1
|
Abdin M, Naeem MA, Aly-Aldin MM. Enhancing the bioavailability and antioxidant activity of natamycin E235-ferulic acid loaded polyethylene glycol/carboxy methyl cellulose films as anti-microbial packaging for food application. Int J Biol Macromol 2024; 266:131249. [PMID: 38569998 DOI: 10.1016/j.ijbiomac.2024.131249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
This study investigated the development of biodegradable films made from a combination of polyethylene glycol (PEG), carboxymethyl cellulose (CMC) and mixtures from natamycin and ferulic acid. The films were characterized for their surface microstructure, antioxidant activity, thermal stability, mechanical properties, permeability and antifungal/bacterial activity. The addition of natamycin and ferulic acid to the film matrix enhanced antioxidant activity, thermal stability, antimicrobial activity, reduced the water vapor permeability (WVP) to 1.083 × 10-10 g × m-1s-1Pa-1, imparted opaque color and increased opacity up to 3.131 A mm-1. The attendance of natamycin and ferulic acid inside films created a clear roughness shape with agglomerates on the surface of films and caused a clear inhibition zone for Aspergillus niger, E. coli and C. botulinum. The utilization of PG/CMC/N-F packaging material on Ras cheese had a noticeable effect, resulting in a slight decrease in moisture content from 34.23 to 29.17 %. Additionally, it helped maintain the titrable acidity within the range of 0.99 % to 1.11 % and the force required for puncture from 0.035 to 0.052 N with non-significant differences. Importantly, these changes did not significantly affect the sensory qualities of Ras cheese during the storage period.
Collapse
Affiliation(s)
- Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt.
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Mohamed M Aly-Aldin
- Department of Food Science and Technology, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
2
|
Fang M, Wang J, Fang S, Zuo X. Fabrication of carboxymethyl chitosan films for cheese packaging containing gliadin-carboxymethyl chitosan nanoparticles co-encapsulating natamycin and theaflavins. Int J Biol Macromol 2023; 246:125685. [PMID: 37406906 DOI: 10.1016/j.ijbiomac.2023.125685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, gliadin-carboxymethyl chitosan composite nanoparticles (GC NPs) co-encapsulated natamycin (Nata) and theaflavins (TFs) were constructed and added as an antioxidant, antifungal, and structural enhancer to carboxymethyl chitosan (CMCS) films. The stabilized GC NPs with a particle size of 160.7 ± 2.8 nm, a zeta potential of -29.0 ± 0.9 mV, and a protein content in the supernatant of 96 ± 1 % could be fabricated. Tests of pH and salt ions showed that the stability of NPs dispersion was based on electrostatic repulsion. Co-encapsulation of TFs enhanced the photostability of Nata and the antioxidant activity of the NPs dispersion. The interactions between gliadin with Nata and TFs were studied by molecular simulations. As a functional additive, the addition of Nata/TFs-GC NPs could improve the optical properties, mechanical properties, water-blocking capability, and antifungal and antioxidant activities of the CMCS films. The in-vivo test showed that the functional film could be used to inhibit the growth of Aspergillus niger on cheese.
Collapse
Affiliation(s)
- Meihan Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jialu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xiaobo Zuo
- Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou Tea Research Institute, CHINA COOP, Hangzhou 310016, China.
| |
Collapse
|
3
|
Kamal I, Ashfaq UA, Hayat S, Aslam B, Sarfraz MH, Yaseen H, Rajoka MSR, Shah AA, Khurshid M. Prospects of antimicrobial peptides as an alternative to chemical preservatives for food safety. Biotechnol Lett 2023; 45:137-162. [PMID: 36504266 DOI: 10.1007/s10529-022-03328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are a potential alternative to antimicrobial agents that have got considerable research interest owing to their significant role in the inhibition of bacterial pathogens. These AMPs can essentially inhibit the growth and multiplication of microbes through multiple mechanisms including disruption of cellular membranes, inhibition of cell wall biosynthesis, or affecting intracellular components and cell division. Moreover, AMPs are biocompatible and biodegradable therefore, they can be a good alternative to antimicrobial agents and chemical preservatives. A few of their features for example thermostability and high selectivity are quite appealing for their potential use in the food industry for food preservation to prevent the spoilage caused by microorganisms and foodborne pathogens. Despite these advantages, very few AMPs are being used at an industrial scale for food preservation as these peptides are quite vulnerable to external environmental factors which deter their practical applications and commercialization. The review aims to provide an outline of the mechanism of action of AMPs and their prospects as an alternative to chemical preservatives in the food industry. Further studies related to the structure-activity relationship of AMPs will help to expand the understanding of their mechanism of action and to determine specific conditions to increase their stability and applicability in food preservation.
