1
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
2
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
3
|
Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021; 175:113818. [PMID: 34090965 DOI: 10.1016/j.addr.2021.05.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides hold promise to supplement small molecules antibiotics and combat the multidrug resistant microbes. There are however technical hurdles towards the clinical applications, largely due to the inherent limitations of peptides including stability, cytotoxicity and bioavailability. Here we review recent studies concerning the delivery and formulation of antimicrobial peptides, by categorizing the different strategies as driven by physical interactions or chemical conjugation reactions, and carriers ranging from inorganic based ones (including gold, silver and silica based solid nanoparticles) to organic ones (including micelle, liposome and hydrogel) are covered. Besides, targeted delivery of antimicrobial peptides or using antimicrobial peptides as the targeting moiety, and responsive release of the peptides after delivery are also reviewed. Lastly, strategies towards the increase of oral bioavailability, from both physical or chemical methods, are highlighted. Altogether, this article provides a comprehensive review of the recent progress of the delivery and formulation of antimicrobial peptides towards clinical application.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tingting Hong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Pengfei Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
5
|
Antimicrobial Prosthetic Surfaces in the Oral Cavity-A Perspective on Creative Approaches. Microorganisms 2020; 8:microorganisms8081247. [PMID: 32824437 PMCID: PMC7463865 DOI: 10.3390/microorganisms8081247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Replacement of missing teeth is an essential component of comprehensive dental care for patients suffering of edentulism. A popular option is implant-supported restorations. However, implant surfaces can become colonized with polymicrobial biofilms containing Candida species that may compromise peri-implant health. To prevent this, implant components may be treated with a variety of coatings to create surfaces that either repel the attachment of viable microorganisms or kill microorganisms on contact. These coatings may consist of nanoparticles of pure elements (more commonly silver, copper, and zinc), sanitizing agents and disinfectants (quaternary ammonium ions and chlorhexidine), antibiotics (cefalotin, vancomycin, and gentamicin), or antimicrobial peptides (AMPs). AMPs in bioactive coatings have a number of advantages. They elicit a protective action against pathogens, inhibit the formation of biofilms, are less toxic to host tissues, and do not prompt inflammatory responses. Furthermore, many of these coatings may involve unique delivery systems to direct their antimicrobial capacity against pathogens, but not commensals. Coatings may also contain multiple antimicrobial substances to widen antimicrobial activity across multiple microbial species. Here, we compiled relevant information about a variety of creative approaches used to generate antimicrobial prosthetic surfaces in the oral cavity with the purpose of facilitating implant integration and peri-implant tissue health.
Collapse
|
6
|
Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020; 25:molecules25133048. [PMID: 32635310 PMCID: PMC7412191 DOI: 10.3390/molecules25133048] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs), otherwise known as host defence peptides (HDPs), are naturally occurring biomolecules expressed by a large array of species across the phylogenetic kingdoms. They have great potential to combat microbial infections by directly killing or inhibiting bacterial activity and/or by modulating the immune response of the host. Due to their multimodal properties, broad spectrum activity, and minimal resistance generation, these peptides have emerged as a promising response to the rapidly concerning problem of multidrug resistance (MDR). However, their therapeutic efficacy is limited by a number of factors, including rapid degradation, systemic toxicity, and low bioavailability. As such, many strategies have been developed to mitigate these limitations, such as peptide modification and delivery vehicle conjugation/encapsulation. Oftentimes, however, particularly in the case of the latter, this can hinder the activity of the parent AMP. Here, we review current delivery strategies used for AMP formulation, focusing on methodologies utilized for targeted infection site release of AMPs. This specificity unites the improved biocompatibility of the delivery vehicle with the unhindered activity of the free AMP, providing a promising means to effectively translate AMP therapy into clinical practice.
