1
|
La Rosa C, Sharma P, Junaid Dar M, Jin Y, Qin L, Roy A, Kendall A, Wu M, Lin Z, Uchenik D, Li J, Basu S, Moitra S, Zhang K, Zhuo Wang M, Werbovetz KA. N-substituted-4-(pyridin-4-ylalkyl)piperazine-1-carboxamides and related compounds as Leishmania CYP51 and CYP5122A1 inhibitors. Bioorg Med Chem 2024; 113:117907. [PMID: 39288704 DOI: 10.1016/j.bmc.2024.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
CYP5122A1, an enzyme involved in sterol biosynthesis in Leishmania, was recently characterized as a sterol C4-methyl oxidase. Screening of a library of compounds against CYP5122A1 and CYP51 from Leishmania resulted in the identification of two structurally related classes of inhibitors of these enzymes. Analogs of screening hit N-(3,5-dimethylphenyl)-4-(pyridin-4-ylmethyl)piperazine-1-carboxamide (4a) were generally strong inhibitors of CYP51 but were less potent against CYP5122A1 and typically displayed weak inhibition of L. donovani promastigote growth. Analogs of screening hit N-(4-(benzyloxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18a) were stronger inhibitors of both CYP5122A1 and L. donovani promastigote proliferation but also remained selective for inhibition of CYP51. Two compounds in this series, N-(4-((3,5-bis(trifluoromethyl)benzyl)oxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18e) and N-(4-((3,5-di-tert-butylbenzyl)oxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18i) showed modest selectivity for inhibiting L. donovani promastigote proliferation compared to J774 macrophages and were effective against intracellular L. donovani with EC50 values in the low micromolar range. Replacement of the 4-pyridyl ring present in 18e with imidazole resulted in a compound (4-(2-(1H-imidazol-1-yl)ethyl)-N-(4-((3,5-bis(trifluoromethyl)benzyl)oxy)phenyl)piperazine-1-carboxamide, 18p) with approximately fourfold selectivity for CYP5122A1 over CYP51 that inhibited both enzymes with IC50 values ≤ 1 µM, although selective potency against L. donovani promastigotes was lost. Compound 18p also inhibited the proliferation of L. major promastigotes and caused the accumulation of 4-methylated sterols in L. major membranes, indicating that this compound blocks sterol demethylation at the 4-position in Leishmania parasites. The molecules described here may therefore be useful for the future identification of dual inhibitors of CYP51 and CYP5122A1 as potential antileishmanial drug candidates and as probes to shed further light on sterol biosynthesis in Leishmania and related parasites.
Collapse
Affiliation(s)
- Chris La Rosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Pankaj Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - M Junaid Dar
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Lingli Qin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Allie Kendall
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Meng Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Zhihong Lin
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Dmitriy Uchenik
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Elsaman H, Golubtsov E, Brazil S, Ng N, Klugherz I, Martin R, Dichtl K, Müller C, Wagener J. Toxic eburicol accumulation drives the antifungal activity of azoles against Aspergillus fumigatus. Nat Commun 2024; 15:6312. [PMID: 39060235 PMCID: PMC11282106 DOI: 10.1038/s41467-024-50609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations. Partial repression of Erg6A, which converts lanosterol into eburicol, increases azole resistance. The sterol C5-desaturase (ERG3)-dependent conversion of eburicol into 14-methylergosta-8,24(28)-dien-3β,6α-diol, the "toxic diol" responsible for the fungistatic activity against yeasts, is not required for the fungicidal effects in A. fumigatus. While ERG3-lacking yeasts are azole resistant, ERG3-lacking A. fumigatus becomes more susceptible. Mutants lacking mitochondrial complex III functionality, which are much less effectively killed, but strongly inhibited in growth by azoles, convert eburicol more efficiently into the supposedly "toxic diol". We propose that the mode of action of azoles against A. fumigatus relies on accumulation of eburicol which exerts fungicidal effects by triggering cell wall carbohydrate patch formation.
Collapse
Affiliation(s)
- Hesham Elsaman
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Evgeny Golubtsov
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sean Brazil
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Natanya Ng
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Isabel Klugherz
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ronny Martin
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Karl Dichtl
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Wagener
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland.