Collapse
Affiliation(s)
- Iqra Kamal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Hamna Yaseen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
4
|
Punia A, Choudhary P, Sharma N, Dahiya S, Gulia P, Chhillar AK. Therapeutic Approaches for Combating Aspergillus Associated Infection. Curr Drug Targets 2022; 23:1465-1488. [PMID: 35748549 DOI: 10.2174/1389450123666220623164548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
Now-a-days fungal infection emerges as a significant problem to healthcare management systems due to high frequency of associated morbidity, mortality toxicity, drug-drug interactions, and resistance of the antifungal agents. Aspergillus is the most common mold that cause infection in immunocompromised hosts. It's a hyaline mold that is cosmopolitan and ubiquitous in nature. Aspergillus infects around 10 million population each year with a mortality rate of 30-90%. Clinically available antifungal formulations are restricted to four classes (i.e., polyene, triazole, echinocandin, and allylamine), and each of them have their own limitations associated with the activity spectrum, the emergence of resistance, and toxicity. Consequently, novel antifungal agents with modified and altered chemical structures are required to combat these invasive fungal infections. To overcome these limitations, there is an urgent need for new antifungal agents that can act as potent drugs in near future. Currently, some compounds have shown effective antifungal activity. In this review article, we have discussed all potential antifungal therapies that contain old antifungal drugs, combination therapies, and recent novel antifungal formulations, with a focus on the Aspergillus associated infections.
Collapse
Affiliation(s)
- Aruna Punia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Choudhary
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Namita Sharma
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Sweety Dahiya
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Prity Gulia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Anil K Chhillar
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
5
|
Immunoassay for Natamycin Trace Screening: Bread, Wine and Other Edibles Analysis. BIOSENSORS 2022; 12:bios12070493. [PMID: 35884296 PMCID: PMC9312873 DOI: 10.3390/bios12070493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
The antifungal drug natamycin (NAT) is widely used in medicine and in the food industry as preservative E235 for a wide variety of foods. The risk of the development of resistance to NAT and its spread in relation to other polyene antibiotics is fraught with the emergence of incurable infections. This work is devoted to the development of an immunoassay to investigate the prevalence of NAT use for food preservation. Two immunogen designs based on tetanus toxoid, conjugated to NAT through different sites of hapten molecules, were compared in antibody generation. Assay formats using heterologous coating antigens were superior for both antibodies. The ELISA variant demonstrated the highest sensitivity (IC50 = 0.12 ng/mL), and a limit of detection of 0.02 ng/mL was selected for NAT determination. The optimized extraction procedure provided a recovery rate of 72–106% for various food matrixes with variations below 12%. Cyclodextrins, as well as NAT–cyclodextrin complex formulations, showed no interference with the quantification of NAT. One hundred and six food product brands, including baked goods, wines, beers, drinks, sauces, and yogurts, were tested to assess the prevalence of the undeclared use of NAT as a preservative. The screening examination revealed three positive yogurts with an undeclared NAT incorporation of 1.1–9.3 mg/kg.
