1
|
Population pharmacokinetics and pharmacodynamics of cefazolin using total and unbound serum concentrations in patients with high body weight. Int J Antimicrob Agents 2023; 61:106751. [PMID: 36758780 DOI: 10.1016/j.ijantimicag.2023.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
The objective of this study was to evaluate the steady state pharmacokinetics and pharmacodynamics of cefazolin in patients with a high body weight. Cefazolin was administered by 0.5-h infusions to 11 patients with total body weight (TBW) ≥120 kg receiving 3 g q8h, and 12 patients with TBW <120 kg receiving 2 g q8h. Total and unbound serum concentration-time data obtained from serial blood samples were analysed simultaneously by population pharmacokinetic modelling using NONMEM. Probability of target attainment (PTA) was calculated for various dosing regimens through Monte Carlo simulations based on the cumulative percentage of the dosing interval that the unbound concentration exceeds the minimum inhibitory concentration (MIC) value for the pathogen at steady state (fTMIC) ≥40%, ≥60% and 100%. A two-compartment model with non-linear protein binding and allometric scaling of the central volume of distribution using TBW best characterized both total and unbound concentration-time data. Unbound clearance was significantly associated with creatinine clearance, and maximum protein binding constant was significantly associated with serum albumin concentration and body mass index (P <0.05). Based on unbound concentration-time profiles, all simulated regimens achieved PTA >90% at MIC values ≤2 mg/L using fTMIC ≥40%, at MIC values ≤1 mg/L using fTMIC ≥60%, and at MIC values ≤0.5 mg/L using fTMIC of 100%. At fTMIC ≥60%, 0.5-h infusion of cefazolin 1 g q8h achieved PTA <90% at MIC values ≥2 mg/L in patients with TBW≥120 kg; however, prolonged-infusion and higher-dose regimens improved PTA to >90%. Overall, cefazolin pharmacokinetics are altered considerably in obese patients. Higher-dose and/or prolonged-infusion cefazolin regimens should be considered in patients with TBW ≥120 kg, particularly those with less-susceptible Gram-negative infections.
Collapse
|
2
|
Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, Lagler FB, Moreno C, Pokorna P, Schreuder MF, Standing JF, Turner MA, Vitiello B, Zhao W, Weingberg AM, Willmann R, van den Anker J, Allegaert K. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol 2022; 88:4965-4984. [PMID: 34180088 PMCID: PMC9787161 DOI: 10.1111/bcp.14958] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022] Open
Abstract
Developmental pharmacology describes the impact of maturation on drug disposition (pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the paediatric age range. This paper, written by a multidisciplinary group of experts, summarizes current knowledge, and provides suggestions to pharmaceutical companies, regulatory agencies and academicians on how to incorporate the latest knowledge regarding developmental pharmacology and innovative techniques into neonatal and paediatric drug development. Biological aspects of drug absorption, distribution, metabolism and excretion throughout development are summarized. Although this area made enormous progress during the last two decades, remaining knowledge gaps were identified. Minimal risk and burden designs allow for optimally informative but minimally invasive PK sampling, while concomitant profiling of drug metabolites may provide additional insight in the unique PK behaviour in children. Furthermore, developmental PD needs to be considered during drug development, which is illustrated by disease- and/or target organ-specific examples. Identifying and testing PD targets and effects in special populations, and application of age- and/or population-specific assessment tools are discussed. Drug development plans also need to incorporate innovative techniques such as preclinical models to study therapeutic strategies, and shift from sequential enrolment of subgroups, to more rational designs. To stimulate appropriate research plans, illustrations of specific PK/PD-related as well as drug safety-related challenges during drug development are provided. The suggestions made in this joint paper of the Innovative Medicines Initiative conect4children Expert group on Developmental Pharmacology and the European Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate all those involved in drug development.
