1
|
Yamazaki T, Matsuo J. Mutation frequency of Escherichia coli isolated from river water: potential role in the development of antimicrobial resistance. Can J Microbiol 2021; 67:651-656. [PMID: 33756093 DOI: 10.1139/cjm-2020-0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria acquire genetic variations that help them to adapt to stressful environmental conditions, and these changes may be associated with the development of antimicrobial resistance. In this study, we investigated the mutation frequencies of 270 isolates of Escherichia coli from river water, which represents a relatively unstressful environment. As we predicted, mutation frequencies of the E. coli isolates ranged from <1 × 10-11 to 6.3 × 10-8 (median, 1.7 × 10-9), and a strong mutator (≥ 4 × 10-7) was not detected. To better understand the role of mutation frequency in the development of antimicrobial resistance, we assessed antimicrobial sensitivity after exposure of the E. coli isolates to subinhibitory concentrations of ciprofloxacin, as a surrogate for stress. We found that antimicrobial resistance increased in bacteria with a low mutation frequency after exposure, and the relative increase in antimicrobial resistance generally increased, depending on the mutation frequency. Thus, mutation frequency may contribute to the development of antimicrobial resistance of bacteria in natural environments.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan
| | - Junji Matsuo
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan
| |
Collapse
|
2
|
Sheng H, Huang J, Han Z, Liu M, Lü Z, Zhang Q, Zhang J, Yang J, Cui S, Yang B. Genes and Proteomes Associated With Increased Mutation Frequency and Multidrug Resistance of Naturally Occurring Mismatch Repair-Deficient Salmonella Hypermutators. Front Microbiol 2020; 11:770. [PMID: 32457709 PMCID: PMC7225559 DOI: 10.3389/fmicb.2020.00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The emergence of antibiotic-resistant Salmonella through mutations led to mismatch repair (MMR) deficiency that represents a potential hazard to public health. Here, four representative MMR-deficient Salmonella hypermutator strains and Salmonella Typhimurium LT2 were used to comprehensively reveal the influence of MMR deficiency on antibiotic resistance among Salmonella. Our results indicated that the mutation frequency ranged from 3.39 × 10–4 to 5.46 × 10–2 in the hypermutator. Mutation sites in MutS, MutL, MutT, and UvrD of the four hypermutators were all located in the essential and core functional regions. Mutation frequency of the hypermutator was most highly correlated with the extent of mutation in MutS. Mutations in MMR genes (mutS, mutT, mutL, and uvrD) were correlated with increased mutation in antibiotic resistance genes, and the extent of antibiotic resistance was significantly correlated with the number of mutation sites in MutL and in ParC. The number of mutation sites in MMR genes and antibiotic resistance genes exhibited a significant positive correlation with the number of antibiotics resisted and with expression levels of mutS, mutT, and mutL. Compared to Salmonella Typhimurium LT2, a total of 137 differentially expressed and 110 specifically expressed proteins were identified in the four hypermutators. Functional enrichment analysis indicated that the proteins significantly overexpressed in the hypermutators primarily associated with translation and stress response. Interaction network analysis revealed that the ribosome pathway might be a critical factor for high mutation frequency and multidrug resistance in MMR-deficient Salmonella hypermutators. These results help elucidate the mutational dynamics that lead to hypermutation, antibiotic resistance, and activation of stress response pathways in Salmonella.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinling Huang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhaoyu Han
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Mi Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinlei Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jun Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Zheng Q. A cautionary note on the mutation frequency in microbial research. Mutat Res 2018; 809:51-55. [PMID: 29705518 DOI: 10.1016/j.mrfmmm.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
The mutation frequency, also known as the mutant frequency, is an unnormalized quantity, and its normalized counterpart is the mutation rate. Due to historical reasons, the mutation frequency has been a predominant yardstick of microbial mutability in the field of mutator identification. While the mean mutation frequency is infamously erratic, replacing it with the median mutation frequency is not an effective remedy. By encouraging investigators to substitute mutation rates for mutation frequencies in microbial research, this paper directs attention to substantial open problems such as false positive control and massive nonmutant cell death.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, 212 Adriance Lab Road, College Station, TX 77843, United States.