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
3
|
Lehner AF, Johnson SD, Dirikolu L, Johnson M, Buchweitz JP. Mass spectrometric methods for evaluation of voriconazole avian pharmacokinetics and the inhibition of its cytochrome P450-induced metabolism. Toxicol Mech Methods 2024; 34:654-668. [PMID: 38389412 DOI: 10.1080/15376516.2024.2322675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Invasive fungal aspergillosis is a leading cause of morbidity and mortality in many species including avian species such as common ravens (Corvus corax). Methods were developed for mass spectral determination of voriconazole in raven plasma as a means of determining pharmacokinetics of this antifungal agent. Without further development, GC/MS/MS (gas chromatography-tandem quadrupole mass spectrometry) proved to be inferior to LC/MS/MS (liquid chromatography-tandem quadrupole mass spectrometry) for measurement of voriconazole levels in treated raven plasma owing to numerous heat-induced breakdown products despite protection of voriconazole functional groups with trimethylsilyl moieties. LC/MS/MS measurement revealed in multi-dosing experiments that the ravens were capable of rapid or ultrarapid metabolism of voriconazole. This accounted for the animals' inability to raise the drug into the therapeutic range regardless of dosing regimen unless cytochrome P450 (CYP) inhibitors were included. Strategic selection of CYP inhibitors showed that of four selected compounds including cimetidine, enrofloxacin and omeprazole, only ciprofloxacin (Cipro) was able to maintain voriconazole levels in the therapeutic range until the end of the dosing period. The optimal method of administration involved maintenance doses of voriconazole at 6 mg/kg and ciprofloxacin at 20 mg/kg. Higher doses of voriconazole such as 18 mg/kg were also tenable without apparent induction of toxicity. Although most species employ CYP2C19 to metabolize voriconazole, it was necessary to speculate that voriconazole might be subject to metabolism by CYP1A2 in the ravens to explain the utility of ciprofloxacin, a previously unknown enzymatic route. Finally, despite its widespread catalog of CYP inhibitions including CYP1A2 and CYP2C19, cimetidine may be inadequate at enhancing voriconazole levels owing to its known effects on raising gastric pH, a result that may limit voriconazole solubility.
Collapse
Affiliation(s)
- Andreas F Lehner
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - Sharmie D Johnson
- Department of Veterinary Services, Wildlife World Zoo & Aquarium & Safari Park, Litchfield Park, AZ, USA
| | - Levent Dirikolu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Margaret Johnson
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
| | - John P Buchweitz
- Section of Toxicology, Michigan State University Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Hargrove T, Lamb DC, Wawrzak Z, Hull M, Kelly SL, Guengerich FP, Lepesheva GI. Identification of Potent and Selective Inhibitors of Acanthamoeba: Structural Insights into Sterol 14α-Demethylase as a Key Drug Target. J Med Chem 2024; 67:7443-7457. [PMID: 38683753 PMCID: PMC11089504 DOI: 10.1021/acs.jmedchem.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 μM), VT1598 (0.25 μM), and VT1161 (0.20 μM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.
Collapse
Affiliation(s)
- Tatiana
Y. Hargrove
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - David C. Lamb
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Zdzislaw Wawrzak
- Synchrotron
Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - Marcus Hull
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - Steven L. Kelly
- Faculty
of Medicine, Health and Life Science, Swansea
University, Swansea SA2 8PP, U.K.
| | - F. Peter Guengerich
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I. Lepesheva
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Nashville, Tennessee 37232, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Plano D, Rudolph N, Saal C, Abrahamsson B, Cristofoletti R, Kambayashi A, Langguth P, Mehta M, Parr A, Polli JE, Shah VP, Charoo N, Dressman J. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Isavuconazonium Sulfate. J Pharm Sci 2024; 113:386-395. [PMID: 37951471 DOI: 10.1016/j.xphs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
A Biopharmaceutics Classification System (BCS)-based biowaiver monograph is presented for isavuconazonium sulfate. A BCS-based biowaiver is a regulatory option to substitute appropriate in vitro data for in vivo bioequivalence studies. Isavuconazonium sulfate is the prodrug of isavuconazole, a broad-spectrum azole antifungal indicated for invasive fungal infections. While the prodrug can be classified as a BCS Class III drug with high solubility but low permeability, the parent drug can be classified as a BCS Class II drug with low solubility but high permeability. Interestingly, the in vivo behavior of both is additive and leads isavuconazonium sulfate to act like a BCS class I drug substance after oral administration. In this work, experimental solubility and dissolution data were evaluated and compared with available literature data to investigate whether it is feasible to approve immediate release solid oral dosage forms containing isavuconazonium sulfate according to official guidance from the FDA, EMA and/or ICH. The risks associated with waiving a prodrug according to the BCS-based biowaiver guidelines are reviewed and discussed, noting that current regulations are quite restrictive on this point. Further, results show high solubility but instability of isavuconazonium sulfate in aqueous media. Although experiments on the dissolution of the capsule contents confirmed 'very rapid' dissolution of the active pharmaceutical ingredient (API) isavuconazonium sulfate, its release from the commercial marketed capsule formulation Cresemba is limited by the choice of capsule shell material, providing an additional impediment to approval of generic versions via the BCS-Biowaiver approach.
