1
|
Tran TT, Gomez Villegas S, Aitken SL, Butler-Wu SM, Soriano A, Werth BJ, Munita JM. New Perspectives on Antimicrobial Agents: Long-Acting Lipoglycopeptides. Antimicrob Agents Chemother 2022; 66:e0261420. [PMID: 35475634 PMCID: PMC9211417 DOI: 10.1128/aac.02614-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The long-acting lipoglycopeptides (LGPs) dalbavancin and oritavancin are semisynthetic antimicrobials with broad and potent activity against Gram-positive bacterial pathogens. While they are approved by the Food and Drug Administration for acute bacterial skin and soft tissue infections, their pharmacological properties suggest a potential role of these agents for the treatment of deep-seated and severe infections, such as bloodstream and bone and joint infections. The use of these antimicrobials is particularly appealing when prolonged therapy, early discharge, and avoidance of long-term intravascular catheter access are desirable or when multidrug-resistant bacteria are suspected. This review describes the current evidence for the use of oritavancin and dalbavancin in the treatment of invasive infections, as well as the hurdles that are preventing their optimal use. Moreover, this review discusses the current knowledge gaps that need to be filled to understand the potential role of LGPs in highly needed clinical scenarios and the ongoing clinical studies that aim to address these voids in the upcoming years.
Collapse
Affiliation(s)
- Truc T. Tran
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
| | - Sara Gomez Villegas
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
| | - Samuel L. Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Susan M. Butler-Wu
- Department of Pathology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Brian J. Werth
- University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Jose M. Munita
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Genomics & Resistant Microbes (GeRM) Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
2
|
Inhibition of Staphylococcus aureus Cell Wall Biosynthesis by Desleucyl-Oritavancin: a Quantitative Peptidoglycan Composition Analysis by Mass Spectrometry. J Bacteriol 2017; 199:JB.00278-17. [PMID: 28507244 DOI: 10.1128/jb.00278-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/07/2017] [Indexed: 11/20/2022] Open
Abstract
Oritavancin is a lipoglycopeptide antibiotic that exhibits potent activities against vancomycin-resistant Gram-positive pathogens. Oritavancin differs from vancomycin by a hydrophobic side chain attached to the drug disaccharide, which forms a secondary binding site to enable oritavancin binding to the cross-linked peptidoglycan in the cell wall. The mode of action of secondary binding site was investigated by measuring the changes in the peptidoglycan composition of Staphylococcus aureus grown in the presence of desleucyl-oritavancin at subinhibitory concentration using liquid chromatography-mass spectrometry (LC-MS). Desleucyl-oritavancin is an Edman degradation product of oritavancin that exhibits potent antibacterial activities despite the damaged d-Ala-d-Ala binding site due to its functional secondary binding site. Accurate quantitative peptidoglycan composition analysis based on 83 muropeptide ions determined that cell walls of S. aureus grown in the presence of desleucyl-oritavancin showed a reduction of peptidoglycan cross-linking, increased muropeptides with a tetrapeptide-stem structure, decreased O-acetylation of MurNAc, and increased N-deacetylation of GlcNAc. The changes in peptidoglycan composition suggest that desleucyl-oritavancin targets the peptidoglycan template to induce cell wall disorder and interferes with cell wall maturation.IMPORTANCE Oritavancin is a lipoglycopeptide antibiotic with a secondary binding site that targets the cross-linked peptidoglycan bridge structure in the cell wall. Even after the loss of its primary d-Ala-d-Ala binding site through Edman degradation, desleucyl-oritavancin exhibits potent antimicrobial activities through its still-functioning secondary binding site. In this study, we characterized the mode of action for desleucyl-oritavancin's secondary binding site using LC-MS. Peptidoglycan composition analysis of desleucyl-oritavancin-treated S. aureus was performed by determining the relative abundances of 83 muropeptide ions matched from a precalculated library through integrating extracted ion chromatograms. Our work highlights the use of quantitative peptidoglycan composition analysis by LC-MS to provide insights into the mode of action of glycopeptide antibiotics.
