1
|
Silva VKA, Min S, Yoo K, Fries BC. Host-Pathogen Interactions and Correlated Factors That Are Affected in Replicative-Aged Cryptococcus neoformans. J Fungi (Basel) 2024; 10:279. [PMID: 38667950 PMCID: PMC11050866 DOI: 10.3390/jof10040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cryptococcus neoformans is a facultative intracellular fungal pathogen. Ten-generation-old (10GEN) C. neoformans cells are more resistant to phagocytosis and killing by macrophages than younger daughter cells. However, mechanisms that mediate this resistance and intracellular parasitism are poorly understood. Here, we identified important factors for the intracellular survival of 10GEN C. neoformans, such as urease activity, capsule synthesis, and DNA content using flow cytometry and fluorescent microscopy techniques. The real-time visualization of time-lapse imaging was applied to determine the phagosomal acidity, membrane permeability, and vomocytosis (non-lytic exocytosis) rate in J774 macrophages that phagocytosed C. neoformans of different generational ages. Our results showed that old C. neoformans exhibited higher urease activity and enhanced Golgi activity. In addition, old C. neoformans were more likely to be arrested in the G2 phase, resulting in the occasional formation of aberrant trimera-like cells. To finish, the advanced generational age of the yeast cells slightly reduced vomocytosis events within host cells, which might be associated with increased phagolysosome pH and membrane permeability. Altogether, our results suggest that old C. neoformans prevail within acidic phagolysosomes and can manipulate the phagosome pH. These strategies may be used by old C. neoformans to resist phagosomal killing and drive cryptococcosis pathogenesis. The comprehension of these essential host-pathogen interactions could further shed light on mechanisms that bring new insights for novel antifungal therapeutic design.
Collapse
Affiliation(s)
- Vanessa K. A. Silva
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
| | - Sungyun Min
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
| | - Kyungyoon Yoo
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
2
|
Pacifici N, Cruz-Acuña M, Diener A, Tu A, Senthil N, Han H, Lewis JS. Vomocytosis of Cryptococcus neoformans cells from murine, bone marrow-derived dendritic cells. PLoS One 2023; 18:e0280692. [PMID: 36928392 PMCID: PMC10019626 DOI: 10.1371/journal.pone.0280692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 03/18/2023] Open
Abstract
Cryptococcus neoformans (CN) cells survive within the acidic phagolysosome of macrophages (MΦ) for extended times, then escape without impacting the viability of the host cell via a phenomenon that has been coined 'vomocytosis'. Through this mechanism, CN disseminate throughout the body, sometimes resulting in a potentially fatal condition-Cryptococcal Meningitis (CM). Justifiably, vomocytosis studies have focused primarily on MΦ, as alveolar MΦ within the lung act as first responders that ultimately expel this fungal pathogen. Herein, we hypothesize that dendritic cells (DCs), an innate immune cell with attributes that include phagocytosis and antigen presentation, can also act as 'vomocytes'. Presciently, this report shows that vomocytosis of CN indeed occurs from murine, bone marrow-derived DCs. Primarily through time-lapse microscopy imaging, we show that rates of vomocytosis events from DCs are comparable to those seen from MΦ and further, are independent of the presence of the CN capsule and infection ratios. Moreover, the phagosome-altering drug bafilomycin A inhibits this phenomenon from DCs. Although DC immunophenotype does not affect the total number of vomocytic events, we observed differences in the numbers of CN per phagosome and expulsion times. Interestingly, these observations were similar in murine, bone marrow-derived MΦ. This work not only demonstrates the vomocytic ability of DCs, but also investigates the complexity of vomocytosis regulation in this cell type and MΦ under multiple modulatory conditions. Understanding the vomocytic behavior of different phagocytes and their phenotypic subtypes is needed to help elucidate the full picture of the dynamic interplay between CN and the immune system. Critically, deeper insight into vomocytosis could reveal novel approaches to treat CM, as well as other immune-related conditions.