Collapse
Affiliation(s)
- David Plano
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Niklas Rudolph
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Christoph Saal
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827, USA
| | - Atsushi Kambayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Peter Langguth
- Institute of Pharmacy, Johannes Gutenberg University, Mainz, Germany
| | - Mehul Mehta
- United States Food and Drug Administration, Centre for Drug Evaluation and Research, Silver Spring, Maryland 20993, USA
| | - Alan Parr
- BioCeutics LLC, Cary , North Carolina 27511, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 20742, USA
| | - Vinod P Shah
- The International Pharmaceutical Federation (FIP), The Hague, the Netherlands
| | - Naseem Charoo
- Adcan Pharma LLC, ICAD III, Mussafah, Abu Dhabi, United Arab Emirates
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Jäger MC, Joos FL, Winter DV, Odermatt A. Characterization of the interferences of systemic azole antifungal drugs with adrenal steroid biosynthesis using H295R cells and enzyme activity assays. Curr Res Toxicol 2023; 5:100119. [PMID: 37637492 PMCID: PMC10458698 DOI: 10.1016/j.crtox.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Azole antifungals, designed to inhibit fungal CYP51, have a liability to inhibit human CYP enzymes. Whilst drug-metabolizing CYPs are covered in preclinical safety assessment, those metabolizing endogenous bioactive molecules are usually not. Posaconazole and itraconazole were recently found to cause pseudohyperaldosteronism with hypokalemia and hypertension by inhibiting CYP11B1-dependent adrenal cortisol biosynthesis. Because this was overlooked in preclinical safety assessment, the present study tested whether applying adrenal carcinoma H295R cells could have predicted this liability and whether other systemic triazole antifungals interfere with adrenal steroidogenesis. Forskolin-stimulated H295R cells were exposed to systemic triazole antifungals that are currently used, and key adrenal steroids were quantified by UHPLC-MS/MS. To support the findings from the H295R model, activity assays for steroidogenic enzymes were performed. The analysis of the steroid profiles and product/substrate ratios predicted the CYP11B1 and CYP11B2 inhibition by posaconazole and itraconazole. Comparison of their steroid profiles allowed distinguishing their effects and suggested inhibition of adrenal androgen synthesis by posaconazole but not itraconazole, which was confirmed by CYP17A1 17,20-lyase activity measurements. In line with clinical observations, there was no evidence from these experiments for an inhibition of either CYP11B1/2 or CYP17A1 by voriconazole, fluconazole or isavuconazole. However, itraconazole and isavuconazole exerted an overall inhibition of steroidogenesis by a mechanism warranting further investigations. In conclusion, analyses of steroid profiles from the H295R assay and product/substrate ratios provide important information on the interference of a chemical with adrenal steroidogenesis and the underlying mechanism. This approach facilitates prioritization of further investigations, including enzyme expression and activity studies.
