1
|
Ortiz-Miravalles L, Sánchez-Angulo M, Sanz JM, Maestro B. Drug Repositioning as a Therapeutic Strategy against Streptococcus pneumoniae: Cell Membrane as Potential Target. Int J Mol Sci 2023; 24:ijms24065831. [PMID: 36982905 PMCID: PMC10058218 DOI: 10.3390/ijms24065831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A collection of repurposing drugs (Prestwick Chemical Library) containing 1200 compounds was screened to investigate the drugs' antimicrobial effects against planktonic cultures of the respiratory pathogen Streptococcus pneumoniae. After four discrimination rounds, a set of seven compounds was finally selected, namely (i) clofilium tosylate; (ii) vanoxerine; (iii) mitoxantrone dihydrochloride; (iv) amiodarone hydrochloride; (v) tamoxifen citrate; (vi) terfenadine; and (vii) clomiphene citrate (Z, E). These molecules arrested pneumococcal growth in a liquid medium and induced a decrease in bacterial viability between 90.0% and 99.9% at 25 µM concentration, with minimal inhibitory concentrations (MICs) also in the micromolar range. Moreover, all compounds but mitoxantrone caused a remarkable increase in the permeability of the bacterial membrane and share a common, minimal chemical structure consisting of an aliphatic amine linked to a phenyl moiety via a short carbon/oxygen linker. These results open new possibilities to tackle pneumococcal disease through drug repositioning and provide clues for the design of novel membrane-targeted antimicrobials with a related chemical structure.
Collapse
Affiliation(s)
- Laura Ortiz-Miravalles
- Protein Engineering against Antimicrobial Resistance Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Sánchez-Angulo
- Department of Vegetal Production and Microbiology, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Jesús M Sanz
- Protein Engineering against Antimicrobial Resistance Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Maestro
- Protein Engineering against Antimicrobial Resistance Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
2
|
Smith D, Gill A, Hall L, Turner AM. Prevalence, Pattern, Risks Factors and Consequences of Antibiotic Resistance in COPD: A Systematic Review. COPD 2022; 18:672-682. [PMID: 35016569 DOI: 10.1080/15412555.2021.2000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A concern of antibiotic use in chronic obstructive pulmonary disease (COPD) is the emergence and propagation of antimicrobial resistance (AMR). A systematic review was conducted to determine prevalence, pattern, risk factors and consequences of AMR in COPD. Bibliographic databases were searched from inception to November 2020, with no language restrictions, including studies of any design that included patients with COPD and reported prevalence and pattern of AMR. 2748 unique titles and abstracts were identified, of which 63 articles, comprising 26,387 patients, met inclusion criteria. Forty-four (69.8%) studies were performed during acute exacerbation. The median prevalence of AMR ranged from 0-100% for Pseudomonas aeruginosa, Moraxella catarrhalis, Klebsiella pneumoniae and Acinetobacter baumannii. Median resistance rates of H influenzae and S pneumoniae were lower by comparison, with maximum rates ≤40% and ≤46%, respectively, and higher for Staphylococcus aureus. There was a trend towards higher rates of AMR in patients with poorer lung function and greater incidence of previous antibiotic exposure and hospitalisation. The impact of AMR on mortality was unclear. Data regarding antimicrobial susceptibility testing techniques and the impact of other risk factors or consequences of AMR were variable or not reported. This is the first review to systematically unify data regarding AMR in COPD. AMR is relatively common and strategies to optimise antibiotic use could be valuable to prevent the currently under-investigated potential adverse consequences of AMR.Supplemental data for this article is available online at https://doi.org/10.1080/15412555.2021.2000957 .