Collapse
Affiliation(s)
- Noah Pacifici
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Melissa Cruz-Acuña
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Agustina Diener
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Allen Tu
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Neeraj Senthil
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Hyunsoo Han
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
3
|
Hua Y, Dai X, Xu Y, Xing G, Liu H, Lu T, Chen Y, Zhang Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur J Med Chem 2022; 234:114239. [PMID: 35290843 PMCID: PMC8883737 DOI: 10.1016/j.ejmech.2022.114239] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
Compared with traditional de novo drug discovery, drug repurposing has become an attractive drug discovery strategy due to its low-cost and high efficiency. Through a comprehensive analysis of the candidates that have been identified with drug repositioning potentials, it is found that although some drugs do not show obvious advantages in the original indications, they may exert more obvious effects in other diseases. In addition, some drugs have a synergistic effect to exert better clinical efficacy if used in combination. Particularly, it has been confirmed that drug repositioning has benefits and values on the current public health emergency such as the COVID-19 pandemic, which proved the great potential of drug repositioning. In this review, we systematically reviewed a series of representative drugs that have been repositioned for different diseases and illustrated successful cases in each disease. Especially, the mechanism of action for the representative drugs in new indications were explicitly explored for each disease, we hope this review can provide important insights for follow-up research.
Collapse
Affiliation(s)
- Yi Hua
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xiaowen Dai
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yuan Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Guomeng Xing
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
4
|
The Antimicrobial Peptide MK58911-NH 2 Acts on Planktonic, Biofilm, and Intramacrophage Cells of Cryptococcus neoformans. Antimicrob Agents Chemother 2021; 65:e0090421. [PMID: 34516241 PMCID: PMC8597745 DOI: 10.1128/aac.00904-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cryptococcosis is associated with high rates of morbidity and mortality, especially in AIDS patients. Its treatment is carried out by combining amphotericin B and azoles or flucytosine, which causes unavoidable toxicity issues in the host. Thus, the urgency in obtaining new antifungals drives the search for antimicrobial peptides (AMPs). This study aimed to extend the understanding of the mechanism of action of an AMP analog from wasp peptide toxins, MK58911-NH2, on Cryptococcus neoformans. We also evaluated if MK58911-NH2 can act on cryptococcal cells in macrophages, biofilms, and an immersion zebrafish model of infection. Finally, we investigated the structure-antifungal action and the toxicity relationship of MK58911-NH2 fragments and a derivative of this peptide (MH58911-NH2). The results demonstrated that MK58911-NH2 did not alter the fluorescence intensity of the cell wall-binding dye calcofluor white or the capsule-binding dye 18b7 antibody-fluorescein isothiocyanate (FITC) in C. neoformans but rather reduced the number and size of fungal cells. This activity reduced the fungal burden of C. neoformans in both macrophages and zebrafish embryos as well as within biofilms. Three fragments of the MK58911-NH2 peptide showed no activity against Cryptococcus and not toxicity in lung cells. The derivative peptide MH58911-NH2, in which the lysine residues of MK58911-NH2 were replaced by histidines, reduced the activity against extracellular and intracellular C. neoformans. On the other hand, it was active against biofilms and showed reduced toxicity. In summary, these results showed that peptide MK58911-NH2 could be a promising agent against cryptococcosis. This work also opens a perspective for the verification of the antifungal activity of other derivatives.
