1
|
Suzuki D, Sakurai A, Wakuda M, Suzuki M, Doi Y. Clinical and genomic characteristics of IMP-producing Enterobacter cloacae complex and Klebsiella pneumoniae. Antimicrob Agents Chemother 2024; 68:e0167223. [PMID: 38517188 PMCID: PMC11064536 DOI: 10.1128/aac.01672-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
Carbapenemase-producing Enterobacterales (CPEs) are one of the top priority antimicrobial-resistant pathogens. Among CPEs, those producing acquired metallo-β-lactamases (MBLs) are considered particularly problematic as few agents are active against them. Imipenemase (IMP) is the most frequently encountered acquired MBL in Japan, but comprehensive assessment of clinical and microbiological features of IMP-producing Enterobacterales infection remains scarce. Here, we retrospectively evaluated 62 patients who were hospitalized at a university hospital in Japan and had IMP-producing Enterobacterales from a clinical culture. The isolates were either Enterobacter cloacae complex or Klebsiella pneumoniae, and most of them were isolated from sputum. The majority of K. pneumoniae, but not E. cloacae complex isolates, were susceptible to aztreonam. Sequence type (ST) 78 and ST517 were prevalent for E. cloacae complex and K. pneumoniae, respectively, and all isolates carried blaIMP-1. Twenty-four of the patients were deemed infected with IMP-producing Enterobacterales. Among the infected patients, therapy varied and largely consisted of conventional β-lactam agents, fluoroquinolones, or combinations. Three (13%), five (21%), and nine (38%) of them died by days 14, 30, and 90, respectively. While incremental mortality over 90 days was observed in association with underlying comorbidities, active conventional treatment options were available for most patients with IMP-producing Enterobacterales infections, distinguishing them from more multidrug-resistant CPE infections associated with globally common MBLs, such as New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM).
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Anjo Kosei Hospital, Anjo, Aichi, Japan
| | - Aki Sakurai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mitsutaka Wakuda
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Liu C, Dong N, Zhang Y, Sun Q, Huang Y, Cai C, Chen G, Zhang R. Phenotypic and genomic characteristics of clinical IMP-producing Klebsiella spp. Isolates in China. COMMUNICATIONS MEDICINE 2024; 4:25. [PMID: 38383740 PMCID: PMC10881498 DOI: 10.1038/s43856-024-00439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND IMP-producing Klebsiella spp. (IMPKsp) strains have spread globally, including in China. Currently, the prevalence and genomic characterization of IMPKsp is largely unknown nationwide. Here we aimed to provide a general overview of the phenotypic and genomic characteristics of IMPKsp strains. METHODS 61 IMPKsp strains were obtained from 13 provinces in China during 2016-2021. All strains were tested for their susceptibility to antimicrobial agents by the microdilution broth method and sequenced with Illumina next-generation sequencing. We performed conjugation experiments on thirteen representative strains which were also sequenced by Oxford nanopore sequencing technology to characterize blaIMP-encoding plasmids. RESULTS We find that all IMPKsp strains display multidrug-resistant (MDR) phenotypes. All strains belong to 27 different STs. ST307 emerges as a principal IMP-producing sublineage. blaIMP-4 is found to be the major isoform, followed by blaIMP-38. Seven incompatibility types of blaIMP-encoding plasmids are identified, including IncHI5 (32/61, 52.5%), IncN-IncR (10/61, 16.4%), IncFIB(K)-HI1B (7/61, 11.5%), IncN (5/61, 8.2%), IncN-IncFII (2/61, 3.3%), IncFII (1/61, 1.6%) and IncP (1/61, 1.6%). The strains carrying IncHI5 and IncN plasmids belong to diverse ST types, indicating that these two plasmids may play an important role in the transmission of blaIMP genes among Klebsiella spp. strains. CONCLUSIONS Our results highlight that multi-clonal transmission, multiple genetic environments and plasmid types play a major role in the dissemination process of blaIMP genes among Klebsiella spp. IncHI5 type plasmids have the potential to be the main vectors mediating the spread of the blaIMP genes in Klebsiella spp.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yonglu Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Chang Cai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Murata M, Kosai K, Akamatsu N, Matsuyama Y, Oda M, Wakamatsu A, Izumikawa K, Mukae H, Yanagihara K. Diagnostic Performance of BD Phoenix CPO Detect Panels for Detection and Classification of Carbapenemase-Producing Gram-Negative Bacteria. Microbiol Spectr 2023; 11:e0089723. [PMID: 37162344 PMCID: PMC10269800 DOI: 10.1128/spectrum.00897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
BD Phoenix CPO Detect panels can identify and classify carbapenemase-producing organisms (CPOs) simultaneously with antimicrobial susceptibility testing (AST) for Gram-negative bacteria. Detection and classification of carbapenemase producers were performed using the BD Phoenix CPO Detect panels NMIC/ID-441 for Enterobacterales, NMIC/ID-442 for nonfermenting bacteria, and NMIC-440 for both. The results were compared with those obtained using comparator methods. A total of 133 strains (32 Klebsiella pneumoniae, 37 Enterobacter cloacae complex, 33 Pseudomonas aeruginosa, and 31 Acinetobacter baumannii complex strains), including 60 carbapenemase producers (54 imipenemases [IMPs] and 6 OXA type), were analyzed. Using panels NMIC-440 and NMIC/ID-441 or NMIC/ID-442, all 54 IMP producers were accurately identified as CPOs (positive percent agreement [PPA], 100.0%; 54/54). Among the 54 IMP producers identified as CPOs using panels NMIC-440 and NMIC/ID-441, 12 and 14 Enterobacterales were not resistant to carbapenem, respectively. Among all 54 IMP producers, 48 (88.9%; 48/54) were correctly classified as Ambler class B using panel NMIC-440. Using panels NMIC-440 and NMIC/ID-442, all four OXA-23-like carbapenemase-producing A. baumannii complex strains (100.0%, 4/4) were correctly identified as CPOs, and three (75.0%, 3/4) were precisely classified as class D using panel NMIC-440. Both carbapenemase producers harboring the blaISAba1-OXA-51-like gene were incorrectly identified as non-CPOs using panels NMIC-440 and NMIC/ID-442. For detecting carbapenemase producers, the overall PPA and negative percent agreement (NPA) between panel NMIC-440 and the comparator methods were 96.7% (58/60) and 71.2% (52/73), respectively, and the PPA and NPA between panels NMIC/ID-441 or NMIC/ID-442 and the comparator methods were 96.7% (58/60) and 74.0% (54/73), respectively. BD Phoenix CPO Detect panels can successfully screen carbapenemase producers, particularly IMP producers, regardless of the presence of carbapenem resistance and can be beneficial in routine AST workflows. IMPORTANCE Simple and efficient screening methods of detecting carbapenemase producers are required. BD Phoenix CPO Detect panels effectively screened carbapenemase producers, particularly IMP producers, with a high overall PPA. As the panels enable automatic screening for carbapenemase producers simultaneously with AST, the workflow from AST to confirmatory testing for carbapenemase production can be shortened. In addition, because carbapenem resistance varies among carbapenemase producers, the BD Phoenix CPO Detect panels, which can screen carbapenemase producers regardless of carbapenem susceptibility, can contribute to the accurate detection of carbapenemase producers. Our results report that these panels can help streamline the AST workflow before confirmatory testing for carbapenemase production in routine microbiological tests.