Collapse
|
3
|
Chang J, Coffman L, Kim SJ. Inhibition of d-Ala incorporation into wall teichoic acid in Staphylococcus aureus by desleucyl-oritavancin. Chem Commun (Camb) 2017; 53:5649-5652. [PMID: 28480909 PMCID: PMC5512289 DOI: 10.1039/c7cc02635h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The mode of action for desleucyl-oritavancin was investigated by adding an antibiotic to Staphylococcus aureus during its growth in a defined medium containing l,d-[1-15N]Ala and l-[1-13C]Lys, or d-[1-15N]Ala. 13C{15N} and 15N{13C} rotational-echo double resonance NMR determined that desleucyl-oritavancin inhibited the incorporation of d-[1-15N]Ala into wall teichoic acid.
Collapse
Affiliation(s)
- J Chang
- Department of Chemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, USA.
| | | | | |
Collapse
|
4
|
Sweeney D, Shinabarger DL, Arhin FF, Belley A, Moeck G, Pillar CM. Comparative in vitro activity of oritavancin and other agents against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 2017; 87:121-128. [DOI: 10.1016/j.diagmicrobio.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023]
|
5
|
Sweeney D, Stoneburner A, Shinabarger DL, Arhin FF, Belley A, Moeck G, Pillar CM. Comparativein vitroactivity of oritavancin and other agents against vancomycin-susceptible and -resistant enterococci. J Antimicrob Chemother 2016; 72:622-624. [DOI: 10.1093/jac/dkw451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Smith JR, Yim J, Raut A, Rybak MJ. Oritavancin Combinations with β-Lactams against Multidrug-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci. Antimicrob Agents Chemother 2016; 60:2352-8. [PMID: 26833159 PMCID: PMC4808215 DOI: 10.1128/aac.03006-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
Oritavancin possesses activity against vancomycin-resistant enterococci (VRE) and methicillin-resistantStaphylococcus aureus(MRSA).In vitrodata suggest synergy between beta-lactams (BLs) and vancomycin or daptomycin, agents similar to oritavancin. We evaluated the activities of BLs combined with oritavancin against MRSA and VRE. Oritavancin MICs were determined for 30 strains, 5 each of MRSA, daptomycin-nonsusceptible (DNS) MRSA, vancomycin-intermediate MRSA (VISA), heteroresistant VISA (hVISA), vancomycin-resistantEnterococcus faecalis, and vancomycin-resistantEnterococcus faecium Oritavancin MICs were determined in the presence of subinhibitory concentrations of BLs. Oritavancin combined with ceftaroline, cefazolin, or nafcillin was evaluated for lethal synergy against MRSA, and oritavancin combined with ceftaroline, ampicillin, or ertapenem was evaluated for lethal synergy against VRE in 24-h time-kill assays. Oritavancin at 0.5× the MIC was combined with BLs at 0.5× the MIC or the biological free peak concentration, whichever one was lower. Synergy was defined as a ≥2-log10-CFU/ml difference between the killing achieved with the combination and that achieved with the most active single agent at 24 h. Oritavancin MICs were ≤0.125 μg/ml for all MRSA isolates except three VISA isolates with MICs of 0.25 μg/ml. Oritavancin MICs for VRE ranged from 0.03 to 0.125 μg/ml. Oritavancin in combination with ceftaroline was synergistic against all MRSA phenotypes and statistically superior to all other combinations against DNS MRSA, hVISA, and MRSA isolates (P< 0.02). Oritavancin in combination with cefazolin and oritavancin in combination with nafcillin were also synergistic against all MRSA strains. Synergy between oritavancin and all BLs was revealed against VRE strain 8019, while synergy between oritavancin and ampicillin or ertapenem but not ceftaroline was demonstrated against VRE strain R7164. The data support the potential use of oritavancin in combination with BLs, especially oritavancin in combination with ceftaroline, for the treatment of infections caused by MRSA. The data from the present study are not as strong for oritavancin in combination with BLs for VRE. Further study of both MRSA and VRE in more complex models is warranted.