Collapse
|
5
|
|
6
|
Sphaerostilbellins, New Antimicrobial Aminolipopeptide Peptaibiotics from Sphaerostilbella toxica. Biomolecules 2020; 10:biom10101371. [PMID: 32993102 PMCID: PMC7600149 DOI: 10.3390/biom10101371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Sphaerostilbella toxica is a mycoparasitic fungus that can be found parasitizing wood-decay basidiomycetes in the southern USA. Organic solvent extracts of fermented strains of S. toxica exhibited potent antimicrobial activity, including potent growth inhibition of human pathogenic yeasts Candida albicans and Cryptococcus neoformans, the respiratory pathogenic fungus Aspergillus fumigatus, and the Gram-positive bacterium Staphylococcus aureus. Bioassay-guided separations led to the purification and structure elucidation of new peptaibiotics designated as sphaerostilbellins A and B. Their structures were established mainly by analysis of NMR and HRMS data, verification of amino acid composition by Marfey's method, and by comparison with published data of known compounds. They incorporate intriguing structural features, including an N-terminal 2-methyl-3-oxo-tetradecanoyl (MOTDA) residue and a C-terminal putrescine residue. The minimal inhibitory concentrations for sphaerostilbellins A and B were measured as 2 μM each for C. neoformans, 1 μM each for A. fumigatus, and 4 and 2 μM, respectively, for C. albicans. Murine macrophage cells were unaffected at these concentrations.
Collapse
|
7
|
Screening Repurposing Libraries for Identification of Drugs with Novel Antifungal Activity. Antimicrob Agents Chemother 2020; 64:AAC.00924-20. [PMID: 32660991 DOI: 10.1128/aac.00924-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fungal organisms are ubiquitous in nature, and progress of modern medicine is creating an expanding number of severely compromised patients susceptible to a variety of opportunistic fungal infections. These infections are difficult to diagnose and treat, leading to high mortality rates. The limited antifungal arsenal, the toxicity of current antifungal drugs, the development of resistance, and the emergence of new multidrug-resistant fungi, all highlight the urgent need for new antifungal agents. Unfortunately, the development of a novel antifungal is a rather long and expensive proposition, and no new classes of antifungal agents have reached the market in the last 2 decades. Drug repurposing, or finding new indications for old drugs, represents a promising alternative pathway to drug development that is particularly appealing within the academic environment. In the last few years, there has been a growing interest in repurposing approaches in the antifungal arena, with multiple groups of investigators having performed screenings of different repurposing libraries against different pathogenic fungi in search for drugs with previously unrecognized antifungal effects. Overall, these repurposing efforts may lead to the fast deployment of drugs with novel antifungal activity, which can rapidly bring benefits to patients, while at the same time reducing health care costs.
Collapse
|
8
|
Detweiler CS. Infection-based chemical screens uncover host-pathogen interactions. Curr Opin Microbiol 2020; 54:43-50. [PMID: 32036306 DOI: 10.1016/j.mib.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Bacterial pathogens must resist host innate immunity to cause disease. While Gram-negative bacteria have a protective outer membrane, this membrane is subject to host-induced damage that makes these pathogens vulnerable. We developed a high content screening platform that identifies compounds that cause the killing of the bacterial pathogen Salmonella enterica in macrophages. This platform enables the rapid discovery of compounds that work in concert with the macrophage to prevent pathogen survival, as most hit compounds are not active in standard microbiological media and are not pro-drugs. We describe within the platform and the compounds it has found, and consider how they may help us discover new ways to fight infection.
Collapse
Affiliation(s)
- Corrella S Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
9
|
Abstract
Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. This phenomenon has been most often studied for Cryptococcus neoformans, a yeast that causes roughly 180,000 deaths per year, primarily in immunocompromised (e.g., human immunodeficiency virus [HIV]) patients. Existing dogma purports that vomocytosis involves distinctive cellular pathways and intracellular physicochemical cues in the host cell during phagosomal maturation. Moreover, it has been observed that the immunological state of the individual and macrophage phenotype affect vomocytosis outcomes. Here we compile the current knowledge on the factors (with respect to the phagocytic cell) that promote vomocytosis of C. neoformans from macrophages.