Collapse
Affiliation(s)
- Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine, and Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada;
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
- Correspondence: ; Tel.: +1-604-822-2537
| |
Collapse
|
7
|
Pinto IB, dos Santos Machado L, Meneguetti BT, Nogueira ML, Espínola Carvalho CM, Roel AR, Franco OL. Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
|
9
|
Touti F, Lautrette G, Johnson KD, Delaney JC, Wollacott A, Tissire H, Viswanathan K, Shriver Z, Mong SK, Mijalis AJ, Plante OJ, Pentelute BL. Antibody-Bactericidal Macrocyclic Peptide Conjugates To Target Gram-Negative Bacteria. Chembiochem 2018; 19:2039-2044. [DOI: 10.1002/cbic.201800295] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Fayçal Touti
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Guillaume Lautrette
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | | | | | | | - Hamid Tissire
- Visterra, Inc.; 275 2nd Avenue 4th Floor Waltham MA 02451 USA
| | | | - Zachary Shriver
- Visterra, Inc.; 275 2nd Avenue 4th Floor Waltham MA 02451 USA
| | - Surin K. Mong
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Alexander J. Mijalis
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | | | - Bradley L. Pentelute
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
10
|
Abstract
Even though the oral microbiome is one of the most complex sites on the body it is an excellent model for narrow‐spectrum antimicrobial therapy. Current research indicates that disruption of the microbiome leads to a dysbiotic environment allowing for the overgrowth of pathogenic species and the onset of oral diseases. The gram‐negative colonizer, Porphyromonas gingivalis has long been considered a key player in the initiation of periodontitis and Streptococcus mutans has been linked to dental caries. With antibiotic research still on the decline, new strategies are greatly needed to combat infectious diseases. By targeting key pathogens, it may be possible to treat oral infections while allowing for the recolonization of the beneficial, healthy flora. In this review, we examine unique strategies to specifically target periodontal pathogens and address what is needed for the success of these approaches in the microbiome era.
Collapse
Affiliation(s)
- V N Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - P Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Gerits E, Spincemaille P, De Cremer K, De Brucker K, Beullens S, Thevissen K, Cammue BPA, Vandamme K, Fauvart M, Verstraeten N, Michiels J. Repurposing AM404 for the treatment of oral infections by Porphyromonas gingivalis. Clin Exp Dent Res 2017; 3:69-76. [PMID: 29744181 PMCID: PMC5719815 DOI: 10.1002/cre2.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 01/21/2023] Open
Abstract
Porphyromonas gingivalis is a major pathogen involved in oral diseases such as periodontitis and peri‐implantitis. Management of these diseases typically includes mechanical debridement of the colonized surfaces followed by application of antiseptics or antibiotics. Disadvantages associated with the use of antiseptics and the growing worldwide problem of antibiotic resistance have necessitated the search for alternative agents. In this study, the antibacterial and antibiofilm properties of AM404, an active metabolite of paracetamol, were tested against P. gingivalis and other bacterial pathogens. The activity of AM404 was tested against 10 bacteria, including both oral and nonoral human pathogens. The minimal inhibitory concentration (MIC) of AM404 was determined by measuring optical density (OD) values. The minimum biofilm inhibitory concentration (MBIC) was detected by crystal violet staining. The activity of structural analogs of AM404 was tested by MIC determinations. The effect of AM404 on P. gingivalis biofilms formed on titanium disks as a model for dental implants was evaluated by colony forming unit counting. Potential cytotoxicity of AM404 towards HEK‐293 (human embryonic kidney cells), HepG2 (human hepatoma cells), IEC‐6 (rat intestinal cells), and Panc‐1 cells (pancreatic cancer cells) was assessed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays. To get more insight in the mode of action of AM404, we used the fluorescent dyes N‐phenyl‐1‐napthylamine and SYTOX green to investigate outer and inner membrane damage of P. gingivalis induced by AM404, respectively. Of all tested pathogens, AM404 only inhibited growth and biofilm formation of P. gingivalis. Moreover, it showed potent activity against P. gingivalis biofilms formed on titanium surfaces. A structure–activity analysis demonstrated that the unsaturated carbon chain is essential for its antibacterial activity. Importantly, AM404 was not toxic towards the tested mammalian cells up to concentrations approaching 4× the MIC. Membrane damage assays using fluorescent probes N‐phenyl‐1‐napthylamine and SYTOX green revealed that membrane permeabilization presumably is the primary antibacterial mode of action of AM404. Collectively, our results suggest that AM404 has the potential to be used for the development of new drugs specifically targeting P. gingivalis‐related infections.