Collapse
Affiliation(s)
- Mika Murata
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Norihiko Akamatsu
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Mitsuharu Oda
- Nippon Becton, Dickinson Company, Ltd., Minato, Tokyo, Japan
| | | | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
4
|
Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, Bui NL, Chu D, Karapurkar JK, Jang SH, Chung HY, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med 2023; 8:e10381. [PMID: 36925687 PMCID: PMC10013820 DOI: 10.1002/btm2.10381] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gargi Bhattacharjee
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Nisarg Gohil
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gurneet K. Dhanoa
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Antonia P. Sagona
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Indra Mani
- Department of MicrobiologyGargi College, University of DelhiNew DelhiIndia
| | - Nhat Le Bui
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
| | - Dinh‐Toi Chu
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
- Faculty of Applied SciencesInternational School, Vietnam National UniversityHanoiVietnam
| | | | - Su Hwa Jang
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
| | - Hee Yong Chung
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Rupesh Maurya
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories SciencesCollege of Applied Medical Sciences, Taif UniversityTaifSaudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Vijai Singh
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| |
Collapse
|
5
|
Rong F, Liu Z, Yang P, Wu F, Sun Y, Sun X, Zhou J. Epidemiological and Molecular Characteristics of bla NDM-1 and bla KPC-2 Co-Occurrence Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist 2023; 16:2247-2258. [PMID: 37090038 PMCID: PMC10120834 DOI: 10.2147/idr.s400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/01/2023] [Indexed: 04/25/2023] Open
Abstract
Objective Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged and spread worldwide. It can usually cause a serious threat complicating treatment options in clinical settings. However, treatment options are limited. The present study investigates the prevalence and genetic characteristics of bla NDM-1 and bla KPC-2 co-harboring clinical isolates of Klebsiella pneumoniae. Methods In this study, Multiplex polymerase chain reaction (PCR) was performed to detect the carbapenem-resistant genes, and the broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of antibacterial drugs. The transferability of carbapenem-resistant phenotypes was examined using filter mating assays. Overall, we used Illumina sequencing to evaluate the epidemiological and molecular characteristics of bla NDM-1 and bla KPC-2 (genes encoding carbapenemase) co-occurrence in CRKP strains. Results All strains exhibited resistance to carbapenems and other antibiotics. However, they were still susceptible to polymyxin E. Among them, 18 isolates were positive for bla KPC-2, bla NDM-1, and multiple virulence determinants, such as genes encoding the virulence factor aerobactin, yersiniabactin, and the regulator of the mucoid phenotype (rmpA and rmpA2). Whole genome sequencing revealed that the 18 CRKP strains belonged to ST11 and capsular serotype KL64, and could be grouped into two evolutionary branches. Furthermore, these strains displayed hypervirulence potential since all of them carried pLVPK-like plasmid. Conclusion These findings suggested that ST11-KL64 CRKP strains are major threats in terms of nosocomial infections in this hospital. Hence, new strategies should be urgently developed to monitor, diagnose, and treat this high-risk CRKP clone.
Collapse
Affiliation(s)
- Fang Rong
- Department of General Practice, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Graduate School Department of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Ziyi Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Pengbin Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yu Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Xuewei Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jun Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Correspondence: Jun Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, People’s Republic of China, Email
| |
Collapse
|
6
|
Kong Y, Sun Q, Chen H, Draz MS, Xie X, Zhang J, Ruan Z. Transmission Dynamics of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 Strains Carrying Capsular Loci KL64 and rmpA/ rmpA2 Genes. Front Microbiol 2021; 12:736896. [PMID: 34690977 PMCID: PMC8529244 DOI: 10.3389/fmicb.2021.736896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
The presence and dissemination of carbapenem-resistant Klebsiella pneumoniae (CRKP) often cause life-threatening infections worldwide, but the therapeutic option is limited. In this study, whole-genome sequencing (WGS) was applied to assess the epidemiological characteristics and transmission dynamics of CRKP isolates recovered from two fetal outbreaks of nosocomial infections. Between April 2016 and March 2018, a total of 70 isolates of K. pneumoniae were collected from sterile samples in a tertiary hospital in Hangzhou, China. The minimal inhibitory concentrations (MICs) of 21 antimicrobial agents were determined using the broth microdilution methods. Pulsed-field gel electrophoresis (PFGE) was performed on 47 CRKP isolates, and 16 clonally related isolates were further characterized by Illumina sequencing. In addition, the complete genome sequences of three representative isolates (KP12, KP36, and KP37) were determined by Oxford Nanopore sequencing. The K. pneumoniae isolates were recovered from patients diagnosed with pulmonary infection, cancer, or encephalopathy. For all CRKP isolates, PFGE separated three clusters among all strains. The most predominant PFGE cluster contained 16 isolates collected from patients who shared close hospital units and represented a potential outbreak. All 16 isolates showed an extremely high resistance level (≥87.5%) to 18 antimicrobials tested but remain susceptible to colistin (CST). Multiple antimicrobial resistance and virulence determinants, such as the carbapenem resistance gene blaKPC-2, and genes encoding the virulence factor aerobactin and the regulator of the mucoid phenotype (rmpA and rmpA2), were observed in the 16 CRKP isolates. These isolates belonged to sequence type 11 (ST11) and capsular serotype KL64. A core genome single nucleotide polymorphism (cgSNP)-based phylogenetic analysis indicated that the 16 CRKP isolates could be partitioned into two separate clades (≤15 SNPs), suggesting the two independent transmission scenarios co-occurred. Moreover, a high prevalence of IncFIB/IncHI1B type virulence plasmid with the iroBCDN locus deleted, and an IncFII/IncR type blaKPC-2-bearing plasmid was co-harbored in ST11-KL64 CRKP isolates. In conclusion, our data indicated that the nosocomial dissemination of ST11-KL64 CRKP clone is a potential threat to anti-infective therapy. The development of novel strategies for surveillance, diagnosis, and treatment of this high-risk CRKP clone is urgently needed.
Collapse
Affiliation(s)
- Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyang Sun
- Department of Clinical Laboratory, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Hangfei Chen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Kanahashi T, Matsumura Y, Yamamoto M, Tanaka M, Nagao M. Comparison of the Xpert Carba-R and NG-Test CARBA5 for the detection of carbapenemases in an IMP-type carbapenemase endemic region in Japan. J Infect Chemother 2021; 27:503-506. [PMID: 33214070 DOI: 10.1016/j.jiac.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/28/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The real-time PCR assay Xpert Carba-R and the lateral flow immunoassay NG-Test CARBA5 were developed to detect 5 types of carbapenemase genes (blaIMP, blaKPC, blaVIM, blaOXA-48, and blaNDM). METHODS We compared the diagnostic performance, turn-around time, and cost of these assays. Carbapenemase genes were defined using the Carba NP test, modified Carbapenem Inactivation Methods (mCIM), multiplex PCR, and whole-genome sequencing. We included clinical Enterobacterales isolates (n = 36) and nonfermenting gram-negative bacilli isolates (n = 17) collected from 16 acute-care hospitals in the Kinki region of Japan. RESULTS Twenty-six of these 53 isolates were positive according to both of the Carba NP test and mCIM and, contained the following carbapenemase genes: blaIMP-1 (n = 3), blaIMP-6 (n = 1), blaIMP-19 (n = 12), blaIMP-26 (n = 1), blaIMP-41 (n = 2), blaIMP-66 (n = 2), blaNDM-1 (n = 3), and blaVIM-2 (n = 2). All of the remaining 27 isolates were negative according to the Carba NP test, mCIM, and multiplex PCR. The specificities of both assays were 100%. The sensitivity of the Xpert Carba-R assay was as low as 53.8% and that of the NG-Test CARBA5 was 92.3% because the former failed to detect all isolates with blaIMP-19 (n = 12) and the latter failed to detect isolates with blaIMP-66 (n = 2). Both assays can easily be performed in less than 5 min. CONCLUSIONS The NG-Test CARBA5 assay was superior with regard to assay time and cost per sample. We propose the use of the NG-Test CARBA5 assay in clinical laboratories where IMP-type carbapenemases are endemic.