Collapse
|
6
|
Antimicrobial effect of Origanum vulgare (L.) essential oil as an alternative for conventional additives in the Minas cheese manufacture. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Mishra B, Mishra AK, Kumar S, Mandal SK, NSV L, Kumar V, Baek KH, Mohanta YK. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2021; 12:12. [PMID: 35050134 PMCID: PMC8778586 DOI: 10.3390/metabo12010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Perishable food spoilage caused by fungi is a major cause of discomfort for food producers. Food sensory abnormalities range from aesthetic degeneration to significant aroma, color, or consistency alterations due to this spoilage. Bio-preservation is the use of natural or controlled bacteria or antimicrobials to enhance the quality and safety of food. It has the ability to harmonize and rationalize the required safety requirements with conventional preservation methods and food production safety and quality demands. Even though synthetic preservatives could fix such issues, there is indeed a significant social need for "clean label" foods. As a result, consumers are now seeking foods that are healthier, less processed, and safer. The implementation of antifungal compounds has gotten a lot of attention in recent decades. As a result, the identification and characterization of such antifungal agents has made promising advances. The present state of information on antifungal molecules, their modes of activity, connections with specific target fungi varieties, and uses in food production systems are summarized in this review.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Sanjay Kumar
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh 534101, India;
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Lakshmayya NSV
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| |
Collapse
|
8
|
Meena M, Prajapati P, Ravichandran C, Sehrawat R. Natamycin: a natural preservative for food applications-a review. Food Sci Biotechnol 2021; 30:1481-1496. [PMID: 34868698 DOI: 10.1007/s10068-021-00981-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Natamycin is a natural antimicrobial peptide produced by the strains of Streptomyces natalensis. It effectively acts as an antifungal preservative on various food products like yogurt, khoa, sausages, juices, wines, etc. Additionally, it has been used as a bio preservative and is listed as generally recognized as a safe ingredient for various food applications. In this review, natamycin properties, production methods, toxicity, and application as a natural preservative in different foods are emphasized. This review also focuses on optimal condition and process control required in natamycin production. The mode of action and inhibitory effect of natamycin on yeast and molds inhibition and its formulation and dosage to preserve various food products, coating, and hurdle applications are summarized. Understanding the scientific factors in natamycin's production process, its toxicity, and its efficiency as a preservative will open its practical application in various food products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00981-1.
Collapse
Affiliation(s)
- Mahima Meena
- Institute of Home Economics, University of Delhi, New Delhi, India
| | | | - Chandrakala Ravichandran
- Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, 641114 India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
9
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
10
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
11
|
Stability, bioavailability and antifungal activity of reuterin during manufacturing and storage of stirred yoghurt. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Belakhov VV. Practical Applications of Tetraene Macrolide Antibiotic Lucensomycin as an Eco-Friendly Fungicide. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363220130174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Uzunoğlu B, Wilson CG, Sağıroğlu M, Yüksel S, Şenel S. Mucoadhesive bilayered buccal platform for antifungal drug delivery into the oral cavity. Drug Deliv Transl Res 2020; 11:318-327. [PMID: 32578045 DOI: 10.1007/s13346-020-00798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A drug delivery technology comprising a mucoadhesive bilayered buccally anchored tablet containing natamycin was developed. The concept was to anchor the tablet to the buccal tissue and allow controlled release of the drug through the matrix into the mouth. Carbomer (Carbopol ® 974 P NF) was used to formulate the mucoadhesive layer. Hydroxypropyl methylcellulose (HPMC) (Methocel® K4M) at 10, 15, 20, and 40% w/w was used for the drug-containing layer. Natamycin, an amphoteric macrolide antifungal agent, was incorporated into the formulations. In addition, tablets containing erythrosine as a marker were prepared in order to examine the distribution and retention of the dye in the oral cavity. As expected, the in vitro analysis showed that the concentration of natamycin released decreased with the increasing proportion of HPMC in the formulation. A small volunteer study was conducted using the tablets containing 10% and 20% HPMC to quantitate the patterns of distribution of the drug released into the oral cavity (upper right buccal vestibule, lower right and left buccal vestibules, and sublingual region). The mucoadhesive bilayered buccal tablet formulation provided a unidirectional release of the drug from the tablet into the oral cavity in a prolonged release fashion, maintaining drug concentration above the MIC value (2 μg/mL) for Candida albicans. The amount of the drug in the sublingual region was found to be lowest when compared with other regions, which is due to the higher flow of saliva in this region. Graphical abstract.
