP-HPLC). Leucrocins exhibit strong antibacterial activity towards Staphylococcus epidermidis, Salmonella typhi and Vibrio cholerae. The peptides were 7-10 residues in length with different primary structure. The amino acid sequence of Leucrocin I is NGVQPKY with molecular mass around 806.99 Da and Leucrocin II is NAGSLLSGWG with molecular mass around 956.3 Da. Further, the interaction between peptides and bacterial membranes as part of their killing mechanism was studied by fluorescence and electron microscopy. The outer membrane and cytoplasmic membrane was the target of action of Leucrocins as assayed in model membrane by release of β-galactosidase due to the membrane permeabilization. Finally, the hemolytic effect was tested against human red blood cell. Leucrocin I, III and IV showed less toxicity against human red blood cells than Leucrocin II.
Collapse
Affiliation(s)
- Supawadee Pata
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | | | | | |
Collapse
|
21
|
Isolation and characterization of an antimicrobial peptide from bovine hemoglobin α-subunit. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0514-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Wessely-Szponder J, Majer-Dziedzic B, Smolira A. Analysis of antimicrobial peptides from porcine neutrophils. J Microbiol Methods 2010; 83:8-12. [PMID: 20643166 DOI: 10.1016/j.mimet.2010.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 11/30/2022]
Abstract
Cationic host defence peptides are important components of innate immunity in pigs and other mammalians. Most of these peptides have a direct antimicrobial activity and they also have a broad spectrum of effects on the host immune system, which may be taken into account in the introduction of novel therapeutics. Our method permits simultaneous isolation of six antibacterial peptides, i.e. prophenin-1, prophenin-2, PR-39, and protegrins 1-3 from a porcine neutrophil crude extract and characterisation of them. Among the obtained peptides the greatest bactericidal activity expressed as MBC was seen in protegrins (10 μg/ml), whereas in the other studied peptides MBC was on the level of 20 μg/ml. Minimal inhibitory concentrations (MIC) reached 10 μg/ml for protegrins 1-3 and 20 μg/ml for prophenins, and PR-39. Within the bactericidal range all isolated peptides didn't show cytotoxicity on cell lines used in our experiment.
Collapse
Affiliation(s)
- Joanna Wessely-Szponder
- Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | | | | |
Collapse
|
23
|
Gao B, Zhu S. Characterization of a hymenoptaecin-like antimicrobial peptide in the parasitic wasp Nasonia vitripennis. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Yu PL, van der Linden DS, Sugiarto H, Anderson RC. Antimicrobial peptides isolated from the blood of farm animals. ANIMAL PRODUCTION SCIENCE 2010. [DOI: 10.1071/ea07185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of antimicrobial resistance by pathogenic bacteria has fuelled the search for alternatives to conventional antibiotics. Endogenous antimicrobial peptides have the potential to be used as new antimicrobial substances because they have low minimum inhibitory concentration in vitro, have broad-spectrum activity, neutralise lipopolysaccharides, promote wound healing and have synergistic effects with conventional antibiotics. Farm animals, in particular the blood that is a by-product of the meat and poultry industries, are an abundant, and currently underutilised, source of such antimicrobial peptides. These antimicrobial peptides could be isolated and developed into high-value products such as biopreservatives, topical neutraceutical products and pharmaceuticals. There have been some clinical trials of antimicrobial peptides as pharmaceutical products, but up to now, the trials have shown disappointing results. Further research and development is still needed before such peptides can be commercialised and full advantage taken of this waste product of the meat and poultry industries.
Collapse
|
25
|
|
26
|
Mattiuzzo M, Bandiera A, Gennaro R, Benincasa M, Pacor S, Antcheva N, Scocchi M. Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol 2007; 66:151-63. [PMID: 17725560 DOI: 10.1111/j.1365-2958.2007.05903.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In contrast to many antimicrobial peptides, members of the proline-rich group of antimicrobial peptides inactivate Gram-negative bacteria by a non-lytic mechanism. Several lines of evidence indicate that they are internalized into bacteria and their activity mediated by interaction with unknown cellular components. With the aim of identifying such interactors, we selected mutagenized Escherichia coli clones resistant to the proline-rich Bac7(1-35) peptide and analysed genes responsible for conferring resistance, whose products may thus be involved in the peptide's mode of action. We isolated a number of genomic regions bearing such genes, and one in particular coding for SbmA, an inner membrane protein predicted to be part of an ABC transporter. An E. coli strain carrying a point mutation in sbmA, as well as other sbmA-null mutants, in fact showed resistance to several proline-rich peptides but not to representative membranolytic peptides. Use of fluorescently labelled Bac7(1-35) confirmed that resistance correlated with a decreased ability to internalize the peptide, suggesting that a bacterial protein, SbmA, is necessary for the transport of, and for susceptibility to, proline-rich antimicrobial peptides of eukaryotic origin.
Collapse
Affiliation(s)
- Maura Mattiuzzo
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, Gennaro R, Scocchi M. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta Gen Subj 2006; 1760:1732-40. [PMID: 17059867 DOI: 10.1016/j.bbagen.2006.09.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Proline-rich peptides are a unique group of antimicrobial peptides that exert their activity selectively against Gram-negative bacteria through an apparently non-membranolytic mode of action that is not yet well understood. We have investigated the mechanism underlying the antibacterial activity of the proline-rich cathelicidin Bac7 against Salmonella enterica and Escherichia coli. The killing and membrane permeabilization kinetics as well as the cellular localization were assessed for the fully active N-terminal fragment Bac7(1-35), its all-D enantiomer and for differentially active shortened fragments. At sub-micromolar concentrations, Bac7(1-35) rapidly killed bacteria by a non-lytic, energy-dependent mechanism, whereas its D-enantiomer was inactive. Furthermore, while the L-enantiomer was rapidly internalized into bacterial cells, the D-enantiomer was virtually excluded. At higher concentrations (>or=64 microM), both L- and D-Bac7(1-35) were instead able to kill bacteria also via a lytic mechanism. Overall, these results suggest that Bac7 may inactivate bacteria via two different modes of action depending on its concentration: (i) at near-MIC concentrations via a mechanism based on a stereospecificity-dependent uptake that is likely followed by its binding to an intracellular target, and (ii) at concentrations several times the MIC value, via a non-stereoselective, membranolytic mechanism.
Collapse
Affiliation(s)
- Elena Podda
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|