Collapse
Affiliation(s)
- Daniel Smith
- Medical School, University of Birmingham, United Kingdom
| | - Arran Gill
- Medical School, University of Southampton, United Kingdom
| | - Lewis Hall
- Medical School, University of Birmingham, United Kingdom
| | - Alice M Turner
- Heartlands Hospital, University Hospitals Birmingham, Birmingham, United Kingdom.,Institute of Applied Health Research, University of Birmingham, United Kingdom
| |
Collapse
|
3
|
Sempere J, de Miguel S, González-Camacho F, Yuste J, Domenech M. Clinical Relevance and Molecular Pathogenesis of the Emerging Serotypes 22F and 33F of Streptococcus pneumoniae in Spain. Front Microbiol 2020; 11:309. [PMID: 32174903 PMCID: PMC7056674 DOI: 10.3389/fmicb.2020.00309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is the main bacterial cause of respiratory infections in children and the elderly worldwide. Serotype replacement is a frequent phenomenon after the introduction of conjugated vaccines, with emerging serotypes 22F and 33F as frequent non-PCV13 serotypes in children and adults in North America and other countries. Characterization of mechanisms involved in evasion of the host immune response by these serotypes is of great importance in public health because they are included in the future conjugated vaccines PCV15 and PCV20. One of the main strategies of S. pneumoniae to persistently colonize and causes infection is biofilm formation. In this study, we have evaluated the influence of capsule polysaccharide in biofilm formation and immune evasion by using clinical isolates from different sources and isogenic strains with capsules from prevalent serotypes. Since the introduction of PCV13 in Spain in the year 2010, isolates of serotypes 22F and 33F are rising among risk populations. The predominant circulating genotypes are ST43322F and ST71733F, being CC433 in 22F and CC717 in 33F the main clonal complexes in Spain. The use of clinical isolates of different origin, demonstrated that pediatric isolates of serotypes 22F and 33F formed better biofilms than adult isolates and this was statistically significant. This phenotype was greater in clinical isolates from blood origin compared to those from cerebrospinal fluid, pleural fluid and otitis. Opsonophagocytosis assays showed that serotype 22F and 33F were recognized by the PSGL-1 receptor on leukocytes, although serotype 22F, was more resistant than serotype 33F to phagocytosis killing and more lethal in a mouse sepsis model. Overall, the emergence of additional PCV15 serotypes, especially 22F, could be associated to an enhanced ability to divert the host immune response that markedly increased in a biofilm state. Our findings demonstrate that pediatric isolates of 22F and 33F, that form better biofilm than isolates from adults, could have an advantage to colonize the nasopharynx of children and therefore, be important in carriage and subsequent dissemination to the elderly. The increased ability of serotype 22F to avoid the host immune response, might explain the emergence of this serotype in the last years.
Collapse
Affiliation(s)
- Julio Sempere
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara de Miguel
- Servicio de Epidemiología de la Comunidad de Madrid, Dirección General de Salud Pública, Madrid, Spain
| | | | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Mirian Domenech
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Zhanel GG, Hartel E, Adam H, Zelenitsky S, Zhanel MA, Golden A, Schweizer F, Gorityala B, Lagacé-Wiens PRS, Walkty AJ, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. Solithromycin: A Novel Fluoroketolide for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2017; 76:1737-1757. [PMID: 27909995 DOI: 10.1007/s40265-016-0667-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Solithromycin is a novel fluoroketolide developed in both oral and intravenous formulations to address increasing macrolide resistance in pathogens causing community-acquired bacterial pneumonia (CABP). When compared with its macrolide and ketolide predecessors, solithromycin has several structural modifications which increase its ribosomal binding and reduce its propensity to known macrolide resistance mechanisms. Solithromycin, like telithromycin, affects 50S ribosomal subunit formation and function, as well as causing frame-shift errors during translation. However, unlike telithromycin, which binds to two sites on the ribosome, solithromycin has three distinct ribosomal binding sites. Its desosamine sugar interacts at the A2058/A2059 cleft in domain V (as all macrolides do), an extended alkyl-aryl side chain interacts with base pair A752-U2609 in domain II (similar to telithromycin), and a fluorine at C-2 of solithromycin provides additional binding to the ribosome. Studies describing solithromycin activity against Streptococcus pneumoniae have reported that it does not induce erm-mediated resistance because it lacks a cladinose moiety, and that it is less susceptible than other macrolides to mef-mediated efflux due to its increased ribosomal binding and greater intrinsic activity. Solithromycin has demonstrated potent in vitro activity against the most common CABP pathogens, including macrolide-, penicillin-, and fluoroquinolone-resistant isolates of S. pneumoniae, as well as Haemophilus influenzae and atypical bacterial pathogens. Solithromycin displays multi-compartment pharmacokinetics, a large volume of distribution (>500 L), approximately 67% bioavailability when given orally, and serum protein binding of 81%. Its major metabolic pathway appears to follow cytochrome P450 (CYP) 3A4, with metabolites of solithromycin undergoing biliary excretion. Its serum half-life is approximately 6-9 h, which is sufficient for once-daily