Collapse
Affiliation(s)
- Jordan R Smith
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Juwon Yim
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Animesh Raut
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Wayne State University, School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
7
|
Van Bambeke F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015; 75:2073-95. [DOI: 10.1007/s40265-015-0505-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Baddour LM, Wilson WR, Bayer AS, Fowler VG, Tleyjeh IM, Rybak MJ, Barsic B, Lockhart PB, Gewitz MH, Levison ME, Bolger AF, Steckelberg JM, Baltimore RS, Fink AM, O'Gara P, Taubert KA. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2015; 132:1435-86. [PMID: 26373316 DOI: 10.1161/cir.0000000000000296] [Citation(s) in RCA: 1986] [Impact Index Per Article: 198.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infective endocarditis is a potentially lethal disease that has undergone major changes in both host and pathogen. The epidemiology of infective endocarditis has become more complex with today's myriad healthcare-associated factors that predispose to infection. Moreover, changes in pathogen prevalence, in particular a more common staphylococcal origin, have affected outcomes, which have not improved despite medical and surgical advances. METHODS AND RESULTS This statement updates the 2005 iteration, both of which were developed by the American Heart Association under the auspices of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease of the Young. It includes an evidence-based system for diagnostic and treatment recommendations used by the American College of Cardiology and the American Heart Association for treatment recommendations. CONCLUSIONS Infective endocarditis is a complex disease, and patients with this disease generally require management by a team of physicians and allied health providers with a variety of areas of expertise. The recommendations provided in this document are intended to assist in the management of this uncommon but potentially deadly infection. The clinical variability and complexity in infective endocarditis, however, dictate that these recommendations be used to support and not supplant decisions in individual patient management.
Collapse
|
9
|
The times they are a-changin': new antibacterials for skin and skin structure infections. Am J Clin Dermatol 2015; 16:137-46. [PMID: 25906205 DOI: 10.1007/s40257-015-0125-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Twenty-one agents are approved by the US Food and Drug Administration (FDA) for the therapy of skin and soft tissue infections. Of these, the five newest agents, tedizolid, telavancin, oritavancin, dalbavancin, and ceftaroline, are active against and "non-inferior" to vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Oritavancin is indicated as a single-dose intravenous regimen, while dalbavancin is a two-dose intravenous regimen given 1 week apart. Telavancin has multiple mechanisms of action. A 6-day regimen of once-daily intravenous or oral dose of tedizolid was compared with 10 days of linezolid and found to be "non-inferior" and have fewer side effects. Ceftaroline has not only MRSA activity but also activity against Escherichia coli and Klebsiella spp. We review the spectra of activity of these new agents, their clinical trials and their therapeutic efficacy, noting differences in their dosing schedules, in vitro activities and costs as potential determinants for appropriate utilization.
Collapse
|
10
|
Burke SL, Rose WE. New pharmacological treatments for methicillin-resistantStaphylococcus aureusinfections. Expert Opin Pharmacother 2014; 15:483-91. [DOI: 10.1517/14656566.2014.876991] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Oritavancin retains bactericidal activity in vitro against standard and high inocula of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA). Int J Antimicrob Agents 2013; 41:397-8. [DOI: 10.1016/j.ijantimicag.2012.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
|
12
|
Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells. Antimicrob Agents Chemother 2012; 56:6166-74. [PMID: 22985883 DOI: 10.1128/aac.01031-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700-3711, 2012), we evaluated the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistant Staphylococcus aureus strain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, its hemB mutant, and the genetically complemented strain in PMA-activated cells and against the menD strain in both activated and nonactivated cells. This effect was inhibited when cells were incubated with N-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H(2)O(2). In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition of N-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H(2)O(2). Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.
Collapse
|