Collapse
Affiliation(s)
- Evelien Gerits
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Pieter Spincemaille
- Department of Laboratory Medicine University Hospitals Leuven Leuven Belgium
| | - Kaat De Cremer
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium.,Department of Plant Systems Biology VIB Ghent Belgium
| | - Katrijn De Brucker
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Serge Beullens
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Karin Thevissen
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Bruno P A Cammue
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium.,Department of Plant Systems Biology VIB Ghent Belgium
| | - Katleen Vandamme
- Department of Oral Health Sciences UZ Leuven, Restorative Dentistry-KU Leuven, BIOMAT Leuven Belgium
| | - Maarten Fauvart
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium.,Department of Life Science Technologies imec, Smart Systems and Emerging Technologies Unit Belgium
| | - Natalie Verstraeten
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| | - Jan Michiels
- Department of Microbial and Molecular Systems KU Leuven, Centre of Microbial and Plant Genetics Leuven Belgium
| |
Collapse
|
12
|
Reinhardt A, Neundorf I. Design and Application of Antimicrobial Peptide Conjugates. Int J Mol Sci 2016; 17:E701. [PMID: 27187357 PMCID: PMC4881524 DOI: 10.3390/ijms17050701] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.
Collapse
Affiliation(s)
- Andre Reinhardt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
13
|
Muciño G, Castro-Obregón S, Hernandez-Pando R, Del Rio G. Autophagy as a target for therapeutic uses of multifunctional peptides. IUBMB Life 2016; 68:259-67. [PMID: 26968336 DOI: 10.1002/iub.1483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022]
Abstract
The emergence of complex diseases is promoting a change from one-target to multitarget drugs and peptides are ideal molecules to fulfill this polypharmacologic role. Here we review current status in the design of polypharmacological peptides aimed to treat complex diseases, focusing on tuberculosis. In this sense, combining multiple activities in single molecules is a two-sided sword, as both positive and negative side effects might arise. These polypharmacologic compounds may be directed to regulate autophagy, a catabolic process that enables cells to eliminate intracellular microbes (xenophagy), such as Mycobacterium tuberculosis (MBT). Here we review some strategies to control MBT infection and propose that a peptide combining both antimicrobial and pro-autophagic activities would have a greater potential to limit MBT infection. This endeavor may complement the knowledge gained in understanding the mechanism of action of antibiotics and may lead to the design of better polypharmacological peptides to treat complex diseases such as tuberculosis.
Collapse
Affiliation(s)
- Gabriel Muciño
- Department of Neurodevelopment and Physiology, Instituto De Fisiología Celular, UNAM, México, D.F, México
| | - Susana Castro-Obregón
- Department of Neurodevelopment and Physiology, Instituto De Fisiología Celular, UNAM, México, D.F, México
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán,", Mexico
| | - Gabriel Del Rio
- Department of Biochemistry and Structural Biology, Instituto De Fisiología Celular, UNAM, México, D.F, México
| |
Collapse
|
14
|
Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics Antimicrob Proteins 2016; 3:68. [PMID: 26781572 DOI: 10.1007/s12602-011-9076-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed.
Collapse
|
15
|
Bratt CL, Kohlgraf KG, Yohnke K, Kummet C, Dawson DV, Brogden KA. Communication: Antimicrobial Activity of SMAP28 with a Targeting Domain for Porphyromonas gingivalis. Probiotics Antimicrob Proteins 2016; 2:21-5. [PMID: 20454638 DOI: 10.1007/s12602-009-9028-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Antibiotic therapy is often used with mechanical therapy to treat periodontal disease. However, complications associated with antibiotic use can occur. A 'bacteria-specific' targeted approach would eliminate some of these complications and kill specific periodontopathogens without harming the commensal bacteria. One such approach is to couple antimicrobial peptides to a ligand, pheromone, or antibody specific for the periodontopathogen, Porphyromonas gingivalis. To assess the feasibility of this approach, we attached PQGPPQ, a peptide from proline-rich protein 1 to either the N-terminus of SMAP28 (peptide ZS37-37) or the C-terminus of SMAP28 (peptide ZS37-38) to see whether it has potential as a carrier ligand to deliver SMAP28 to the surface of P. gingivalis. For Escherichia coli and Aggregatibacter actinomycetemcomitans, the median minimal inhibitory concentration (MIC) of ZS37-37 was higher than the median of SMAP28 alone, although the median MIC of ZS37-38 was lower than that of SMAP28 alone. For P. gingivalis, there was no difference in the median MIC values. For S. aureus, the median MIC was higher for ZS37-37 and ZS37-38 compared to SMAP28 alone, particularly for ZS37-38. For Fusobacterium nucleatum, the median MIC values were equal for ZS37-37 and ZS37-38 and higher than the median MIC for SMAP28 alone. Attaching PQGPPQ to SMAP28 did not greatly increase the antimicrobial activity of ZS37-37 or ZS37-38 for P. gingivalis nor substantially decrease the antimicrobial activity of ZS37-37 or ZS37-38 for the four other microorganisms tested. This is an initial step to develop a selective antimicrobial agent that has 'targeted' antimicrobial activity without adverse reactions often associated with the use of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Carol L Bratt