Collapse
Affiliation(s)
- Burcum Uzunoğlu
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey
- Rx Corporate Communications, Mustafa Kemal Mah. Eskişehir yolu 9. km, Mahall Ankara C2 Blok No 10, Çankaya, Ankara, Turkey
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, G4 ONR, Glasgow, Scotland, UK
| | - Meral Sağıroğlu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Selin Yüksel
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey.
| |
Collapse
|
14
|
SERAFINI KFC, ALENCAR ER, RIBEIRO JL, FERREIRA MDA. Influence of the salt concentration on action mechanisms of natamycin against microorganisms of importance in food manufacture. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.33018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Shah AA, Wu J, Qian C, Liu Z, Mobashar M, Tao Z, Zhang X, Zhong X. Ensiling of whole-plant hybrid pennisetum with natamycin and Lactobacillus plantarum impacts on fermentation characteristics and meta-genomic microbial community at low temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3378-3385. [PMID: 32144784 DOI: 10.1002/jsfa.10371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The aim of the current research was to clarify the impacts of the ensiling of whole-plant hybrid pennisetum with natamycin and Lactobacillus plantarum on fermentation characteristics and the meta-genomic microbial community at low temperatures. RESULTS During the ensiling process, lactic acid (LA) and lactic acid bacteria (LAB) significantly (P < 0.05) increased and acetic acid (AA), water-soluble carbohydrate (WSC), ammonia total nitrogen (NH3-N), and yeast significantly (P < 0.05) reduced in treatments as compared to controls. Different treatments and different ensiling days led to variations in the bacterial community at family and genus levels. The family Lactobacillaceae and genera Lactobacillus and Pediococcus are dominant communities in treatment silage. The family and genus levels bacterial ecology and fermentation quality were analyzed by principal component analysis (PCA). The PCO1, and PCO2 can be explained by 10.81% and 72.14% of the whole variance regularly, similarly in PCO1 and PCO2 can be explained 24.23% and 52.06% regularly. The core bacterial micro-biome operational taxonomic unit (OTU) numbers increased in treatments, as compared to controls, on different hybrid pennisetum ensiling days. CONCLUSIONS The inoculation of L. plantarum alone and combined with natamycin influenced the fermentation quality and reduced undesirable microorganisms during the fermentation of hybrid pennisetum silage. Natamycin alone did not significantly enhance the concentration of organic acid but numerically enhanced in treatments group as compared to control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Assar Ali Shah
- National Forage Breeding Innovation Base, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Juanzi Wu
- National Forage Breeding Innovation Base, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Chen Qian
- National Forage Breeding Innovation Base, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Zhiwei Liu
- National Forage Breeding Innovation Base, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Muhammad Mobashar
- Department of Animal Nutrition, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Zhujun Tao
- National Forage Breeding Innovation Base, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Xiaomin Zhang
- National Forage Breeding Innovation Base, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Xiaoxian Zhong
- National Forage Breeding Innovation Base, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| |
Collapse
|
16
|
Shah AA, Qian C, Wu J, Liu Z, Khan S, Tao Z, Zhang X, Khan IU, Zhong X. Effects of natamycin and Lactobacillus plantarum on the chemical composition, microbial community, and aerobic stability of Hybrid pennisetum at different temperatures. RSC Adv 2020; 10:8692-8702. [PMID: 35496541 PMCID: PMC9049962 DOI: 10.1039/d0ra00028k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/09/2020] [Indexed: 11/21/2022] Open
Abstract