Collapse
|
10
|
Li Z, Liu N, Tu J, Ji C, Han G, Sheng C. Discovery of Simplified Sampangine Derivatives with Potent Antifungal Activities against Cryptococcal Meningitis. ACS Infect Dis 2019; 5:1376-1384. [PMID: 31070884 DOI: 10.1021/acsinfecdis.9b00086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryptococcal meningitis (CM) is associated with high morbidity and mortality. Current antifungal drug therapy for CM has the following challenges: limited efficacy, significant side effects, emerging drug resistance, and unavailability in highly needed countries. There is an urgent need to develop novel CM therapeutic agents with a new mode of action. On the basis of the antifungal natural product sampangine, herein, novel simplified isoxazole derivatives were identified to possess excellent inhibitory activity against Cryptococcus neoformans (C. neoformans). Particularly, compound 9a was highly active (the minimum inhibitory concentration of 80% inhibition, MIC80 = 0.031 μg/mL) and significantly inhibited biofilm formation, melanin, and urease production of C. neoformans. 9a had good blood-brain barrier (BBB) permeability and effectively reduced the brain fungal burden in a murine model of cryptococcosis. The antifungal mechanism of compound 9a was preliminarily investigated by transmission electron microscopy and flow cytometry. It was able to cause necrocytosis of C. neoformans cells and cell cycle arrest in the G1/S phase. Isoxazole compound 9a represents a promising lead compound for the development of novel CM therapeutic agents.
Collapse
Affiliation(s)
- Zhuang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, People’s Republic of China
| | - Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Changjin Ji
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guiyan Han
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, People’s Republic of China
| |
Collapse
|
11
|
Granger DL, Call DM. Combination of nutrients in a mammalian cell culture medium kills cryptococci. Med Mycol 2019; 57:374-383. [PMID: 29878229 DOI: 10.1093/mmy/myy040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022] Open
Abstract
We found that a large inoculum of Cryptococcus gattii cells, when plated on Dulbecco's modified eagle's medium (DMEM) incorporated into agar, died within a few hours provided that DMEM agar plates had been stored in darkness for approximately 3 days after preparation. Standard conditions were developed for quantification of killing. The medium lost its fungicidal activity when exposed to visible light of wave length ∼400 nm. The amount of energy required was estimated at 5.8 × 104 joules @ 550 nm. Liquid DMEM conditioned by incubation over DMEM agar plates stored in darkness was fungicidal. We found that fungicidal activity was heat-stable (100°C). Dialysis tubing with MWC0 < 100 Daltons retained fungicidal activity. Neutral pH was required. Strains of Cryptococcus were uniformly sensitive, but some Candida species were resistant. Components of DMEM required for killing were pyridoxal and cystine. Micromolar amounts of iron shortened the time required for DMEM agar plates to become fungicidal when stored in the dark. Organic and inorganic compounds bearing reduced sulfur atoms at millimolar concentrations inhibited fungicidal activity. Our results point to a light-sensitive antifungal compound formed by reaction of pyridoxal with cystine possibly by Schiff base formation.
Collapse
Affiliation(s)
- Donald L Granger
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine.,Salt Lake City Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Donna M Call
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine
| |
Collapse
|
12
|
Almeida-Apolonio AA, Cupozak-Pinheiro WJ, Berres VM, Dantas FGS, Svidzinski TIE, Oliveira KMP, Chang MR. Control of Cryptococcus Gattii Biofilms by an Ethanolic Extract of Cochlospermum Regium (Schrank) Pilger Leaves. ScientificWorldJournal 2018; 2018:5764187. [PMID: 29977170 PMCID: PMC6011048 DOI: 10.1155/2018/5764187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus gattii is an etiologic agent of cryptococcosis and a serious disease that affects immunocompromised and immunocompetent patients worldwide. The therapeutic arsenal used to treat cryptococcosis is limited to a few antifungal agents, and the ability of C. gattii to form biofilms may hinder treatment and decrease its susceptibility to antifungal agents. The objective of this study was to evaluate the antifungal and antibiofilm activities of an ethanolic extract of Cochlospermum regium (Schrank) Pilger leaves against C. gattii. The antifungal activity was assessed by measuring the minimum inhibitory concentration (MIC) using the broth microdilution technique and interaction of the extract with fluconazole was performed of checkerboard assay. The antibiofilm activity of the extract was evaluated in 96-well polystyrene microplates, and the biofilms were quantified by counting colony forming units. The extract showed antifungal activity at concentrations of 62.5 to 250 μg/mL and when the extract was evaluated in combination with fluconazole, C. gattii was inhibited at sub-MIC levels. The antibiofilm activity of the extract against C. gattii was observed both during biofilm formation and on an already established biofilm. The results showed that the ethanolic extract of the leaves of C. regium shows promise for the development of antifungal drugs to treat cryptococcosis and to combat C. gattii biofilms.