Collapse
Affiliation(s)
- Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal intensive Care unit, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Giacomo Cavallaro
- Neonatal intensive care unit, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Pieter A J G De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Saskia N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenny M Kindblom
- Pediatric Clinical Research Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian B Lagler
- Institute for Inherited Metabolic Diseases and Department of Pediatrics, Paracelsus Medical University, Clinical Research Center Salzburg, Salzburg, Austria
| | - Carmen Moreno
- Institute of Psychiatry and Mental Health, Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Paula Pokorna
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Physiology and Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Joseph F Standing
- UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Mark A Turner
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Benedetto Vitiello
- Division of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China.,Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Clinical Research Centre, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | | | | | - John van den Anker
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Asada M, Nagata M, Mizuno T, Uchida T, Takahashi H, Makita K, Arai H, Kijima S, Echizen H, Yasuhara M. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass in adult patients undergoing cardiac surgery. Eur J Clin Pharmacol 2020; 77:735-745. [PMID: 33211137 DOI: 10.1007/s00228-020-03045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE The aims of the present study were to establish a population pharmacokinetic (PPK) model of cefazolin for adult patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and to assess the probability of target attainment (PTA) for the prophylaxis of surgical site infection (SSI) using cefazolin. METHODS Adult patients who underwent cardiac surgery with CPB were enrolled in the prospective study. Blood samples for plasma cefazolin assay were collected, and total and unbound drug concentrations were measured and analysed using the nonlinear mixed-effects modelling (NONMEM) software considering saturable plasma protein binding. Using the PPK model, plasma unbound cefazolin concentration-time courses with current prophylaxis protocols were simulated, and the PTA for common SSI pathogens was estimated. RESULTS A total of 199 blood samples were obtained from 27 patients. A one-compartment model with first-order elimination plus an on/off CPB compartment best described the data. The population mean for systemic drug clearance (CL) was reduced and that for the volume of distribution (V) was increased during CPB compared with the pre-CPB values. CPB-induced hypoalbuminemia was associated with reduced maximum protein binding (Bmax). The simulation studies suggested that the current dosing protocols are insufficient for attaining PTA > 0.9 throughout surgery against pathogens with minimum inhibitory concentrations (MICs) >8 mg/L. A new dosing protocol that achieves a PTA > 0.9 for pathogens with a MIC of 16 mg/L was proposed. CONCLUSION PPK modelling with simulation may be valuable for devising a cefazolin prophylaxis protocol for patients undergoing cardiac surgery with CPB.
Collapse
Affiliation(s)
- Mizuho Asada
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Masashi Nagata
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan. .,Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tomohiro Mizuno
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tokujiro Uchida
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiromitsu Takahashi
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Koshi Makita
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinichi Kijima
- Office of Advanced Evaluation with Electronic Data, Pharmaceuticals and Medical Devices Agency (PMDA), Tokyo, Japan
| | | | - Masato Yasuhara
- Department of Pharmacokinetics and Pharmacodynamics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
Allegaert K, van den Anker J. Neonates are not just little children and need more finesse in dosing of antibiotics. Acta Clin Belg 2019; 74:157-163. [PMID: 29745792 DOI: 10.1080/17843286.2018.1473094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Neonates are not just little children. They need more finesse in decisions on when to treat, which antibiotics to use and how to dose these antibiotics. METHODS Representative compounds of three major classes of antibiotics (beta-lactams, aminoglycosides, glycopeptides) are discussed in a narrative review to illustrate the recent progress in the knowledge on PK and its covariates (how to dose). RESULTS This knowledge can subsequently be converted to targeted exposure dosing regimens. This is because it is reasonable to postulate that pharmacodynamics (PD) of antibiotics are similar in neonates to that in other populations if a similar concentration-time profile and targeted exposure are attained. However, this approach has its limitations, since the clinical response may be different in neonates because of maturational differences in innate immunity or toxicity. These dosing regimens should at least be validated. CONCLUSION Relevant information on the PK of antibiotics and its covariates have been generated, but the next steps are to validate the dosing regimens suggested, and consider more sophisticated dosing regimens. This approach should subsequently pave the way to conduct comparative studies to assess the efficacy and safety of these commonly used drugs in neonates.
Collapse
Affiliation(s)
- Karel Allegaert
- Intensive Care and Department of Pediatric Surgery, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Neonatology, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU, Leuven, Belgium
| | - John van den Anker
- Intensive Care and Department of Pediatric Surgery, Erasmus MC – Sophia Children’s Hospital, Rotterdam, The Netherlands
- Paediatric Pharmacology and Pharmacometrics, University of Basel Children’s Hospital, Basel, Switzerland
- Division of Clinical Pharmacology, Children’s National Health System, Washington, DC, USA
| |
Collapse
|
5
|
Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur J Clin Microbiol Infect Dis 2018; 37:1503-1510. [DOI: 10.1007/s10096-018-3277-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023]
|
6
|
Palma EC, Meinhardt NG, Stein AT, Heineck I, Fischer MI, de Araújo B, Dalla Costa T. Efficacious Cefazolin Prophylactic Dose for Morbidly Obese Women Undergoing Bariatric Surgery Based on Evidence from Subcutaneous Microdialysis and Populational Pharmacokinetic Modeling. Pharm Res 2018; 35:116. [DOI: 10.1007/s11095-018-2394-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022]
|
7
|