This study evaluated the effects of natamycin and Lactobacillus plantarum on the chemical composition, microbial community, and aerobic stability of Hybrid pennisetum at different temperatures. Different concentrations of natamycin (0.50 g L−1, 1.00 g L−1, and 1.50 mg L−1) significantly (p > 0.05) reduced the growth of undesirable microorganisms. During the ensiling periods the pH, ammonia nitrogen (NH3–N), acetic acid (AA), butyric acid (BA), aerobic bacteria (AB), and yeast were significantly (p > 0.05) reduced, while the lactic acid and lactic acid bacteria were significantly (p < 0.05) influenced in the SLP and SLNP groups as compared to the SP and SNP groups at high temperature (29–30 °C). During air exposure, water-soluble carbohydrate, ammonia nitrogen (NH3–N), lactic acid (LA), and acetic acid (AA) were not influenced, while pH and aerobic bacteria were significantly (p < 0.05) enhanced after three days (72 hours) of air exposure, and lactic acid bacteria were significantly (p > 0.05) reduced at ambient temperature (9–10 °C). It is concluded that the addition of L. plantarum CICC 20765 alone and in combination with natamycin reduced the content of AA, pH, NH3–N, BA, and undesirable microbial community, and enhanced the chemical composition, fermentation quality, and air exposure. Natamycin alone did not significantly enhance the organic acid profile but improved the air exposure. Furthermore, more effort is needed to evaluate the effects on silage preservation on a large scale and on animal performance. The inoculation of L. plantarum and natamycin influenced the fermentation quality. Natamycin and L. plantarum reduced the undesirable microbial community. During ensiling process, the LA and LABs was significantly enhanced.![]()
Collapse
Affiliation(s)
- Assar Ali Shah
- National Forage Breeding Innovation Base (JAAS)
- Nanjing 210014
- P. R. China
- Institute of Animal Science
- Jiangsu Academy of Agricultural Sciences
| | - Chen Qian
- National Forage Breeding Innovation Base (JAAS)
- Nanjing 210014
- P. R. China
- Institute of Animal Science
- Jiangsu Academy of Agricultural Sciences
| | - Juanzi Wu
- National Forage Breeding Innovation Base (JAAS)
- Nanjing 210014
- P. R. China
- Institute of Animal Science
- Jiangsu Academy of Agricultural Sciences
| | - Zhiwei Liu
- National Forage Breeding Innovation Base (JAAS)
- Nanjing 210014
- P. R. China
- Institute of Animal Science
- Jiangsu Academy of Agricultural Sciences
| | - Salman Khan
- School of Life Sciences
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing
- P. R. China
| | - Zhujun Tao
- National Forage Breeding Innovation Base (JAAS)
- Nanjing 210014
- P. R. China
- Institute of Animal Science
- Jiangsu Academy of Agricultural Sciences
| | - Xiaomin Zhang
- National Forage Breeding Innovation Base (JAAS)
- Nanjing 210014
- P. R. China
- Institute of Animal Science
- Jiangsu Academy of Agricultural Sciences
| | - Irfan Ullah Khan
- Department of Biochemistry and Molecular Biology
- College of Life Science
- Nanjing University
- Nanjing 210095
- P. R. China
| | - Xiaoxian Zhong
- National Forage Breeding Innovation Base (JAAS)
- Nanjing 210014
- P. R. China
- Institute of Animal Science
- Jiangsu Academy of Agricultural Sciences
| |
Collapse
|
17
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
18
|
Correa FT, de Souza AC, de Souza Júnior EA, Isidoro SR, Piccoli RH, Dias DR, de Abreu LR. Effect of Brazilian green propolis on microorganism contaminants of surface of Gorgonzola-type cheese. Journal of Food Science and Technology 2019; 56:1978-1987. [PMID: 30996432 DOI: 10.1007/s13197-019-03664-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/10/2019] [Accepted: 02/17/2019] [Indexed: 11/28/2022]
Abstract
Blue cheeses are susceptible to yeast and bacterial growth on their surface, which causes spoilage during ripening process and the formation of slime. The dairy industry frequently control the proliferation of undesirable microorganisms with natamycin and high salt concentration. The green propolis is a complex of substances that presents antimicrobial properties with great potential as preservative in the food industry. The aims of the present study were to identify the mesophilic aerobic microorganisms present on the surface of Gorgonzola-type cheese, evaluate the antifungal and antibacterial effects of the ethanol extract of green propolis (EEP) on the development of those microorganisms and verify the effects of EEP on the sensory quality of cheese. Ten yeast species belonging to genera Yarrowia, Candida, Debaryomyces and Saccharomyces were identified, as well as seven species of bacteria belonging to genera Staphylococcus, Bacillus, Enterococcus, Corynebacterium and Proteus. The EEP showed minimum biocide concentration (MBC), between 0.3% (weight/weight) and 5% for Bacillus cereus and Proteus vulgaris, respectively. Saccharomyces cerevisiae was the most sensitive species (MBC of 0.63%) and Candida parapsilosis the most resistant one (MBC of 5%). In the sensory analysis, the cheeses involved with EEP at 5% concentration did not differ from the control, while at 10%, there was a slight decrease in acceptance. The EEP has potential and feasibility to be used in Gorgonzola-type cheese, inhibiting the main bacteria and yeasts without affecting largely the sensory characteristics of the product.