| |
Collapse
|
4
|
Jia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, Yan W, Wang R. The in vitro, in vivo antifungal activity and the action mode of Jelleine-I against Candida species. Amino Acids 2017; 50:229-239. [PMID: 29101485 DOI: 10.1007/s00726-017-2507-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022]
Abstract
Recently, the mortality of life-threatening fungal infections increased dramatically. However, there are few antifungals existed. Antimicrobial peptides (AMPs) as promising antifungal candidates have attracted much attention. Here, we present a small antimicrobial peptide Jelleine-I that had potent in vitro and in vivo antifungal activity. Negligible hemolytic activity and in vivo toxicity were observed. Selectivity index (SI) of Jelleine-I is at least 4.6 times higher than amphotericin B. Jelleine-I could increase the production of cellular ROS and bind with genome DNA. This may contribute to its antifungal activity. Furthermore, drug resistance is not induced when the fungal cells were repeatedly treated by Jelleine-I. In conclusion, our results suggest that Jelleine-I may have the potential to be developed as a novel antifungal agent.
Collapse
Affiliation(s)
- Fengjing Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, People's Republic of China
| | - Jiayi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, People's Republic of China
| | - Jinxiu Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, People's Republic of China
| | - Ping Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, People's Republic of China
| | - Ziqing Kong
- Institute of Food Safety, State Key Laboratory Base of Food Quality and Safety, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, People's Republic of China.
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, People's Republic of China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Donkor ES. Understanding the pneumococcus: transmission and evolution. Front Cell Infect Microbiol 2013; 3:7. [PMID: 23471303 PMCID: PMC3590460 DOI: 10.3389/fcimb.2013.00007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/12/2013] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pneumoniae is part of the normal bacterial flora of the narsopharynx, but is also associated with several invasive and non-invasive diseases. Recently, there has been a plethora of research information on the pneumococcus, however, there are few comprehensive review papers discussing the research information. This paper provides a review of the pneumococcus in two vital areas related to its biology including transmission and evolution. Transmission of the pneumococcus is a highly efficient process that usually occurs through respiratory droplets from asymptomatic carriers. Following acquisition, the pneumococcus may only establish in the nasopharynx of the new host, or further progress to sites such as the lungs and cause disease. Pneumococcus transmission risk factors, as well as factors involved in its translocation from the nasophyarnx to diseases sites are still not fully understood. Pneumococcal evolution is dominated by recombination. The recombinational events usually involve genetic exchange with streptococci of the mitis group and some pneumococci are thought to exhibit hyper-recombination.
Collapse
Affiliation(s)
- Eric S Donkor
- Department of Microbiology, University of Ghana Medical School Accra, Ghana. ;
| |
Collapse
|
6
|
Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob Agents Chemother 2012; 56:3318-23. [PMID: 22450985 DOI: 10.1128/aac.05995-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extensive use of antibiotics in medicine, the food industry, and agriculture has resulted in the frequent emergence of multidrug-resistant bacteria, which creates an urgent need for new antibiotics. It is now widely recognized that antimicrobial peptides (AMPs) could play a promising role in fighting multidrug-resistant bacteria. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and studied its action mode of antibacterial activity. Our results revealed that polybia-CP has potent antibacterial activity against both Gram-positive and Gram-negative bacteria. The results from both the real bacterial membrane and the in vitro model membrane showed that polybia-CP is membrane active and that its action target is the membrane of bacteria. It is difficult for bacteria to develop resistance to polybia-CP, which may thus offer a new strategy for defending against resistant bacteria in medicine and the food and farming industries.
Collapse
|