Collapse
Affiliation(s)
- Toru Kanahashi
- Department of Clinical Laboratory and Department of Infection Control and Prevention, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yasufumi Matsumura
- Department of Clinical Laboratory and Department of Infection Control and Prevention, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masaki Yamamoto
- Department of Clinical Laboratory and Department of Infection Control and Prevention, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Michio Tanaka
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Miki Nagao
- Department of Clinical Laboratory and Department of Infection Control and Prevention, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
8
|
Abe R, Akeda Y, Sakamoto N, Kumwenda G, Sugawara Y, Yamamoto N, Kawahara R, Tomono K, Fujino Y, Hamada S. Genomic characterisation of a novel plasmid carrying bla IMP-6 of carbapenem-resistant Klebsiella pneumoniae isolated in Osaka, Japan. J Glob Antimicrob Resist 2020; 21:195-199. [PMID: 31627024 DOI: 10.1016/j.jgar.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To analyse plasmids carrying blaIMP-6 in Klebsiella pneumoniae isolates obtained from multicentre carbapenem-resistant Enterobacteriaceae surveillance. METHODS Plasmids harbouring blaIMP-6 were characterised by the whole-genome sequencing of four Klebsiella pneumoniae isolates carrying blaIMP-6, and compared with the pKPI-6 plasmid, which is widespread in western Japan, through pulsed-field gel electrophoresis, Southern blotting, bacterial conjugation, and qPCR. RESULTS Whole-genome sequencing analysis revealed that three of the four isolates carried approximately 50 kbp plasmids similar to the pKPI-6 plasmid; however, one isolate carried a 250 kbp plasmid harbouring blaIMP-6 (pE196_IMP6). So far, all of the reported plasmids carrying blaIMP-6 were similar to the pKPI-6 plasmid, and this plasmid was a novel blaIMP6-carrier. The size and transferability of this plasmid was confirmed by Southern hybridisation and conjugation experiments. It was demonstrated that the generation of plasmid pE196_IMP6 was due to an intramolecular transposition mediated by IS26, and a homologous recombination between plasmids pKPI-6 and pE013 that was obtained from another carbapenem-resistant Enterobacteriaceae isolate in this analysis. As a result of co-integration with pE013, pE196_IMP6 acquired six additional pairs of type II toxin-antitoxin systems that pKPI-6 does not carry. Transcription of all of the toxin-antitoxin systems were confirmed in an isolate carrying pE196_IMP6 by qPCR. CONCLUSIONS This study detected a novel plasmid carrying blaIMP-6, and revealed the origin of this plasmid. Toxin-antitoxin system acquisition could enable pE196_IMP6 maintenance persistently through successions, even without selection pressure by the clinical usage of antimicrobials, generating broad dissemination and longer carbapenem-resistant Enterobacteriaceae colonisation duration in patients.
Collapse
Affiliation(s)
- Ryuichiro Abe
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Department of Anaesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukihiro Akeda
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan.
| | - Noriko Sakamoto
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Geoffrey Kumwenda
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yo Sugawara
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Norihisa Yamamoto
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Ryuji Kawahara
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Yuji Fujino
- Department of Anaesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shigeyuki Hamada
- Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Kosai K, Yamagishi Y, Hashinaga K, Nakajima K, Mikamo H, Hiramatsu K, Takesue Y, Yanagihara K. Multicenter surveillance of the epidemiology of gram-negative bacteremia in Japan. J Infect Chemother 2020; 26:193-198. [DOI: 10.1016/j.jiac.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 02/04/2023]
|
10
|
Lepuschitz S, Schill S, Stoeger A, Pekard-Amenitsch S, Huhulescu S, Inreiter N, Hartl R, Kerschner H, Sorschag S, Springer B, Brisse S, Allerberger F, Mach RL, Ruppitsch W. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:227-235. [PMID: 30690357 DOI: 10.1016/j.scitotenv.2019.01.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In 2016, the Austrian Agency for Health and Food Safety started a pilot project to investigate antimicrobial resistance in surface water. Here we report on the characterisation of carbapenem resistant and ESBL-producing K. pneumoniae isolates from Austrian river water samples compared to 95 clinical isolates recently obtained in Austrian hospitals. Ten water samples were taken from four main rivers, collected upstream and downstream of major cities in 2016. For subtyping and comparison, public core genome multi locus sequence typing (cgMLST) schemes were used. The presence of AMR genes, virulence genes and plasmids was extracted from whole genome sequence (WGS) data. In total three ESBL-producing strains and two carbapenem resistant strains were isolated. WGS based comparison of these five water isolates to 95 clinical isolates identified three clusters. Cluster 1 (ST11) and cluster 2 (ST985) consisted of doublets of carbapenem resistant strains (one water and one clinical isolate each). Cluster 3 (ST405) consisted of three ESBL-producing strains isolated from one water sample and two clinical specimens. The cities, in which patient isolates of cluster 2 and 3 were collected, were in concordance with the water sampling locations downstream from these cities. The genetic concordance between isolates from river water samples and patient isolates raises concerns regarding the release of wastewater treatment plant effluents into surface water. From a public health perspective these findings demand attention and strategies are required to minimize the spread of multiresistant strains to the environment.
Collapse
Affiliation(s)
- Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria; TU Wien, Research Area of Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria.
| | - Simone Schill
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Anna Stoeger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Shiva Pekard-Amenitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Steliana Huhulescu
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Norbert Inreiter
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Rainer Hartl
- Ordensklinikum Linz Elisabethinen, Institute of Hygiene, Microbiology and Tropical Medicine, National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Linz, Austria
| | - Heidrun Kerschner
- Ordensklinikum Linz Elisabethinen, Institute of Hygiene, Microbiology and Tropical Medicine, National Reference Centre for Nosocomial Infections and Antimicrobial Resistance, Linz, Austria
| | - Sieglinde Sorschag
- Department of Hospital Hygiene and Infectious Diseases, Community-Hospital Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Burkhard Springer
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Robert L Mach
- TU Wien, Research Area of Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria; University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna, Austria
| |
Collapse
|
11
|
Yamakawa H, Kosai K, Akamatsu N, Matsuda J, Kaku N, Uno N, Morinaga Y, Hasegawa H, Tsubouchi T, Kaneko Y, Miyazaki T, Izumikawa K, Mukae H, Yanagihara K. Molecular and epidemiological analysis of IMP-1 metallo-β-lactamase-producing Klebsiella pneumoniae in a tertiary care hospital in Japan. J Infect Chemother 2019; 25:240-246. [PMID: 30611637 DOI: 10.1016/j.jiac.2018.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023]
Abstract
This study investigated the molecular and phenotypic characteristics of carbapenemase-producing Klebsiella pneumoniae, and identified the risk factors underlying its acquisition. We evaluated K. pneumoniae isolated in Nagasaki University Hospital between January 2009 and June 2015. The presence of carbapenemase genes and plasmid characteristics were investigated. We performed multilocus sequence typing (MLST), and generated a dendrogram based on the results of pulsed-field gel electrophoresis (PFGE) for carbapenemase-producing strains. We also performed a case-control study of patients. Of the 88 K. pneumoniae strains that showed minimum inhibitory concentration ≥1 μg/mL for imipenem and/or meropenem, and that were available from our bacterial collection, 18 had the IMP-type carbapenemase gene, all of which were IMP-1 according to sequencing analysis. Strains included seven different sequence types (STs), of which the most common was ST1471. A dendrogram showed the significant similarity of some strains with relationships in PFGE patterns, STs, and the wards in which they were isolated. Plasmid incompatibility group was similar among the IMP-1 producers. Regarding risk factors, multivariate analysis showed that liver disease and previous uses of carbapenems and anti-fungal drugs were significant factors for the acquisition of IMP-1-producing strains. Our results demonstrate that IMP-1 is a major carbapenemase produced by K. pneumoniae. The PFGE results indicated the possibility of transmission in the hospital. The identified risk factors should be considered for appropriate antibiotic therapy and infection-control measures.