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
16
|
Liu T, Du J, Luo X, Schultz PG, Wang F. Homogeneously modified immunoglobulin domains for therapeutic application. Curr Opin Chem Biol 2015; 28:66-74. [PMID: 26117722 DOI: 10.1016/j.cbpa.2015.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
The field of therapeutic antibodies has been revolutionized over the past decade, led by the development of novel antibody-modification technologies. Besides the huge success achieved by therapeutic monoclonal antibodies, a diversity of antibody derivatives have emerged with hope to outperform their parental antibodies. Here we review the recent development of methodologies to modify immunoglobulin domains and their therapeutic applications. The innovative genetic and chemical approaches enable novel and controllable modifications on immunoglobulin domains, producing homogeneous therapeutics with new functionalities or enhanced therapeutic profiles. Such therapeutics, including antibody-drug conjugates, bispecific antibodies, and antibody/Fc fusion proteins, have demonstrated great prospects in the treatment of cancer, auto-immune diseases, infectious diseases, and many other disorders.
Collapse
Affiliation(s)
- Tao Liu
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Juanjuan Du
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Xiaozhou Luo
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States; Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Feng Wang
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
17
|
Andros CC, Dubay RA, Mitchell KD, Chen A, Holmes DE, Kennedy DR. A novel application of radiomimetic compounds as antibiotic drugs. ACTA ACUST UNITED AC 2015; 67:1371-9. [PMID: 25920505 DOI: 10.1111/jphp.12432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/29/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE This study aims to examine the potential of radiomimetic compounds as antimicrobial therapeutics, as the recent advances in radiomimetic targeting as well as rapid increase of multidrug resistant bacteria make these compounds attractive for future development. METHODS Representative radiomimetics from each of the three major categories was examined; C-1027 and neocarzinostatin from the protein-chromophore enediyne family; Calicheamicin from the non-protein chromophore enediyne family and Bleomycin and Tallysomycin S10b from the glycopeptide family. The activity of these compounds was examined against 12 distinct bacteria species. Inhibition was determined using disc diffusion assays and a subsequent examination of minimum inhibitory concentration of a representative organism. The onset of action of the compounds was also determined by incubating the organisms with drug in liquid media, before plating, and then determining if growth occurred. RESULTS We found that the radiomimetic glycopeptides were more active against Gram-negative species, while the enediynes were more effective against Gram-positive species. The radiomimetics also maintained their rapid onset of action, working as quickly as 5 min. CONCLUSIONS Radiomimetic compounds have activity against a wide variety of microorganisms and would support the development of radiomimetic-antibody conjugates as potential antibiotics as an option against severe bacterial infections.
Collapse
Affiliation(s)
- Christina C Andros
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA, USA
| | - Ryan A Dubay
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA, USA.,Department of Natural Sciences, College of Arts and Sciences, Western New England University, Springfield, MA, USA
| | - Kayleigh D Mitchell
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA, USA
| | - Aaron Chen
- Department of Natural Sciences, College of Arts and Sciences, Western New England University, Springfield, MA, USA
| | - Dawn E Holmes
- Department of Natural Sciences, College of Arts and Sciences, Western New England University, Springfield, MA, USA
| | - Daniel R Kennedy
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA, USA
| |
Collapse
|
18
|
Forde E, Devocelle M. Pro-moieties of antimicrobial peptide prodrugs. Molecules 2015; 20:1210-27. [PMID: 25591121 PMCID: PMC6272668 DOI: 10.3390/molecules20011210] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/08/2015] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a promising class of antimicrobial agents that have been garnering increasing attention as resistance renders many conventional antibiotics ineffective. Extensive research has resulted in a large library of highly-active AMPs. However, several issues serve as an impediment to their clinical development, not least the issue of host toxicity. An approach that may allow otherwise cytotoxic AMPs to be used is to deliver them as a prodrug, targeting antimicrobial activity and limiting toxic effects on the host. The varied library of AMPs is complemented by a selection of different possible pro-moieties, each with their own characteristics. This review deals with the different pro-moieties that have been used with AMPs and discusses the merits of each.