Collapse
Affiliation(s)
| | | | - Vagner M. Berres
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS 79804-970, Brazil
| | - Fabiana G. S. Dantas
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS 79804-970, Brazil
| | - Terezinha I. E. Svidzinski
- Departamento de Análise Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil
| | - Kelly M. P. Oliveira
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS 79804-970, Brazil
| | - Marilene R. Chang
- Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| |
Collapse
|
13
|
Reens AL, Crooks AL, Su CC, Nagy TA, Reens DL, Podoll JD, Edwards ME, Yu EW, Detweiler CS. A cell-based infection assay identifies efflux pump modulators that reduce bacterial intracellular load. PLoS Pathog 2018; 14:e1007115. [PMID: 29879224 PMCID: PMC6007937 DOI: 10.1371/journal.ppat.1007115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial efflux pumps transport small molecules from the cytoplasm or periplasm outside the cell. Efflux pump activity is typically increased in multi-drug resistant (MDR) pathogens; chemicals that inhibit efflux pumps may have potential for antibiotic development. Using an in-cell screen, we identified three efflux pump modulators (EPMs) from a drug diversity library. The screening platform uses macrophages infected with the human Gram-negative pathogen Salmonella enterica (Salmonella) to identify small molecules that prevent bacterial replication or survival within the host environment. A secondary screen for hit compounds that increase the accumulation of an efflux pump substrate, Hoechst 33342, identified three small molecules with activity comparable to the known efflux pump inhibitor PAβN (Phe-Arg β-naphthylamide). The three putative EPMs demonstrated significant antibacterial activity against Salmonella within primary and cell culture macrophages and within a human epithelial cell line. Unlike traditional antibiotics, the three compounds did not inhibit bacterial growth in standard microbiological media. The three compounds prevented energy-dependent efflux pump activity in Salmonella and bound the AcrB subunit of the AcrAB-TolC efflux system with KDs in the micromolar range. Moreover, the EPMs display antibacterial synergy with antimicrobial peptides, a class of host innate immune defense molecules present in body fluids and cells. The EPMs also had synergistic activity with antibiotics exported by AcrAB-TolC in broth and in macrophages and inhibited efflux pump activity in MDR Gram-negative ESKAPE clinical isolates. Thus, an in-cell screening approach identified EPMs that synergize with innate immunity to kill bacteria and have potential for development as adjuvants to antibiotics.