Collapse
Affiliation(s)
- Hiromi Yamakawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan; Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.
| | - Norihiko Akamatsu
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Junichi Matsuda
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Taishi Tsubouchi
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukihiro Kaneko
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Taiga Miyazaki
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan; Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
12
|
Abstract
β-Lactamases, the major resistance determinant for β-lactam antibiotics in Gram-negative bacteria, are ancient enzymes whose origins can be traced back millions of years ago. These well-studied enzymes, currently numbering almost 2,800 unique proteins, initially emerged from environmental sources, most likely to protect a producing bacterium from attack by naturally occurring β-lactams. Their ancestors were presumably penicillin-binding proteins that share sequence homology with β-lactamases possessing an active-site serine. Metallo-β-lactamases also exist, with one or two catalytically functional zinc ions. Although penicillinases in Gram-positive bacteria were reported shortly after penicillin was introduced clinically, transmissible β-lactamases that could hydrolyze recently approved cephalosporins, monobactams, and carbapenems later became important in Gram-negative pathogens. Nomenclature is based on one of two major systems. Originally, functional classifications were used, based on substrate and inhibitor profiles. A later scheme classifies β-lactamases according to amino acid sequences, resulting in class A, B, C, and D enzymes. A more recent nomenclature combines the molecular and biochemical classifications into 17 functional groups that describe most β-lactamases. Some of the most problematic enzymes in the clinical community include extended-spectrum β-lactamases (ESBLs) and the serine and metallo-carbapenemases, all of which are at least partially addressed with new β-lactamase inhibitor combinations. New enzyme variants continue to be described, partly because of the ease of obtaining sequence data from whole-genome sequencing studies. Often, these new enzymes are devoid of any phenotypic descriptions, making it more difficult for clinicians and antibiotic researchers to address new challenges that may be posed by unusual β-lactamases.
Collapse
Affiliation(s)
- Karen Bush
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
13
|
Performance evaluation of the MALDI Biotyper Selective Testing of Antibiotic Resistance-β-Lactamase (MBT STAR-BL) assay for the detection of IMP metallo-β-lactamase activity in Enterobacteriaceae. Diagn Microbiol Infect Dis 2018; 92:275-278. [PMID: 30041842 DOI: 10.1016/j.diagmicrobio.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/19/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022]
Abstract
The MALDI Biotyper Selective Testing of Antibiotic Resistance-β-Lactamase (MBT STAR-BL) assay enables rapid detection of β-lactamase activity using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The assay is based on analysis of bacterially induced hydrolysis of β-lactam antibiotics. We investigated the performance of the MBT STAR-BL assay for detecting IMP metallo-β-lactamase (MBL) activity in Enterobacteriaceae. A total of 145 strains (30 Escherichia coli, 43 Klebsiella pneumoniae, and 72 Enterobacter cloacae complex) were evaluated using meropenem hydrolysis assays. The MBT STAR-BL correctly identified all 48 IMP MBL producers as positive, even those exhibiting a low minimal inhibitory concentration (MIC) (1 μg/mL) for meropenem. Conversely, all non-IMP MBL producers, including strains with higher MICs (4 or 8 μg/mL), were correctly identified as negative. The MBT STAR-BL is a rapid, accurate, and reliable system for detecting IMP MBL activity in Enterobacteriaceae.
Collapse
|
14
|
Antimicrobial resistance pattern of Klebsiella spp isolated from patients in Tehran, Iran. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Effectiveness of healthcare worker screening in hospital outbreaks with gram-negative pathogens: a systematic review. Antimicrob Resist Infect Control 2018; 7:36. [PMID: 29556377 PMCID: PMC5845297 DOI: 10.1186/s13756-018-0330-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/25/2018] [Indexed: 01/26/2023] Open
Abstract
Background Identifying the source of an outbreak is the most crucial aspect of any outbreak investigation. In this review, we address the frequently discussed question of whether (rectal) screening of health care workers (HCWs) should be carried out when dealing with outbreaks caused by gram negative bacteria (GNB). A systematic search of the medical literature was performed, including the Worldwide Outbreak Database and PubMed. Outbreaks got included if a HCW was the source of the outbreak and the causative pathogen was an Escherichia coli, Klebsiella spp., Enterobacter spp., Serratia spp., Pseudomonas aeruginosa, or Acinetobacter baumannii. This was true for 25 articles in which there were 1196 (2.1%) outbreaks due to GNB, thereof 14 HCWs who were permanently colonized by the outbreak strain. Rectal screening of HCWs was helpful in only 2 of the 1196 (0.2%) outbreaks. Instead, the hands of HCWs served as a reservoir for the outbreak strain in at least 7 articles – especially when they suffered from onychomycosis or used artificial fingernails or rings. Conclusion Due to very weak evidence, we do not recommend rectal screening of HCWs in an outbreak situation with GNB. However, besides a critical review of hand hygiene habits, it might be useful to examine the hands of staff carefully. This measure is cheap, quick to perform, and seems to be quite effective. Electronic supplementary material The online version of this article (10.1186/s13756-018-0330-4) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
van Loon K, Voor In 't Holt AF, Vos MC. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2018; 62:e01730-17. [PMID: 29038269 PMCID: PMC5740327 DOI: 10.1128/aac.01730-17] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/29/2017] [Indexed: 01/23/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are major health care-associated pathogens and responsible for hospital outbreaks worldwide. To prevent a further increase in CRE infections and to improve infection prevention strategies, it is important to summarize the current knowledge about CRE infection prevention in hospital settings. This systematic review aimed to identify risk factors for CRE acquisition among hospitalized patients. In addition, we summarized the environmental sources/reservoirs and the most successful infection prevention strategies related to CRE. A total of 3,983 potentially relevant articles were identified and screened. Finally, we included 162 studies in the systematic review, of which 69 studies regarding risk factors for CRE acquisition were included in the random-effects meta-analysis studies. The meta-analyses regarding risk factors for CRE acquisition showed that the use of medical devices generated the highest pooled estimate (odds ratio [OR] = 5.09; 95% confidence interval [CI] = 3.38 to 7.67), followed by carbapenem use (OR = 4.71; 95% CI = 3.54 to 6.26). To control hospital outbreaks, bundled interventions, including the use of barrier/contact precautions for patients colonized or infected with CRE, are needed. In addition, it is necessary to optimize the therapeutic approach, which is an important message to infectious disease specialists, who need to be actively involved in a timely manner in the treatment of patients with known CRE infections or suspected carriers of CRE.
Collapse
Affiliation(s)
- Karlijn van Loon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anne F Voor In 't Holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Margreet C Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Yamakawa H, Kosai K, Kawamoto Y, Akamatsu N, Matsuda J, Kaku N, Uno N, Morinaga Y, Hasegawa H, Yanagihara K. Performance evaluation of BD Phoenix™, an automated microbiology system, for the screening of IMP-producing Enterobacteriaceae. J Microbiol Methods 2017; 145:47-49. [PMID: 29258740 DOI: 10.1016/j.mimet.2017.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
BD Phoenix™ is an automated bacterial identification and susceptibility testing system. Here, its performance in screening IMP-producing Enterobacteriaceae was evaluated. The system identified 97.8% of IMP producers as being nonsusceptible to imipenem or meropenem, which was higher than that identified by the broth microdilution method (91.3%, imipenem; 41.3%, meropenem).