Collapse
Affiliation(s)
- Frederico Teixeira Correa
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Angélica Cristina de Souza
- 2Departament of Biology, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | | | - Silas Rodrigo Isidoro
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Roberta Hilsdorf Piccoli
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Disney Ribeiro Dias
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| | - Luiz Ronaldo de Abreu
- 1Departament of Food Science, Federal University of Lavras, Campus Universitário, 3037, Lavras, MG 37200-000 Brazil
| |
Collapse
|
19
|
Does the use of antifungal agents in agriculture and food foster polyene resistance development? A reason for concern. J Glob Antimicrob Resist 2018; 13:40-48. [DOI: 10.1016/j.jgar.2017.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 01/11/2023] Open
|
20
|
Jagielski T, Bakuła Z, Di Mauro S, Casciari C, Cambiotti V, Krukowski H, Turchetti B, Ricchi M, Manuali E, Buzzini P. A comparative study of the in vitro activity of iodopropynyl butylcarbamate and amphotericin B against Prototheca spp. isolates from European dairy herds. J Dairy Sci 2017; 100:7435-7445. [DOI: 10.3168/jds.2017-12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/24/2017] [Indexed: 11/19/2022]
|
21
|
Streekstra H, Verkennis AE, Jacobs R, Dekker A, Stark J, Dijksterhuis J. Fungal strains and the development of tolerance against natamycin. Int J Food Microbiol 2016; 238:15-22. [DOI: 10.1016/j.ijfoodmicro.2016.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
|
22
|
Verweij PE, Zhang J, Debets AJM, Meis JF, van de Veerdonk FL, Schoustra SE, Zwaan BJ, Melchers WJG. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. THE LANCET. INFECTIOUS DISEASES 2016; 16:e251-e260. [PMID: 27638360 DOI: 10.1016/s1473-3099(16)30138-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
Abstract
Aspergillus fumigatus causes a range of diseases in human beings, some of which are characterised by fungal persistence. A fumigatus can persist by adapting to the human lung environment through physiological and genomic changes. The physiological changes are based on the large biochemical versatility of the fungus, and the genomic changes are based on the capacity of the fungus to generate genetic diversity by spontaneous mutations or recombination and subsequent selection of the genotypes that are most adapted to the new environment. In this Review, we explore the adaptation strategies of A fumigatus in relation to azole resistance selection and the clinical implications thereof for management of diseases caused by Aspergillus spp. We hypothesise that the current diagnostic tools and treatment strategies do not take into account the biology of the fungus and might result in an increased likelihood of fungal persistence in patients. Stress factors, such as triazole exposure, cause mutations that render resistance. The process of reproduction-ie, sexual, parasexual, or asexual-is probably crucial for the adaptive potential of Aspergillus spp. As any change in the environment can provoke adaptation, switching between triazoles in patients with chronic pulmonary aspergillosis might result in a high-level pan-triazole-resistant phenotype through the accumulation of resistance mutations. Alternatively, when triazole therapy is stopped, an azole-free environment is created that could prompt selection for compensatory mutations that overcome any fitness costs that are expected to accompany resistance development. As a consequence, starting, switching, and stopping azole therapy has the risk of selecting for highly resistant strains with wildtype fitness. A similar adaptation is expected to occur in response to other stress factors, such as endogenous antimicrobial peptides; over time the fungus will become increasingly adapted to the lung environment, thereby limiting the probability of eradication. Our hypothesis challenges current management strategies, and future research should investigate the genomic dynamics during infection to understand the key factors facilitating adaptation of Aspergillus spp.
Collapse
Affiliation(s)
- Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Jianhua Zhang
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | | | | | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
23
|
Reaction to Dalhoff and Levy: ‘Does use of the polyene natamycin as a food preservative jeopardise the clinical efficacy of amphotericin B? A word of concern’. Int J Antimicrob Agents 2015; 46:595-6. [DOI: 10.1016/j.ijantimicag.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/21/2015] [Indexed: 11/15/2022]
|