Collapse
Affiliation(s)
- Marie-Christin Jäger
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Friedrich L. Joos
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Denise V. Winter
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Goldstone JV, Lamb DC, Kelly SL, Lepesheva GI, Stegeman JJ. Structural modeling of cytochrome P450 51 from a deep-sea fish points to a novel structural feature in other CYP51s. J Inorg Biochem 2023; 245:112241. [PMID: 37209461 PMCID: PMC10330650 DOI: 10.1016/j.jinorgbio.2023.112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Cytochromes P450 (CYP), enzymes involved in the metabolism of endogenous and xenobiotic substrates, provide an excellent model system to study how membrane proteins with unique functions have catalytically adapted through evolution. Molecular adaptation of deep-sea proteins to high hydrostatic pressure remains poorly understood. Herein, we have characterized recombinant cytochrome P450 sterol 14α-demethylase (CYP51), an essential enzyme of cholesterol biosynthesis, from an abyssal fish species, Coryphaenoides armatus. C. armatus CYP51 was heterologously expressed in Escherichia coli following N-terminal truncation and purified to homogeneity. Recombinant C. armatus CYP51 bound its sterol substrate lanosterol giving a Type I binding spectra (KD 15 μM) and catalyzed lanosterol 14α-demethylation turnover at 5.8 nmol/min/nmol P450. C. armatus CYP51 also bound the azole antifungals ketoconazole (KD 0.12 μM) and propiconazole (KD 0.54 μM) as determined by Type II absorbance spectra. Comparison of C. armatus CYP51 primary sequence and modeled structures with other CYP51s identified amino acid substitutions that may confer an ability to function under pressures of the deep sea and revealed heretofore undescribed internal cavities in human and other non-deep sea CYP51s. The functional significance of these cavities is not known. PROLOGUE: This paper is dedicated in memory of Michael Waterman and Tsuneo Omura, who as good friends and colleagues enriched our lives. They continue to inspire us.
Collapse
Affiliation(s)
- Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David C Lamb
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
8
|
Meagher RB, Lewis ZA, Ambati S, Lin X. DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs. Adv Drug Deliv Rev 2023; 196:114776. [PMID: 36934519 PMCID: PMC10133202 DOI: 10.1016/j.addr.2023.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Combatting the ever-increasing threat from invasive fungal pathogens faces numerous fundamental challenges, including constant human exposure to large reservoirs of species in the environment, the increasing population of immunocompromised or immunosuppressed individuals, the unsatisfactory efficacy of current antifungal drugs and their associated toxicity, and the scientific and economic barriers limiting a new antifungal pipeline. DectiSomes represent a new drug delivery platform that enhances antifungal efficacy for diverse fungal pathogens and reduces host toxicity for current and future antifungals. DectiSomes employ pathogen receptor proteins - C-type lectins - to target drug-loaded liposomes to conserved fungal cognate ligands and away from host cells. DectiSomes represent one leap forward for urgently needed effective pan-antifungal therapy. Herein, we discuss the problems of battling fungal diseases and the state of DectiSome development.
Collapse
Affiliation(s)
- Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zachary A Lewis
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Lavergne RA, Albassier M, Hardouin JB, Alvarez-Moreno C, Pagniez F, Morio F, Le Pape P, Ourliac-Garnier I. Impact of TR 34/L98H, TR 46/Y121F/T289A and TR 53 Alterations in Azole-Resistant Aspergillus fumigatus on Sterol Composition and Modifications after In Vitro Exposure to Itraconazole and Voriconazole. Microorganisms 2022; 10:microorganisms10010104. [PMID: 35056552 PMCID: PMC8778474 DOI: 10.3390/microorganisms10010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sterols are the main components of fungal membranes. Inhibiting their biosynthesis is the mode of action of azole antifungal drugs that are widely used to treat fungal disease including aspergillosis. Azole resistance has emerged as a matter of concern but little is known about sterols biosynthesis in azole resistant Aspergillus fumigatus. METHODS We explored the sterol composition of 12 A. fumigatus isolates, including nine azole resistant isolates with TR34/L98H, TR46/Y121F/T289A or TR53 alterations in the cyp51A gene and its promoter conferring azole resistance. Modifications in sterol composition were also investigated after exposure to two azole drugs, itraconazole and voriconazole. RESULTS Overall, under basal conditions, sterol compositions were qualitatively equivalent, whatever the alterations in the target of azole drugs with ergosterol as the main sterol detected. Azole exposure reduced ergosterol composition and the qualitative composition of sterols was similar in both susceptible and resistant isolates. Interestingly TR53 strains behaved differently than other strains. CONCLUSIONS Elucidating sterol composition in azole-susceptible and resistant isolates is of interest for a better understanding of the mechanism of action of these drugs and the mechanism of resistance of fungi.