Collapse
Affiliation(s)
- Hiromi Yamakawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.
| | - Yasuhide Kawamoto
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Norihiko Akamatsu
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Junichi Matsuda
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
18
|
Lai K, Ma Y, Guo L, An J, Ye L, Yang J. Molecular characterization of clinical IMP-producing Klebsiella pneumoniae isolates from a Chinese Tertiary Hospital. Ann Clin Microbiol Antimicrob 2017; 16:42. [PMID: 28629366 PMCID: PMC5474851 DOI: 10.1186/s12941-017-0218-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND IMP-producing Klebsiella pneumoniae (IMPKpn) exhibits sporadic prevalence in China. The mechanisms related to the spread of IMPKpn remain unclear. METHODS Carbapenem non-susceptible K. pneumoniae isolates were collected from our hospital. The genetic relatedness, antimicrobial susceptibility, as well as sequence types (ST) were analyzed by pulsed-field gel electrophoresis (PFGE), VITEK 2 AST test Kit, and multilocus sequence typing (MLST), respectively. S1-PFGE, Southern blot analysis and multiple PCR amplification were used for plasmid profiling. RESULTS Between October 2009 and June 2016, 25 non-repetitive IMPKpn isolates were identified. PFGE results showed that these isolates belonged to 20 genetically unrelated IMPKpn strains. Diverse STs were identified by MLST. Most strains carried bla IMP-4, followed by bla IMP-1. Four incompatibility types of bla IMP-carrying plasmids were identified, which included A/C (n = 2), B/O (n = 2), L/M (n = 1) and N (n = 14), while type of other one plasmid failed to be determined. CONCLUSIONS The IMPKpn isolates exhibited sporadic prevalence in our hospital. IncN types of plasmids with various sizes have emerged as the main platform mediating the spread of the bla IMP genes in our hospital.
Collapse
Affiliation(s)
- Kaisheng Lai
- Department of Microbiology, Chinese PLA General Hospital, 301 Hospital, 28# Fuxing Road, Beijing, 100853 China
| | - Yanning Ma
- Department of Microbiology, Chinese PLA General Hospital, 301 Hospital, 28# Fuxing Road, Beijing, 100853 China
| | - Ling Guo
- Department of Microbiology, Chinese PLA General Hospital, 301 Hospital, 28# Fuxing Road, Beijing, 100853 China
| | - Jingna An
- Department of Microbiology, Chinese PLA General Hospital, 301 Hospital, 28# Fuxing Road, Beijing, 100853 China
| | - Liyan Ye
- Department of Microbiology, Chinese PLA General Hospital, 301 Hospital, 28# Fuxing Road, Beijing, 100853 China
| | - Jiyong Yang
- Department of Microbiology, Chinese PLA General Hospital, 301 Hospital, 28# Fuxing Road, Beijing, 100853 China
| |
Collapse
|
19
|
French CE, Coope C, Conway L, Higgins JPT, McCulloch J, Okoli G, Patel BC, Oliver I. Control of carbapenemase-producing Enterobacteriaceae outbreaks in acute settings: an evidence review. J Hosp Infect 2016; 95:3-45. [PMID: 27890334 DOI: 10.1016/j.jhin.2016.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND In recent years, infections with carbapenemase-producing Enterobacteriaceae (CPE) have been increasing globally and present a major public health challenge. AIM To review the international literature: (i) to describe CPE outbreaks in acute hospital settings globally; and (ii) to identify the control measures used during these outbreaks and report on their effectiveness. METHODS A systematic search of MEDLINE and EMBASE databases, abstract lists for key conferences and reference lists of key reviews was undertaken, and information on unpublished outbreaks was sought for 2000-2015. Where relevant, risk of bias was assessed using the Newcastle-Ottawa scale. A narrative synthesis of the evidence was conducted. FINDINGS Ninety-eight outbreaks were eligible. These occurred worldwide, with 53 reports from Europe. The number of cases (CPE infection or colonization) involved in outbreaks varied widely, from two to 803. In the vast majority of outbreaks, multi-component infection control measures were used, commonly including: patient screening; contact precautions (e.g. gowns, gloves); handwashing interventions; staff education or monitoring; enhanced environmental cleaning/decontamination; cohorting of patients and/or staff; and patient isolation. Seven studies were identified as providing the best-available evidence on the effectiveness of control measures. These demonstrated that CPE outbreaks can be controlled successfully using a range of appropriate, commonly used, infection control measures. However, risk of bias was considered relatively high for these studies. CONCLUSION The findings indicate that CPE outbreaks can be controlled using combinations of existing measures. However, the quality of the evidence base is weak and further high-quality research is needed, particularly on the effectiveness of individual infection control measures.
Collapse
Affiliation(s)
- C E French
- University of Bristol, Bristol, UK; NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK
| | - C Coope
- NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK; Public Health England, Bristol, UK.
| | - L Conway
- NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK; Public Health England, Bristol, UK
| | - J P T Higgins
- University of Bristol, Bristol, UK; NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK
| | | | - G Okoli
- University of Bristol, Bristol, UK
| | | | - I Oliver
- NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK; Public Health England, Bristol, UK
| |
Collapse
|
20
|
Shahandeh Z, Sadighian F, Rekabpor KB. Phenotypic Detection of ESBL, MBL (IMP-1), and AmpC Enzymes, and Their Coexistence in Enterobacter and Klebsiella Species Isolated From Clinical Specimens. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2016. [DOI: 10.17795/ijep32812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Arjomandi OK, Hussein WM, Vella P, Yusof Y, Sidjabat HE, Schenk G, McGeary RP. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur J Med Chem 2016; 114:318-27. [DOI: 10.1016/j.ejmech.2016.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 01/10/2023]
|
22
|
Tracking Nosocomial Klebsiella pneumoniae Infections and Outbreaks by Whole-Genome Analysis: Small-Scale Italian Scenario within a Single Hospital. J Clin Microbiol 2015; 53:2861-8. [PMID: 26135860 DOI: 10.1128/jcm.00545-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae is one of the most important causes of nosocomial infections worldwide. After the spread of strains resistant to beta-lactams at the end of the previous century, the diffusion of isolates resistant to carbapenems and colistin is now reducing treatment options and the containment of infections. Carbapenem-resistant K. pneumoniae strains have spread rapidly among Italian hospitals, with four subclades of pandemic clonal group 258 (CG258). Here we show that a single Italian hospital has been invaded by three of these subclades within 27 months, thus replicating on a small scale the "Italian scenario." We identified a single clone responsible for an epidemic outbreak involving seven patients, and we reconstructed its star-like pattern of diffusion within the intensive care unit. This epidemiological picture was obtained through phylogenomic analysis of 16 carbapenem-resistant K. pneumoniae isolates collected in the hospital during a 27-month period, which were added to a database of 319 genomes representing the available global diversity of K. pneumoniae strains. Phenotypic and molecular assays did not reveal virulence or resistance determinants specific for the outbreak isolates. Other factors, rather than selective advantages, might have caused the outbreak. Finally, analyses allowed us to identify a major subclade of CG258 composed of strains bearing the yersiniabactin virulence factor. Our work demonstrates how the use of combined phenotypic, molecular, and whole-genome sequencing techniques can help to identify quickly and to characterize accurately the spread of MDR pathogens.