Collapse
Affiliation(s)
- Abigail L. Reens
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Amy L. Crooks
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Toni A. Nagy
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - David L. Reens
- Department of Physics, University of Colorado Boulder, Boulder, CO, United States of America
- JILA, National Institutes of Standards and Technology and University of Colorado Boulder, Boulder, CO, United States of America
| | - Jessica D. Podoll
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Madeline E. Edwards
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
14
|
Truong M, Monahan LG, Carter DA, Charles IG. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ 2018; 6:e4761. [PMID: 29740519 PMCID: PMC5937474 DOI: 10.7717/peerj.4761] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/21/2018] [Indexed: 12/21/2022] Open
Abstract
Many infectious diseases disproportionately affect people in the developing world. Cryptococcal meningitis is one of the most common mycoses in HIV-AIDS patients, with the highest burden of disease in sub-Saharan Africa. Current best treatment regimens still result in unacceptably high mortality rates, and more effective antifungal agents are needed urgently. Drug development is hampered by the difficulty of developing effective antifungal agents that are not also toxic to human cells, and by a reluctance among pharmaceutical companies to invest in drugs that cannot guarantee a high financial return. Drug repurposing, where existing drugs are screened for alternative activities, is becoming an attractive approach in antimicrobial discovery programs, and various compound libraries are now commercially available. As these drugs have already undergone extensive optimisation and passed regulatory hurdles this can fast-track their progress to market for new uses. This study screened the Screen-Well Enzo library of 640 compounds for candidates that phenotypically inhibited the growth of Cryptococcus deuterogattii. The anthelminthic agent flubendazole, and L-type calcium channel blockers nifedipine, nisoldipine and felodipine, appeared particularly promising and were tested in additional strains and species. Flubendazole was very active against all pathogenic Cryptococcus species, with minimum inhibitory concentrations of 0.039-0.156 μg/mL, and was equally effective against isolates that were resistant to fluconazole. While nifedipine, nisoldipine and felodipine all inhibited Cryptococcus, nisoldipine was also effective against Candida, Saccharomyces and Aspergillus. This study validates repurposing as a rapid approach for finding new agents to treat neglected infectious diseases.
Collapse
Affiliation(s)
- Megan Truong
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Leigh G Monahan
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia.,Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
15
|
Kashef Hamadani BH, Franco-Paredes C, McCollister B, Shapiro L, Beckham JD, Henao-Martínez AF. Cryptococcosis and cryptococcal meningitis: New predictors and clinical outcomes at a United States academic medical centre. Mycoses 2018; 61:314-320. [PMID: 29284182 DOI: 10.1111/myc.12742] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022]
Abstract
As the diagnosis of cryptococcosis is challenging in low-prevalence settings, uncovering predictive factors can improve early diagnosis and timely treatment. The aim of the study was to relate clinical outcomes to predictive variables for the presence of cryptococcosis. A retrospective case-control study matched by collection date, age and gender at a 1:2 ratio (55 cases and 112 controls) was performed in case patients diagnosed with Cryptococcus infection at the University of Colorado Hospital between 2000 and 2017 (n = 167). A bivariate and a forward, stepwise multivariable logistic regression model were performed to identify predictors of cryptococcosis infection. In an adjusted multivariable model, cryptococcal infection was significantly associated with the presence of respiratory symptoms, hyponatremia, lung disease or corticosteroids. Additionally, cryptococcal meningitis was associated with headaches, corticosteroids or increased CSF protein. Conversely, a reduced risk of cryptococcosis was associated with hypertension or peripheral monocytosis. Cryptococcal meningitis leads to subsequent hearing impairment (16% vs 4% (control), P = .013), muscle weakness (40% vs 20%, P = .021), cognitive deficits (33% vs 6%, P = .0001) or any adverse outcome (84% vs 29%, P = .0001). We uncovered novel clinical predictors for the presence of cryptococcal infection or cryptococcal meningitis. This study in patients at a low-prevalence US medical centre underscores the importance of early diagnosis in this population.