Collapse
Affiliation(s)
- Rose-Anne Lavergne
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (R.-A.L.); (F.M.); (P.L.P.)
| | - Marjorie Albassier
- Nantes Université, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (M.A.); (F.P.)
| | - Jean-Benoît Hardouin
- Nantes Université, Univ Tours, INSERM, Methods in Patients-Centered Outcomes and Health Research, SPHERE, UMR 1246, F-44000 Nantes, France;
- Service de Santé Publique et Plateforme de Méthodologie et Biostatistique, CHU de Nantes, F-44000 Nantes, France
| | - Carlos Alvarez-Moreno
- Departamento de Medicina Interna, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111176, Colombia;
- Clínica Colsanitas Groupo Keralty, Clínica Universitaria Colombia, Bogotá 111176, Colombia
| | - Fabrice Pagniez
- Nantes Université, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (M.A.); (F.P.)
| | - Florent Morio
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (R.-A.L.); (F.M.); (P.L.P.)
| | - Patrice Le Pape
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (R.-A.L.); (F.M.); (P.L.P.)
| | - Isabelle Ourliac-Garnier
- Nantes Université, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (M.A.); (F.P.)
- Correspondence:
| |
Collapse
|
10
|
Liang T, Chen W, Yang X, Wang Q, Wan Z, Li R, Liu W. The Elevated Endogenous Reactive Oxygen Species Contribute to the Sensitivity of the Amphotericin B-Resistant Isolate of Aspergillus flavus to Triazoles and Echinocandins. Front Microbiol 2021; 12:680749. [PMID: 34413836 PMCID: PMC8369828 DOI: 10.3389/fmicb.2021.680749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Aspergillus flavus has been frequently reported as the second cause of invasive aspergillosis (IA), as well as the leading cause in certain tropical countries. Amphotericin B (AMB) is a clinically important therapy option for a range of invasive fungal infections including invasive aspergillosis, and in vitro resistance to AMB was associated with poor outcomes in IA patients treated with AMB. Compared with the AMB-susceptible isolates of A. terreus, the AMB-resistant isolates of A. terreus showed a lower level of AMB-induced endogenous reactive oxygen species (ROS), which was an important cause of AMB resistance. In this study, we obtained one AMB-resistant isolate of A. flavus, with an AMB MIC of 32 μg/mL, which was sensitive to triazoles and echinocandins. This isolate presented elevated endogenous ROS levels, which strongly suggested that no contribution of decreased AMB-induced endogenous ROS for AMB-resistance, opposite to those observed in A. terreus. Further, we confirmed that the elevated endogenous ROS contributed to the sensitivity of the AMB-resistant A. flavus isolate to triazoles and echinocandins. Further investigation is needed to elucidate the causes of elevated endogenous ROS and the resistance mechanism to AMB in A. flavus.
Collapse
Affiliation(s)
- Tianyu Liang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Chen
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xinyu Yang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
11
|
A physiologically based pharmacokinetic analysis to predict the pharmacokinetics of intravenous isavuconazole in patients with or without hepatic impairment. Antimicrob Agents Chemother 2021; 65:AAC.02032-20. [PMID: 33619060 PMCID: PMC8092901 DOI: 10.1128/aac.02032-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Isavuconazole (ISA) is an azole antifungal used in the treatment of invasive aspergillosis and mucormycosis. Patients with mild and moderate hepatic impairment have lower clearance (CL) as compared to the healthy population. Currently, there is no data on ISA in patients with severe hepatic impairment (Child-Pugh Class C). The purpose of this study was to build a physiologically based pharmacokinetic (PBPK) model to describe the pharmacokinetics (PK) of intravenous ISA, and to predict changes in ISA disposition in different patient populations and in patients with hepatic impairment to guide personalized dosing. By incorporating the systemic and drug specific parameters of ISA, the model was initially developed in healthy population and validated with 10 independent PK profiles obtained from healthy subjects and from patients with normal liver function. The results showed a satisfactory predictive capacity, with most of the relative predictive errors being between ±30% for area under the curve (AUC) and Cmax The observed plasma concentration-time profiles of ISA were well described by the model predicted profiles. The model adequately predicted the reduced CL of ISA in patients with mild and moderate hepatic impairment. Furthermore, the model predicted a decrease in CL of about 60% in patients with severe hepatic impairment. Therefore, we recommend reducing the dose by 50% in patients with severe hepatic impairment. The model also predicted differences in the PK of ISA between Caucasian and Asian population, with the CL ratio of 0.67 in Chinese vs Caucasian population. The developed PBPK model of ISA provides a reasonable approach for optimizing the dosage regimen in different ethnic populations and in patients with severe hepatic impairment.
Collapse
|