Collapse
Affiliation(s)
- Eanna Forde
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland.
| | - Marc Devocelle
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
19
|
Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. MAbs 2014; 6:34-45. [PMID: 24423619 PMCID: PMC3929453 DOI: 10.4161/mabs.27022] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.
Collapse
Affiliation(s)
| | | | - Helga Raab
- Genentech, Inc; South San Francisco, CA USA
| | | | | |
Collapse
|
20
|
Potential of host defense peptide prodrugs as neutrophil elastase-dependent anti-infective agents for cystic fibrosis. Antimicrob Agents Chemother 2013; 58:978-85. [PMID: 24277028 DOI: 10.1128/aac.01167-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Host defense peptides (HDPs) are short antimicrobial peptides of the innate immune system. Deficiencies in HDPs contribute to enhanced susceptibility to infections, e.g., in cystic fibrosis (CF). Exogenous HDPs can compensate for these deficiencies, but their development as antimicrobials is limited by cytotoxicity. Three HDP prodrugs were designed so their net positive charge is masked by a promoiety containing a substrate for the enzyme neutrophil elastase (NE). This approach can confine activation to sites with high NE levels. Enzyme-labile peptides were synthesized, and their activation was investigated using purified NE. Susceptibilities of Pseudomonas aeruginosa to parent and prodrug peptides in the presence and absence of NE-rich CF human bronchoalveolar lavage (BAL) fluid and different NaCl concentrations were compared. The effect of the HDP promoiety on cytotoxicity was determined with cystic fibrosis bronchial epithelial (CFBE41o-) cells. NE in CF BAL fluids activated the HDP prodrugs, restoring bactericidal activity against reference and clinical isolates of P. aeruginosa. However, activation also required the addition of 300 mM NaCl. Under these conditions, the bactericidal activity levels of the HDP prodrugs differed, with pro-P18 demonstrating the greatest activity (90% to 100% of that of the parent, P18, at 6.25 μg/ml). Cytotoxic effects on CFBE41o- cells were reduced by the addition of the promoiety to HDPs. We demonstrate here for the first time the selective activation of novel HDP prodrugs by a host disease-associated enzyme at in vivo concentrations of the CF lung. This approach may lead to the development of novel therapeutic agents with low toxicity that are active under the challenging conditions of the CF lung.
Collapse
|
21
|
Rishi P, Singh AP, Arora S, Garg N, Kaur IP. Revisiting eukaryotic anti-infective biotherapeutics. Crit Rev Microbiol 2013; 40:281-92. [PMID: 23317462 DOI: 10.3109/1040841x.2012.749210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emerging drug resistance has forced the scientific community to revisit the observational data documented in the folklore and come up with novel and effective alternatives. Candidates from eukaryotic origin including herbal products and antimicrobial peptides are finding a strategic place in the therapeutic armamentarium against infectious diseases. These agents have recently gained interest owing to their versatile applications. Present review encompasses the use of these alternative strategies in their native or designer form, alone or in conjunction with antibiotics, as possible remedial measures. Further to this, the limitations or the possible concerns associated with these options are also discussed at length.
Collapse
Affiliation(s)
- Praveen Rishi
- Department of Microbiology, Panjab University , Chandigarh, Chandigarh , India and
| | | | | | | | | |
Collapse
|
22
|
Mao R, Teng D, Wang X, Xi D, Zhang Y, Hu X, Yang Y, Wang J. Design, expression, and characterization of a novel targeted plectasin against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 2012; 97:3991-4002. [PMID: 23095942 DOI: 10.1007/s00253-012-4508-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
A novel specifically targeted antimicrobial peptide (STAMP) that was especially effective against methicillin-resistant Staphylococcus aureus (MRSA) was designed by fusing the AgrD1 pheromone to the N-terminal end of plectasin. This STAMP was named Agplectasin, and its gene was synthesized and expressed in Pichia pastoris X-33 via pPICZαA. The highest amount of total secreted protein reached 1,285.5 mg/l at 108 h during the 120-h induction. The recombinant Agplectasin (rAgP) was purified by cation exchange chromatography and hydrophobic exchange chromatography; its yield reached 150 mg/l with 94 % purity. The rAgP exhibited strong bactericidal activity against S. aureus but not Staphylococcus epidermidis or other types of tested bacteria. A bactericidal kinetics assay showed that the rAgP killed over 99.9 % of tested S. aureus (ATCC 25923 and ATCC 43300) in both Mueller-Hinton medium and human blood within 10 h when treated with 4× minimal inhibitory concentration. The rAgP caused only approximately 1 % hemolysis of human blood cells, even when the concentration reached 512 μg/ml, making it potentially feasible as a clinical injection agent. In addition, it maintained a high activity over a wide range of pH values (2.0-10.0) and demonstrated a high thermal stability at 100 °C for 1 h. These results suggested that this STAMP has the potential to eliminate MRSA strains without disrupting the normal flora.