Collapse
Affiliation(s)
| | - Carlos Franco-Paredes
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, USA.,Hospital Infantil de México, Federico Gómez, México City, México
| | - Bruce McCollister
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, USA
| | - Leland Shapiro
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, USA.,Division of Infectious Diseases, Denver Veterans Affairs Medical Center, Denver, CO, USA
| | - J David Beckham
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, USA.,Division of Infectious Diseases, Denver Veterans Affairs Medical Center, Denver, CO, USA
| | - Andrés F Henao-Martínez
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
16
|
Yu C, Wei S, Han X, Liu H, Wang M, Jiang M, Guo M, Dou J, Zhou C, Ma L. Effective inhibition of Cbf-14 against Cryptococcus neoformans infection in mice and its related anti-inflammatory activity. Fungal Genet Biol 2017; 110:38-47. [PMID: 29221882 DOI: 10.1016/j.fgb.2017.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 01/21/2023]
Abstract
Cbf-14 (RLLRKFFRKLKKSV), a designed peptide derived from cathelicidin family AMP, has proven to be potent against drug-resistant bacteria. In the present study, we investigated the anti-cryptococcal activity of Cbf-14 in vitro and in a pulmonary infection mouse model. Sensitivity test indicated that Cbf-14 possessed effective antifungal activity against Cryptococcus neoformans with an MIC of 4-16 µg/ml, and killing experiments showed that fungicidal activity was achieved after only 4 h treatment with Cbf-14 at 4× MIC concentrations in vitro. Meanwhile, Cbf-14 was effective at prolonging the survival of infected mice when compared with controls, and significantly inhibited the secretion of pro-inflammatory cytokines TNF-α, IL-1β and IL-6, suggesting its anti-inflammatory activity against fungal infections. As a positively charged peptide, Cbf-14 was proven to neutralize the negative zeta potential of the fungal cell surface, disrupt the capsule polysaccharide of fungi, and further damage cell membrane integrity. These results were confirmed by flow cytometry analysis of the fluorescence intensity after PI staining, while cell membrane damage could be clearly observed by transmission electron microscopy after Cbf-14 (4× MIC) treatment for 1 h. In addition, Cbf-14 increased the IL-10 levels in cultured RAW 264.7 cells, which were stimulated by C. neoformans infection. The obtained data demonstrated that Cbf-14 could rapidly kill C. neoformans cells in vitro, effectively inhibit C. neoformans induced-infection in mice, and inhibit inflammation in vitro / vivo. Therefore, Cbf-14 could potentially be used for the treatment of fungal infections clinically.
Collapse
Affiliation(s)
- Changzhong Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Shanshan Wei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Xiaorong Han
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Hanhan Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Mengxiao Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Meiling Jiang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| | - Lingman Ma
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
17
|
Troponoids Can Inhibit Growth of the Human Fungal Pathogen Cryptococcus neoformans. Antimicrob Agents Chemother 2017; 61:AAC.02574-16. [PMID: 28167553 DOI: 10.1128/aac.02574-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
Cryptococcus neoformans is a pathogen that is common in immunosuppressed patients. It can be treated with amphotericin B and fluconazole, but the mortality rate remains 15 to 30%. Thus, novel and more effective anticryptococcal therapies are needed. The troponoids are based on natural products isolated from western red cedar, and have a broad range of antimicrobial activities. Extracts of western red cedar inhibit the growth of several fungal species, but neither western red cedar extracts nor troponoid derivatives have been tested against C. neoformans We screened 56 troponoids for their ability to inhibit C. neoformans growth and to assess whether they may be attractive candidates for development into anticryptococcal drugs. We determined MICs at which the compounds inhibited 80% of cryptococcal growth relative to vehicle-treated controls and identified 12 compounds with MICs ranging from 0.2 to 15 μM. We screened compounds with MICs of ≤20 μM for cytotoxicity in liver hepatoma cells. Fifty percent cytotoxicity values (CC50s) ranged from 4 to >100 μM. The therapeutic indexes (TI, CC50/MIC) for most of the troponoids were fairly low, with most being <8. However, two compounds had TI values that were >8, including a tropone with a TI of >300. These tropones are fungicidal and are not antagonistic when used in combination with fluconazole or amphotericin B. Inhibition by these two tropones remains unchanged under conditions favoring cryptococcal capsule formation. These data support the hypothesis that troponoids may be a productive scaffold for the development of novel anticryptococcal therapies.
Collapse
|
18
|
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. mBio 2017; 8:mBio.02183-16. [PMID: 28143979 PMCID: PMC5285505 DOI: 10.1128/mbio.02183-16] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain.
Collapse
|