Collapse
|
23
|
Dong D, Liu W, Li H, Wang Y, Li X, Zou D, Yang Z, Huang S, Zhou D, Huang L, Yuan J. Survey and rapid detection of Klebsiella pneumoniae in clinical samples targeting the rcsA gene in Beijing, China. Front Microbiol 2015; 6:519. [PMID: 26052327 PMCID: PMC4440914 DOI: 10.3389/fmicb.2015.00519] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/09/2015] [Indexed: 12/28/2022] Open
Abstract
Klebsiella pneumoniae is a wide-spread nosocomial pathogen. A rapid and sensitive molecular method for the detection of K. pneumoniae in clinical samples is needed to guide therapeutic treatment. In this study, we first described a loop-mediated isothermal amplification (LAMP) method for the rapid detection of capsular polysaccharide synthesis regulating gene rcsA from K. pneumoniaein clinical samples by using two methods including real-time turbidity monitoring and fluorescence detection to assess the reaction. Then dissemination of K. pneumoniae strains was investigated from ICU patients in three top hospitals in Beijing, China. The results showed that the detection limit of the LAMP method was 0.115 pg/μl DNA within 60 min under isothermal conditions (61°C), a 100-fold increase in sensitivity compared with conventional PCR. All 30 non- K. pneumoniae strains tested were negative for LAMP detection, indicating the high specificity of the LAMP reaction. To evaluate the application of the LAMP assay to clinical diagnosis, of 110 clinical sputum samples collected from ICU patients with clinically suspected multi-resistant infections in China, a total of 32 K. pneumoniae isolates were identified for LAMP-based surveillance of rcsA. All isolates belonged to nine different K. pneumoniae multilocus sequence typing (MLST) groups. Strikingly, of the 32 K. pneumoniae strains, 18 contained the Klebsiella pneumoniae Carbapenemase (KPC)-encoding gene blaKPC-2 and had high resistance to β-lactam antibiotics. Moreover, K. pneumoniae WJ-64 was discovered to contain blaKPC-2 and blaNDM-1genes simultaneously in the isolate. Our data showed the high prevalence of blaKPC-2 among K. pneumoniae and co-occurrence of many resistant genes in the clinical strains signal a rapid and continuing evolution of K. pneumoniae. In conclusion, we have developed a rapid and sensitive visual K. pneumoniae detection LAMP assay, which could be a useful tool for clinical screening, on-site diagnosis and primary quarantine purposes.
Collapse
Affiliation(s)
- Derong Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Yufei Wang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces Beijing, China
| | - Xinran Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Dayang Zou
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Simo Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology Beijing, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
24
|
Okazaki R, Hagiwara S, Kimura T, Tokue Y, Kambe M, Murata M, Aoki M, Kaneko M, Oshima K, Murakami M. Metallo-β-lactamase-producing Klebsiella pneumoniae infection in a non-hospital environment. Acute Med Surg 2015; 3:32-35. [PMID: 29123745 DOI: 10.1002/ams2.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022] Open
Abstract
Case A 92-year-old female resident at a nursing home was transported to the emergency department unconscious, hypotensive, and febrile. Chest X-rays and computed tomography revealed a permeation shadow in the right lung. The patient was diagnosed with sepsis due to pneumonia. At the time of admission, she had not received antibiotics or treatment using medical devices over the past 6 months. Two sets of samples were taken for blood and sputum cultures, and Klebsiella pneumoniae was isolated from all cultures. The strain was identified as metallo-β-lactamase-producing K. pneumoniae, and the patient was successfully treated with tazobactam-piperacillin. This case indicates that metallo-β-lactamase-producing K. pneumoniae infection occurred in a non-hospital environment. Outcome After tazobactam-piperacillin treatment, the patient was transferred to another hospital. Conclusion Emergency physicians should be aware of multidrug-resistant bacterial infection even in a non-hospital setting.
Collapse
Affiliation(s)
- Rumi Okazaki
- Clinical Laboratory Center Gunma University Hospital Maebashi Gunma Japan
| | - Shuichi Hagiwara
- Department of Emergency Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| | - Takao Kimura
- Department of Laboratory Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| | - Yutaka Tokue
- Infection Control and Prevention Center Gunma University Hospital Maebashi Gunma Japan
| | - Masahiko Kambe
- Department of Emergency Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| | - Masato Murata
- Department of Emergency Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| | - Makoto Aoki
- Department of Emergency Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| | - Minoru Kaneko
- Department of Emergency Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| | - Kiyohiro Oshima
- Department of Emergency Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| | - Masami Murakami
- Clinical Laboratory Center Gunma University Hospital Maebashi Gunma Japan.,Department of Laboratory Medicine Gunma University Graduate School of Medicine Maebashi Gunma Japan
| |
Collapse
|
25
|
Molecular and epidemiological characterization of IMP-type metallo-β-lactamase-producing Enterobacter cloacae in a Large tertiary care hospital in Japan. Antimicrob Agents Chemother 2014; 58:3441-50. [PMID: 24709261 DOI: 10.1128/aac.02652-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMP-type metallo-β-lactamase enzymes have been reported in different geographical areas and in various Gram-negative bacteria. However, the risk factors and epidemiology pertaining to IMP-type metallo-β-lactamase-producing Enterobacter cloacae (IMP-producing E. cloacae) have not been systematically evaluated. We conducted a retrospective, matched case-control study of patients from whom IMP-producing E. cloacae isolates were obtained, in addition to performing thorough molecular analyses of the clinically obtained IMP-producing E. cloacae isolates. Unique cases with IMP-producing E. cloacae isolation were included. Patients with IMP-producing E. cloacae were matched to uninfected controls at a ratio of 1 to 3. Fifteen IMP-producing E. cloacae cases were identified, with five of the isolates being obtained from blood, and they were matched to 45 uninfected controls. All (100%) patients from whom IMP-producing E. cloacae isolates were obtained had indwelling devices at the time of isolation, compared with one (2.2%) uninfected control. Independent predictors for isolation of IMP-producing E. cloacae were identified as cephalosporin exposure and invasive procedures within 3 months. Although in-hospital mortality rates were similar between cases and controls (14.3% versus 13.3%), the in-hospital mortality of patients with IMP-producing E. cloacae-caused bacteremia was significantly higher (40%) than the rate in controls. IMP-producing E. cloacae isolates were frequently positive for other resistance determinants. The MICs of meropenem and imipenem were not elevated; 10 (67%) and 12 (80%) of the 15 IMP-producing E. cloacae isolates had a MIC of ≤ 1 μg/ml. A phylogenetic tree showed a close relationship among the IMP-producing E. cloacae samples. Indwelling devices, exposure to cephalosporin, and a history of invasive procedures were associated with isolation of IMP-producing E. cloacae. Screening for carbapenemase production is important in order to apply appropriate clinical management and infection control measures.