Antibiotic PK/PD research in critically ill neonates and children: how do we proceed? ACTA ACUST UNITED AC 2018. [DOI: 10.4155/ipk-2017-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Duffield A, Sultan P, Riley ET, Carvalho B. Optimal administration of cefazolin prophylaxis for cesarean delivery. J Perinatol 2017; 37:16-20. [PMID: 28050017 DOI: 10.1038/jp.2016.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- A Duffield
- Department of Anesthesiology, Sentara Martha Jefferson Hospital, Charlottesville, VA, USA
| | - P Sultan
- Department of Anaesthesia and Perioperative Medicine, University College London Hospital, London, UK
| | - E T Riley
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - B Carvalho
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
De Cock PAJG, Mulla H, Desmet S, De Somer F, McWhinney BC, Ungerer JPJ, Moerman A, Commeyne S, Vande Walle J, Francois K, Van Hasselt JGC, De Paepe P. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass to optimize dosing regimens for children undergoing cardiac surgery. J Antimicrob Chemother 2016; 72:791-800. [DOI: 10.1093/jac/dkw496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023] Open
|
10
|
[Pharmacokinetics and pharmacodynamics of antibiotics in intensive care]. Med Klin Intensivmed Notfmed 2016; 112:11-23. [PMID: 27778050 DOI: 10.1007/s00063-016-0185-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 10/20/2022]
Abstract
Optimized dosage regimens of antibiotics have remained obscure since their introduction. During the last two decades pharmacokinetic(PK)-pharmacodynamic(PD) relationships, originally established in animal experiments, have been increasingly used in patients. The action of betalactams is believed to be governed by the time the plasma concentration is above the minimum inhibitory concentration (MIC). Aminoglycosides act as planned when the peak concentration is a multiple of the MIC and vancomycin seems to work best when the area under the plasma vs. time curve (AUC) to MIC has a certain ratio. Clinicians should be aware that these relationships can only be an indication in which direction dosing should go. Larger studies with sufficiently high numbers of patients and particularly severely sick patients are needed to prove the concepts. In times where all antibiotics can be measured with new technologies, the introduction of therapeutic drug monitoring (TDM) is suggested for ICUs (Intensive Care Unit). The idea of a central lab for TDM of antibiotics such as PEAK (Paul Ehrlich Antibiotika Konzentrationsmessung) is supported.
Collapse
|
11
|
Wilbaux M, Fuchs A, Samardzic J, Rodieux F, Csajka C, Allegaert K, van den Anker JN, Pfister M. Pharmacometric Approaches to Personalize Use of Primarily Renally Eliminated Antibiotics in Preterm and Term Neonates. J Clin Pharmacol 2016; 56:909-35. [PMID: 26766774 DOI: 10.1002/jcph.705] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Sepsis remains a major cause of mortality and morbidity in neonates, and, as a consequence, antibiotics are the most frequently prescribed drugs in this vulnerable patient population. Growth and dynamic maturation processes during the first weeks of life result in large inter- and intrasubject variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of antibiotics. In this review we (1) summarize the available population PK data and models for primarily renally eliminated antibiotics, (2) discuss quantitative approaches to account for effects of growth and maturation processes on drug exposure and response, (3) evaluate current dose recommendations, and (4) identify opportunities to further optimize and personalize dosing strategies of these antibiotics in preterm and term neonates. Although population PK models have been developed for several of these drugs, exposure-response relationships of primarily renally eliminated antibiotics in these fragile infants are not well understood, monitoring strategies remain inconsistent, and consensus on optimal, personalized dosing of these drugs in these patients is absent. Tailored PK/PD studies and models are useful to better understand relationships between drug exposures and microbiological or clinical outcomes. Pharmacometric modeling and simulation approaches facilitate quantitative evaluation and optimization of treatment strategies. National and international collaborations and platforms are essential to standardize and harmonize not only studies and models but also monitoring and dosing strategies. Simple bedside decision tools assist clinical pharmacologists and neonatologists in their efforts to fine-tune and personalize the use of primarily renally eliminated antibiotics in term and preterm neonates.
Collapse
Affiliation(s)
- Mélanie Wilbaux
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Aline Fuchs
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Janko Samardzic
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland.,Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Frédérique Rodieux
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Chantal Csajka
- Division of Clinical Pharmacology, Service of Biomedicine, Department of Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Belgium.,Intensive Care and Department of Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Johannes N van den Anker
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland.,Intensive Care and Department of Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.,Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
| | - Marc Pfister
- Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland.,Quantitative Solutions LP, Menlo Park, CA, USA
| |
Collapse
|
12
|
Samardzic J, Turner MA, Bax R, Allegaert K. Neonatal medicines research: challenges and opportunities. Expert Opin Drug Metab Toxicol 2015; 11:1041-52. [PMID: 25958820 DOI: 10.1517/17425255.2015.1046433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The key feature of the newborn is its fast age-dependent maturation, resulting in extensive variability in pharmacokinetics and -dynamics, further aggravated by newly emerging covariates like treatment modalities, environmental issues or pharmacogenetics. This makes clinical research in neonates relevant and needed, but also challenging. AREAS COVERED To improve this knowledge, tailoring research tools as well as building research networks and clinical research skills for neonates are urgently needed. Tailoring of research tools is illustrated using the development of dried blood spot techniques and the introduction of micro-dosing and -tracer methodology in neonatal drug studies. Both techniques can be combined with sparse sampling techniques through population modeling. Building research networks and clinical research skills is illustrated by the initiatives of agencies to build and integrate knowledge on neonatal pharmacotherapy through dedicated working groups. EXPERT OPINION Challenges relating to neonatal medicine research can largely be overcome. Tailored tools and legal initiatives, combined with clever trial design will result in more robust information on neonatal pharmacotherapy. This necessitates collaborative efforts between clinical researchers, sponsors, regulatory authorities, and last but not least patient representatives and society.