administration. Pharmacodynamic activity is best described as fAUC0-24/MIC (the ratio of the area under the free drug concentration-time curve from 0 to 24 h to the minimum inhibitory concentration of the isolate). Solithromycin has completed one phase II and two phase III clinical trials in patients with CABP. In the phase II trial, oral solithromycin was compared with oral levofloxacin and demonstrated similar clinical success rates in the intention-to-treat (ITT) population (84.6 vs 86.6%). Clinical success in the clinically evaluable patients group was 83.6% of patients receiving solithromycin compared with 93.1% for patients receiving levofloxacin. In SOLITAIRE-ORAL, a phase III trial which assessed patients receiving oral solithromycin or oral moxifloxacin for CABP, an equivalent (non-inferior) early clinical response in the ITT population was demonstrated for patients receiving either solithromycin (78.2%) or moxifloxacin (77.9%). In a separate phase III trial, SOLITAIRE-IV, patients receiving intravenous-to-oral solithromycin (79.3%) demonstrated non-inferiority as the primary outcome of early clinical response in the ITT population compared with patients receiving intravenous-to-oral moxifloxacin (79.7%). Overall, solithromycin has been well tolerated in clinical trials, with gastrointestinal adverse events being most common, occurring in approximately 10% of patients. Transaminase elevation occurred in 5-10% of patients and generally resolved following cessation of therapy. None of the rare serious adverse events that occurred with telithromycin (i.e., hepatotoxicity) have been noted with solithromycin, possibly due to the fact that solithromycin (unlike telithromycin) does not possess a pyridine moiety in its chemical structure, which has been implicated in inhibiting nicotinic acetylcholine receptors. Because solithromycin is a possible substrate and inhibitor of both CYP3A4 and P-glycoprotein (P-gp), it may display drug interactions similar to macrolides such as clarithromycin. Overall, the in vitro activity, clinical efficacy, tolerability, and safety profile of solithromycin demonstrated to date suggest that it continues to be a promising treatment for CABP.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Medicine, Health Sciences Centre, Winnipeg, MB, Canada. .,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada.
| | - Erika Hartel
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Heather Adam
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada
| | | | - Michael A Zhanel
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Alyssa Golden
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Frank Schweizer
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Bala Gorityala
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Philippe R S Lagacé-Wiens
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Saint Boniface Hospital, Winnipeg, MB, Canada
| | - Andrew J Walkty
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Medicine, Health Sciences Centre, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada
| | - Alfred S Gin
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada.,Department of Pharmacy, Health Sciences Centre, Winnipeg, MB, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James A Karlowsky
- Department of Medical Microbiology, Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Microbiology, Saint Boniface Hospital, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Vandevelde NM, Tulkens PM, Muccioli GG, Van Bambeke F. Modulation of the activity of moxifloxacin and solithromycin in an in vitro pharmacodynamic model of Streptococcus pneumoniae naive and induced biofilms. J Antimicrob Chemother 2015; 70:1713-26. [PMID: 25712316 DOI: 10.1093/jac/dkv032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/21/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Bacterial biofilms developing in the bronchial tree of patients experiencing acute exacerbations of chronic bronchitis (AECBs) are suggested to cause relapses and recurrences of the disease because the matrix barrier impairs antibiotic access to the offending organisms. We examined whether bronchodilators could modulate pneumococcal biofilm development and antibiotic action using an in vitro model. METHODS Streptococcus pneumoniae strains from patients hospitalized for AECBs and two reference strains (ATCC 49619 and R6) were screened for biofilm formation (multi-well plates; 2-11 days of growth). Ipratropium and salbutamol (alone or in combination) were added at concentrations of 1.45 and 7.25 mg/L, respectively (mimicking those in the bronchial tree), and their effects were measured on biofilm formation and modulation of the activity of antibiotics [full antibiotic concentration-dependent effects (pharmacodynamic model)] with a focus on moxifloxacin and solithromycin. Bacterial viability and biomass were measured by the reduction of resazurin and crystal violet staining, respectively. Release of sialic acid (from biofilm) and neuraminidase activity were measured using enzymatic and HPLC-MS detection of sialic acid. RESULTS All clinical isolates produced biofilms, but with fast disassembly if from patients who had received muscarinic antagonists. Ipratropium caused: (i) reduced biomass formation and faster biofilm disassembly with free sialic acid release; and (ii) a marked improvement of antibiotic activity (bacterial killing and biomass reduction). Salbutamol stimulated neuraminidase activity associated with improved antibiotic killing activity (reversed by zanamivir) but modest biomass reduction. CONCLUSIONS Ipratropium and, to a lesser extent, salbutamol may cooperate with antibiotics for bacterial clearance and disassembly of pneumococcal biofilms.