Collapse
|
26
|
|
27
|
Tacconelli E, Cataldo M, Dancer S, De Angelis G, Falcone M, Frank U, Kahlmeter G, Pan A, Petrosillo N, Rodríguez-Baño J, Singh N, Venditti M, Yokoe D, Cookson B. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect 2014; 20 Suppl 1:1-55. [DOI: 10.1111/1469-0691.12427] [Citation(s) in RCA: 527] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/29/2013] [Accepted: 10/06/2013] [Indexed: 01/04/2023]
|
28
|
Fujisaki M, Sadamoto S, Hishinuma A. Evaluation of the double-disk synergy test for New Delhi metallo-β-lactamase-1 and other metallo-β-lactamase producing gram-negative bacteria by using metal-ethylenediaminetetraacetic acid complexes. Microbiol Immunol 2013; 57:346-52. [PMID: 23668606 DOI: 10.1111/1348-0421.12042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 11/30/2022]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1), one of the metallo-β-lactamases (MBLs), has been identified from clinical isolates worldwide. Rapid detection of NDM-1 producers is necessary to prevent their dissemination. Seven types of EDTA complexes were evaluated as MBL inhibitors in double-disk synergy tests (DDSTs), resulting in detection of the first isolate of NDM-1-producing Escherichia coli (NDM-1 Dok01) in Japan. NDM-1 Dok01 was detected when EDTA magnesium disodium salt tetrahydrate (Mg-EDTA), EDTA calcium disodium salt dihydrate, EDTA cobalt disodium salt tetrahydrate and EDTA copper disodium salt tetrahydrate were used as MBL inhibitors. The sensitivity and specificity of DDSTs using Mg-EDTA for 75 MBL producers and 25 non-MBL producers were 96.0% and 100%, respectively. These findings indicate that the DDST method using Mg-EDTA can detect MBL-producing strains, including NDM-1 producers.
Collapse
Affiliation(s)
- Momoko Fujisaki
- Biochemical Research Laboratories, Research and Development Division, Eiken Chemical, 143 Nogi, Nogi-machi Shimotsuga-gun, Tochigi 329-0114, Japan.
| | | | | |
Collapse
|
29
|
Ahmad N, Hashim R, Shukor S, Mohd Khalid KN, Shamsudin F, Hussin H. Characterization of the first isolate of Klebsiella pneumoniae carrying New Delhi metallo-β-lactamase and other extended spectrum β-lactamase genes from Malaysia. J Med Microbiol 2013; 62:804-806. [DOI: 10.1099/jmm.0.050781-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Norazah Ahmad
- Bacteriology Unit, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Rohaidah Hashim
- Bacteriology Unit, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Surianti Shukor
- Bacteriology Unit, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | | | - Farah Shamsudin
- Bacteriology Unit, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | | |
Collapse
|
30
|
Sho T, Muratani T, Hamasuna R, Yakushiji H, Fujimoto N, Matsumoto T. The mechanism of high-level carbapenem resistance in Klebsiella pneumoniae: underlying Ompk36-deficient strains represent a threat of emerging high-level carbapenem-resistant K. pneumoniae with IMP-1 β-lactamase production in Japan. Microb Drug Resist 2013; 19:274-81. [PMID: 23514607 DOI: 10.1089/mdr.2012.0248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanisms of high-level carbapenem resistance in Klebsiella pneumoniae isolated in Japan were investigated. High-level carbapenem-resistant K. pneumoniae Mkp4437 and a less carbapenem-sensitive K. pneumoniae strain, Mkp4365, were recovered from the same patient. These two strains were found to be homologous by pulsed-field gel electrophoresis, and both strains contained blaIMP-1, blaDHA-1, blaCTXM-14, blaTEM-1, and blaSHV-1. Based on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the lack of Ompk36 was observed in Mkp4437. Direct sequencing of the ompK36 gene demonstrated that a new insertional sequence in the open reading frame of the ompK36 gene was found in Mkp4437. Three clinical isolates (minimum inhibitory concentration [MIC] 2-4 mg/L to imipenem) were identified upon screening the strains of K. pneumoniae isolated in the University hospital with MICs of ≥ 1 mg/L to imipenem. Interestingly, these three isolates all lacked OmpK36. Conjugation of the plasmid harboring IMP-1 to these three OmpK36-deficient strains led to the isolation of high-level carbapenem-resistant transconjugants. In conclusion, the mechanisms of high-level carbapenem resistance in K. pneumoniae entail not only the production of IMP-1 β-lactamase but also the lack of OmpK36. It is vital to monitor for the presence of less carbapenem-sensitive K. pneumoniae strains, which lack OmpK36, because blaIMP-1 transmission to these strains may result in isolates with a high-level carbapenem-resistant phenotype.
Collapse
Affiliation(s)
- Takehiko Sho
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Galán JC, González-Candelas F, Rolain JM, Cantón R. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world. Front Microbiol 2013; 4:9. [PMID: 23404545 PMCID: PMC3567504 DOI: 10.3389/fmicb.2013.00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/09/2013] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem.
Collapse
Affiliation(s)
- Juan-Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal Madrid, Spain ; Centros de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2013; 25:682-707. [PMID: 23034326 DOI: 10.1128/cmr.05035-11] [Citation(s) in RCA: 859] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SUMMARY The spread of Enterobacteriaceae, primarily Klebsiella pneumoniae, producing KPC, VIM, IMP, and NDM carbapenemases, is causing an unprecedented public health crisis. Carbapenemase-producing enterobacteria (CPE) infect mainly hospitalized patients but also have been spreading in long-term care facilities. Given their multidrug resistance, therapeutic options are limited and, as discussed here, should be reevaluated and optimized. Based on susceptibility data, colistin and tigecycline are commonly used to treat CPE infections. Nevertheless, a review of the literature revealed high failure rates in cases of monotherapy with these drugs, whilst monotherapy with either a carbapenem or an aminoglycoside appeared to be more effective. Combination therapies not including carbapenems were comparable to aminoglycoside and carbapenem monotherapies. Higher success rates have been achieved with carbapenem-containing combinations. Pharmacodynamic simulations and experimental infections indicate that modification of the current patterns of carbapenem use against CPE warrants further attention. Epidemiological data, though fragmentary in many countries, indicate CPE foci and transmission routes, to some extent, whilst also underlining the lack of international collaborative systems that could react promptly and effectively. Fortunately, there are sound studies showing successful containment of CPE by bundles of measures, among which the most important are active surveillance cultures, separation of carriers, and assignment of dedicated nursing staff.
Collapse
|
33
|
Comparative evaluation of a prototype chromogenic medium (ChromID CARBA) for detecting carbapenemase-producing Enterobacteriaceae in surveillance rectal swabs. J Clin Microbiol 2012; 50:1841-6. [PMID: 22461675 DOI: 10.1128/jcm.06848-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are an increasing problem worldwide, and rectal swab surveillance is recommended as a component of infection control programs. The performance of a prototype chromogenic medium (chromID CARBA) was evaluated and compared with media tested by four other screening methods: (i) overnight selective enrichment in 5 ml tryptic soy broth with a 10-μg ertapenem disk followed by plating onto MacConkey agar (CDC-TS), (ii) short selective enrichment in 9 ml brain heart infusion broth with a 10-μg ertapenem disk followed by plating onto chromID ESBL medium (ESBL-BH), (iii) direct plating onto chromID ESBL, and (iv) direct plating onto MacConkey agar supplemented with meropenem (1 μg/ml) (MCM). The screening methods were applied to detect CPE in 200 rectal swab specimens taken from different hospitalized patients. Identification and antimicrobial susceptibility were performed by the Vitek 2 system. Carbapenem MICs were checked by Etest. Carbapenemase production was confirmed using the modified Hodge test, combined-disk tests, and PCR assays. In total, 133 presumptive CPE strains were detected. Phenotypic and genotypic assays confirmed 92 strains to be CPE (56 KPC-positive Klebsiella pneumoniae, 29 VIM-positive K. pneumoniae, and 7 KPC-positive Enterobacter aerogenes strains) recovered from 73 patients, while the remaining 41 strains were confirmed to be CPE negative (19 ESBL producers and 22 nonfermenters). chromID CARBA, ESBL-BH, and chromID ESBL exhibited the highest sensitivity (92.4%), followed by CDC-TS and MCM (89.1%) (P = 0.631). The specificity was greater for chromID CARBA (96.9%) and ESBL-BH (93.2%) than for CDC-TS (86.4%), MCM (85.2%), and chromID ESBL (84.7%) (P = 0.014). In conclusion, chromID CARBA was found to be a rapid and accurate culture screening method for active CPE surveillance.