Collapse
Affiliation(s)
- Janko Samardzic
- University of Belgrade, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, Belgrade, Serbia
| | | | | | | |
Collapse
|
13
|
Crutchfield CA, Marzinke MA. Bioanalytical development and validation of liquid chromatographic-tandem mass spectrometric methods for the quantification of total and free cefazolin in human plasma and cord blood. Pract Lab Med 2015; 1:12-21. [PMID: 28932794 PMCID: PMC5597705 DOI: 10.1016/j.plabm.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/13/2015] [Accepted: 03/03/2015] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Cefazolin is a commonly prescribed β-lactam antibiotic for prophylaxis against skin infections following surgery, including caesarean sections. Assessment of maternal and neonatal exposure is important for correlating drug concentrations to clinical outcomes. Thus, bioanalytical methods for the quantification of both total and free cefazolin in maternal plasma and cord blood can assist in the comprehensive evaluation of cefazolin exposure. DESIGN AND METHODS Specimen preparation for the measurement of total cefazolin was performed via protein precipitation with acetonitrile containing the internal standard cloxacillin. Ultrafiltration was used to isolate free cefazolin. Processed samples were analyzed on a Prelude SPLC system coupled to a TSQ triple quadrupole Vantage mass spectrometer. Methods were validated following FDA bioanalytical guidelines. RESULTS The analytical measuring ranges of these methods were 0.48-480 µg/mL and 0.048-48 µg/mL for total and free drug, respectively. Calibration curves were generated using 1/x2 weighted linear regression analysis. Total cefazolin demonstrated inter- and intra-assay precision of ≤20% at the LLOQ and ≤11.2% at other levels. Free cefazolin demonstrated inter- and intra-assay precision of ≤18.5% at the LLOQ and ≤12.6% at other levels, respectively. Accuracy (%DEV), carryover, matrix effects, recovery and stability studies were also acceptable based on FDA recommendations. Furthermore, it was demonstrated that samples prepared in cord blood can be accurately quantified from an adult plasma calibration curve, with recoveries ≤9.1% DIF and ≤11.9% DIF for total and free cefazolin, respectively. CONCLUSIONS The described LC-MS/MS methods allow for the measurement of total and free cefazolin in both plasma and cord blood.
Collapse
Affiliation(s)
| | - Mark A Marzinke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Pharmacokinetics of prophylactic cefazolin in parturients undergoing cesarean delivery. Antimicrob Agents Chemother 2014; 58:3504-13. [PMID: 24733461 DOI: 10.1128/aac.02613-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this work were (i) to characterize the pharmacokinetics of cefazolin in pregnant women undergoing elective cesarean delivery and in their neonates; (ii) to assess cefazolin transplacental transmission; (iii) to evaluate the dosing and timing of preoperative, prophylactic administration of cefazolin to pregnant women; and (iv) to investigate the impact of maternal dosing on therapeutic duration and exposure in newborns. Twenty women received 1 g of cefazolin preoperatively. Plasma concentrations of total cefazolin were analyzed from maternal blood samples taken before, during, and after delivery; umbilical cord blood samples obtained at delivery; and neonatal blood samples collected 24 h after birth. The distribution volume of cefazolin was 9.44 liters. [corrected] The values for pre- and postdelivery clearance were 7.18 and 4.12 liters/h, respectively. Computer simulations revealed that the probability of maintaining free cefazolin concentrations in plasma above 8 mg/liter during scheduled caesarean surgery was <50% in the cord blood when cefazolin was administered in doses of <2 g or when it was administered <1 h before delivery. Therapeutic concentrations of cefazolin persisted in neonates >5 h after birth. Cefazolin clearance increases during pregnancy, and larger doses are recommended for surgical prophylaxis in pregnant women to obtain the same antibacterial effect as in nonpregnant patients. Cefazolin has a longer half-life in neonates than in adults. Maternal administration of up to 2 g of cefazolin is effective and produces exposure within clinically approved limits in neonates.
Collapse
|