Collapse
Affiliation(s)
- Nathalie M Vandevelde
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Pimentel de Araujo F, D'Ambrosio F, Camilli R, Fiscarelli E, Di Bonaventura G, Baldassarri L, Visca P, Pantosti A, Gherardi G. Characterization of Streptococcus pneumoniae clones from paediatric patients with cystic fibrosis. J Med Microbiol 2014; 63:1704-1715. [PMID: 25301526 DOI: 10.1099/jmm.0.072199-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of Streptococcus pneumoniae in cystic fibrosis (CF) is poorly understood. The pneumococcal population has changed over time after the introduction of the heptavalent conjugate vaccine (PCV7) and, more recently, the 13-valent conjugate vaccine (PCV13). Although serotypes and clones causing invasive pneumococcal disease or colonizing healthy children have been extensively analysed, little is known so far on the serotypes and clones of pneumococci in CF patients. The aim of this work was to investigate serotypes, antibiotic susceptibilities, genotypes and biofilm production of CF pneumococcal isolates. Overall, 44 S. pneumoniae strains collected from 32 paediatric CF patients from January 2010 to May 2012 in a large Italian CF Centre were tested for antimicrobial susceptibility testing by Etest, serotyped by the Quellung reaction and genotyped by a combination of different molecular typing methods, including pbp gene restriction profiling, pspA restriction profiling and sequencing, PFGE and multilocus sequence typing. Biofilm production by pneumococcal strains was also assessed. Penicillin non-susceptibility was 16 %. High resistance rates (>56 %) were observed for erythromycin, clindamycin and tetracycline. The most frequent serotype recovered was serotype 3 (31.8 %). The coverage of PCV7 and PCV13 was 6.8 and 47.7 %, respectively. More than 80 % of CF strains belonged to Pneumococcal Molecular Epidemiology Network (PMEN) reference clones, the most common being Netherlands(3)-ST180 (28.2 %), and Greece(21)-30/ST193 (15.4 %). All strains produced biofilm in vitro, although with large variability in biofilm formation efficiency. No correlation was found between biofilm levels and serotype, clone or antibiotic resistance. The high isolation rate of antibiotic-resistant serotype 3 pneumococci from CF patients suggests that PCV13 could increase protection from pneumococcal colonization and infection.
Collapse
Affiliation(s)
- Fernanda Pimentel de Araujo
- Integrated Research Centre (CIR), University Campus Biomedico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Fabio D'Ambrosio
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Romina Camilli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ersilia Fiscarelli
- Cystic Fibrosis Microbiology, Children's Hospital and Research Institute 'Bambino Gesù', Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Giovanni Di Bonaventura
- Center of Excellence on Aging, 'G. D'Annunzio' University Foundation, Via Colle dell'Ara, 66100 Chieti, Italy.,Department of Experimental and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy
| | - Lucilla Baldassarri
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paolo Visca
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giovanni Gherardi
- Integrated Research Centre (CIR), University Campus Biomedico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|