Collapse
|
34
|
Detection of carbapenemase producers in Enterobacteriaceae by use of a novel screening medium. J Clin Microbiol 2012; 50:2761-6. [PMID: 22357501 DOI: 10.1128/jcm.06477-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A Drigalski agar-based culture medium containing an ertapenem, cloxacillin, and zinc sulfate (Supercarba medium) was tested for screening carbapenemase-producing members of the family Enterobacteriaceae. OXA-48 (n = 44), NDM (n = 25), VIM or IMP (n = 27), and KPC producers (n = 18) were detected with a low detection limit. Its overall sensitivity (95.6%) was higher than those of the currently available ChromID ESBL (bioMérieux) and CHROMagar KPC (CHROMagar) screening media. The Supercarba medium provides a significant improvement for detection of the most common types of carbapenemase producers.
Collapse
|
35
|
Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur J Med Chem 2011; 46:6075-82. [DOI: 10.1016/j.ejmech.2011.10.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 11/22/2022]
|
36
|
Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? THE LANCET. INFECTIOUS DISEASES 2011; 11:381-93. [PMID: 21530894 DOI: 10.1016/s1473-3099(11)70056-1] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metallo-β-lactamases are resistance determinants of increasing clinical relevance in Gram-negative bacteria. Because of their broad range, potent carbapenemase activity and resistance to inhibitors, these enzymes can confer resistance to almost all β-lactams. Since the 1990s, several metallo-β-lactamases encoded by mobile DNA have emerged in important Gram-negative pathogens (ie, in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii). Some of these enzymes (eg, VIM-1 and NDM-1) have been involved in the recent crisis resulting from the international dissemination of carbapenem-resistant Klebsiella pneumoniae and other enterobacteria. Although substantial knowledge about the molecular biology and genetics of metallo-β-lactamases is available, epidemiological data are inconsistent and clinical experience is still lacking; therefore, several unsolved or debatable issues remain about the management of infections caused by producers of metallo-β-lactamase. The spread of metallo-β-lactamases presents a major challenge both for treatment of individual patients and for policies of infection control, exposing the substantial unpreparedness of public health structures in facing up to this emergency.
Collapse
Affiliation(s)
- Giuseppe Cornaglia
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy.
| | | | | |
Collapse
|
37
|
The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg Med Chem Lett 2011; 21:3282-5. [DOI: 10.1016/j.bmcl.2011.04.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 11/22/2022]
|
38
|
Chin BS, Han SH, Choi SH, Lee HS, Jeong SJ, Choi HK, Choi JY, Song YG, Kim CK, Yong D, Lee K, Kim JM. The characteristics of metallo-β-lactamase-producing gram-negative bacilli isolated from sputum and urine: a single center experience in Korea. Yonsei Med J 2011; 52:351-7. [PMID: 21319358 PMCID: PMC3051217 DOI: 10.3349/ymj.2011.52.2.351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Metallo-β-lactamase (MBL) production usually results in high-level resistance to most β-lactams, and a rapid spread of MBL producing major gram-negative pathogens is a matter of particular concern worldwide. However, clinical data are scarce and most studies compared MBL producer (MP) with MBL non-producer (MNP) strains which included carbapenem susceptible isolates. Therefore, we collected clinical data of patients in whom imipenem-nonsusceptible Pseudomonas aeruginosa (PA) and Acinetobacter baumannii (AB) were isolated from sputum or urine, and investigated MBL production and the risk factors related with MBL acquisition. The antimicrobial susceptibility patterns were also compared between MPs and imipenem-nonsusceptible MNPs (INMNP). Among the 176 imipenem-nonsusceptible isolates, 12 MPs (6.8%) were identified. There was no identifiable risk factor that contributed to the acquisition of MPs when compared to INMNPs, and case-fatalities were not different between the two groups. The percentage of susceptible isolates was higher among MPs for piperacilin/tazobactam and fluoroquinolones while that of ceftazidime was higher in INMNPs (p < 0.05). As regards to aztreonam, which has been known to be a uniquely stable β-lactam against MBLs, susceptibility was preserved in only two isolates (16.7%) among MPs, and was not higher than that of INMNPs (23.2%). In conclusion, the contribution of MBLs to imipenem non-susceptibility in PA/ABs isolated from sputum and urine was relatively limited, and there was no significant risk factor associated with acquisition of MPs compared with INMNPs. However, limited susceptibility to aztreonam implies that MPs may hold additional resistance mechanisms, such as extended spectrum β-lactamases, AmpC β-lactamases, or other non-enzymatic mechanisms.
Collapse
Affiliation(s)
- Bum Sik Chin
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Han
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Suk Hoon Choi
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sung Lee
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Jeong
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Kyung Choi
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Goo Song
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Ki Kim
- Research Institute of Bacterial Resistance and Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dongeun Yong
- Research Institute of Bacterial Resistance and Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Research Institute of Bacterial Resistance and Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June Myung Kim
- AIDS Research Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
|
40
|
Use of ChromID extended-spectrum beta-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 2010; 48:1913-4. [PMID: 20237104 DOI: 10.1128/jcm.02277-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ChromID extended-spectrum beta-lactamase (ESBL) culture medium is routinely used for screening ESBL producers. This medium was tested for detecting carbapenemase-producing Enterobacteriaceae isolates from a collection of reference strains and compared to the CHROMagar KPC culture medium previously evaluated for detecting KPC-producing isolates. Producers of IMP-, VIM-, and KPC-type carbapenemases with high levels of resistance to cephalosporins and to carbapenems were detected at 1x10(1) CFU/ml. The OXA-48 producers were not detected on ChromID ESBL medium unless coexpressing ESBLs, whereas carbapenemase-producing isolates with MICs of <4 microg/ml were not detected on CHROMagar KPC medium.
Collapse
|
41
|
Hammad AM, Ahmed AM, Ishida Y, Shimamoto T. First characterization and emergence of SHV-60 in raw milk of a healthy cow in Japan. J Vet Med Sci 2008; 70:1269-72. [PMID: 19057150 DOI: 10.1292/jvms.70.1269] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During monitoring of raw milk samples from healthy cows for the presence of antibiotic resistant bacteria, one isolate of Klebsiella pneumoniae strain HUF-100 was found to be resistant to oxyimino-cephalosporins and aztreonam. It was found to carry a chromosomally-encoded extended-spectrum beta-lactamase that has not been described previously, namely SHV-60. Thus, it must be expected that this strain will spread further among food-producing animals and thereby constitute a reservoir of this resistant strain and resistance gene that can transfer to and cause treatment problems for humans. The present study confirms the hypothesis that some of novel multiple antibiotic resistant zoonotic bacterial pathogens may initially emerge from food animals and reports, for the first time, this type of emergence in Japan.
Collapse
Affiliation(s)
- Ahmed M Hammad
- Laboratory of Food Microbiology and Hygiene, Hiroshima University, Hiroshima, Japan
| | | | | | | |
Collapse
|
42
|
Evaluation of antimicrobial susceptibility for β-lactams using the Etest method against clinical isolates from 100 medical centers in Japan (2006). Diagn Microbiol Infect Dis 2008; 60:177-83. [DOI: 10.1016/j.diagmicrobio.2007.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 08/20/2007] [Accepted: 08/20/2007] [Indexed: 11/19/2022]
|
43
|
Mansour TS, Bradford PA, Venkatesan AM. Recent Developments in β-Lactamases and Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|