Collapse
Affiliation(s)
- Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Research Advances in Modified Antimicrobial Peptides*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Devocelle M. Targeted antimicrobial peptides. Front Immunol 2012; 3:309. [PMID: 23060887 PMCID: PMC3464401 DOI: 10.3389/fimmu.2012.00309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023] Open
Affiliation(s)
- Marc Devocelle
- Department of Pharmaceutical and Medicinal Chemistry, Centre for Synthesis and Chemical Biology, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
25
|
Oleksiewicz MB, Nagy G, Nagy E. Anti-bacterial monoclonal antibodies: Back to the future? Arch Biochem Biophys 2012; 526:124-31. [DOI: 10.1016/j.abb.2012.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 01/08/2023]
|
26
|
Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 2011; 6:635-51. [PMID: 21707311 DOI: 10.2217/fmb.11.27] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of magainins, cecropins and defensins 30 years ago, antimicrobial peptides (AMPs) have been hailed as a potential solution to the dearth of novel antibiotic development. AMPs have shown robust activity against a wide variety of pathogens, including drug-resistant bacteria. Unlike small-molecule antibiotics, however, AMPs have failed to translate this success to the clinic. Only the polymyxins, gramicidins, nisin and daptomycin are currently approved for medical use; the latter is the only example to have been developed in the last several decades. Nonetheless, researchers continue to isolate, modify and develop novel AMPs for therapeutic applications. Efforts have focused on increasing stability, reducing cytotoxicity, improving antimicrobial activity and incorporating AMPs in novel formulations, including nanoscale particles. As peptide synthesis and recombinant production methodologies improve, and more relevant bioassays become available, it becomes increasingly likely that AMPs will break the regulatory barrier and enter the marketplace as valuable antimicrobial weapons in the next 10 years.
Collapse
Affiliation(s)
- Randal Eckert
- C3 Jian, Inc., 423 Hindry Ave, Unit D, Inglewood, CA 90301, USA.
| |
Collapse
|
27
|
Brogden NK, Brogden KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 2011; 38:217-25. [PMID: 21733662 DOI: 10.1016/j.ijantimicag.2011.05.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
The concept of antimicrobial peptides (AMPs) as potent pharmaceuticals is firmly established in the literature, and most research articles on this topic conclude by stating that AMPs represent promising therapeutic agents against bacterial and fungal pathogens. Indeed, early research in this field showed that AMPs were diverse in nature, had high activities with low minimal inhibitory concentrations, had broad spectrums of activity against bacterial, fungal and viral pathogens, and could easily be manipulated to alter their specificities, reduce their cytotoxicities and increase their antimicrobial activities. Unfortunately, commercial development of these peptides, for even the simplest of applications, has been very limited. With some peptides there are obstacles with their manufacture, in vivo efficacy and in vivo retention. More recently, the focus has shifted. Contemporary research now uses a more sophisticated approach to develop AMPs that surmount many of these prior obstacles. AMP mimetics, hybrid AMPs, AMP congeners, cyclotides and stabilised AMPs, AMP conjugates and immobilised AMPs have all emerged with selective or 'targeted' antimicrobial activities, improved retention, or unique abilities that allow them to bind to medical or industrial surfaces. These groups of new peptides have creative medical and industrial application potentials to treat antibiotic-resistant bacterial infections and septic shock, to preserve food or to sanitise surfaces both in vitro and in vivo.
Collapse
Affiliation(s)
- Nicole K Brogden
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
28
|
|
29
|
Dawson RM, Liu CQ. Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics. Drug Dev Res 2009. [DOI: 10.1002/ddr.20329] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|