1
|
Siniagina MN, Laikov AV, Markelova MI, Boulygina EA, Khusnutdinova DR, Abdulkhakov SR, Grigoryeva TV. Competitive ability of <i>Escherichia coli</i> strains in the intestinal microbiota of patients with Crohn's disease and healthy volunteers: physiological, biochemical and genetic characteristics. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction. Crohn's disease (CD) is a chronic inflammation of various parts of the gastrointestinal tract with an increased proportion of Escherichia coli. However, the role of E. coli in disease remains unclear.
This study aims to evaluate the competitive abilities of E. coli strains from CD patients and healthy volunteers, and to identify the biochemical and genetic determinants underlying these features.
Materials and methods. The antagonistic activity was assessed by co-cultivation of 11 clinical E. coli strains inhibiting the growth of the K-12, with Enterobacter cloacae, Klebsiella pneumonia and Salmonella enterica. To elucidate the mechanism of antagonistic activity, the evaluation of biochemical properties and a comparative genomic analysis were used.
Results and discussion. Genes of bacteriocin production systems were identified in genomes of 11 strains from CD patients and healthy volunteers active against the E. coli K-12 strain. Three strains from healthy individuals demonstrated activity against several Enterobacteriaceae bacteria. The strains biochemical properties were typical of representatives of E. coli. Strains 1_34_12, active against E. cloacae, and 1_45_11, inhibiting all tested enterobacteria, are phylogenetically related to the laboratory strain K-12. Strain 1_39_1, active against K. pneumonia and S. enterica, is phylogenetically close to the Nissle1917, contains the genes for colibactin biosynthesis and a variant of the fimH gene that increases the adhesive ability of bacteria.
Conclusion. The identified E. coli strains are able to displace Enterobacteriaceae bacteria and can be used to study the bacteria-bacteria and host-bacteria interactions, to understand their role in gut homeostasis and intestinal inflammation.
Collapse
|
2
|
Zhao X, Miao Y, Adam FEA, Zhao H, Zhou Z, Su M, Li R, Yang B, Lv Z, Xiao S, Wang X, Wang J, Yang Z. ESBLs-producing Escherichia coli from sheep-origin: Genome-wide virulence genes identification and in vivo virulence assessment in mice and Galleria mellonella. Transbound Emerg Dis 2022; 69:3606-3617. [PMID: 36222239 DOI: 10.1111/tbed.14729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 02/07/2023]
Abstract
The worldwide spread of pathogenic Escherichia coli, together with the multidrug resistant linked with extended-spectrum β-lactamases (blaCTX-M , blaTEM and blaOXA ), not only affect the health of animals and humans but also bring huge economic losses to animal husbandry. Despite the high levels of virulence present in many extended-spectrum beta-lactamases (ESBLs)-producing E. coli isolates, however, few studies have comprehensively assessed the pathogenicity of ESBLs-producing E. coli isolates. Thus, the aim of the present study was to investigate the presence of virulence genes in third-generation cephalosporin-resistant E. coli and to assess their pathogenicity and zoonotic potential. Previously, we identified 67 ESBLs-producing E. coli strains from sheep anal swabs in northwest China. In this study, we genotypically and phenotypically characterized isolates of E. coli that produce ESBLs. According to the VirulenceFinder and virulence factors database, all ESBLs-producing E. coli strains harboured a wide range of virulence genes. The ColV plasmid-related genes (hlyF, ompT, iss, iutA and cvaC) were present in 52 (77.6%) ESBLs-producing E. coli isolates. Surprisingly, quite a number of extraintestinal pathogenic E. coli virulence-related genes were detected in 62 (92.5%) of 67 isolates. A total of 33 serotypes and 37 sequence types (STs) were found in 67 ESBLs-producing isolates. ST10 is the most prevalent ST, which is represented by five strains. The cluster analysis showed that CC10 and CC23 were the common clonal complexes (CCs). Predominant serotypes were O8 (10%) and O9 (9%) followed by 6% each of O89, O101 and O185. Most sheep-origin ESBLs-producing E. coli held the highly pathogenic to human and displayed moderate-to-vigorous-intensity motor capacity. The ESBLs-producing E. coli isolates with numerous virulence-related genes were able to cause multiple infectious diseases in animal models (mice, neonatal rats and Galleria mellonella). To our knowledge, this study represents an important first step for a comprehensive characterization of pathogenicity and zoonotic potential of sheep-origin ESBLs-producing E. coli isolates. These findings may be of significant value for the identification of pathogenicity and zoonotic potential risks associated with sheep-origin ESBLs-producing E. coli.
Collapse
Affiliation(s)
- Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Haoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilian Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengru Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zexun Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Jagielski P, Wnęk D, Łuszczki E, Bolesławska I, Micek A, Kozioł-Kozakowska A, Piórecka B, Koczur K, Jankowska K, Gaździńska A, Turczyńska M, Kawalec P. Proposition of a New POLA Index to Assess the Immunomodulatory Properties of the Diet and Its Relationship with the Gut Microbiota, Using the Example of the Incidence of COVID-19 in a Group of People without Comorbidities. Nutrients 2022; 14:4227. [PMID: 36296911 PMCID: PMC9607188 DOI: 10.3390/nu14204227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/26/2022] Open
Abstract
A rise in the incidence of infections with severe acute respiratory syndrome coronavirus 2 has sparked the search for protective strategies against the new pathogen. It is known that individual food components can interact with different immune cells, modulating the immune response of the body. The aim of this study was to develop an index assessing the immunomodulatory potential of diet (POLA index) and to test its utility for the prediction of coronavirus disease 2019 (COVID-19) in a group of healthy young people following a traditional or vegetarian diet. Data on body composition, anthropometric measurements, physical activity, dietary intake, and gut microbiota were obtained from 95 adults (mean age, 34.66 ± 5.76 years). There was a strong correlation between the dietary inflammatory index and the POLA index (r = 0.90; p < 0.0001). Based on Cohen’s kappa statistic, there was a good agreement in qualitative interpretation between the two indices (kappa = 0.61; p < 0.0001). People on a diet with beneficial immunomodulatory effects had a lower risk of COVID-19 of approximately 80%, as compared with those on a diet with highly unbeneficial immunomodulatory effects. In daily practice, the POLA index might serve as a useful tool for dietitians to identify individuals whose diet is deficient in ingredients for optimal immune system function and change their dietary behavior to ensure optimal immune function that reduces the risk of infection.
Collapse
Affiliation(s)
- Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| | - Dominika Wnęk
- The Cracow’s Higher School of Health Promotion, 31-158 Krakow, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, 35-310 Rzeszów, Poland
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 3 Rokietnicka Str., 60-806 Poznań, Poland
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, 31-007 Cracow, Poland
| | - Agnieszka Kozioł-Kozakowska
- Department of Pediatrics, Gastroenterology and Nutrition, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Beata Piórecka
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| | - Karolina Koczur
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| | - Katarzyna Jankowska
- Department of Endocrinology, Bielanski Hospital, Center of Postgraduate Medical Education, ul. Cegłowska 80, 01-809 Warsaw, Poland
| | - Agata Gaździńska
- Laboratory of Dietetics and Obesity Treatment, Department of Psychophysiological Measurements and Human Factor Research, Military Institute of Aviation Medicine, Krasińskiego 54/56, 01-755 Warsaw, Poland
| | - Marta Turczyńska
- Laboratory of Dietetics and Obesity Treatment, Department of Psychophysiological Measurements and Human Factor Research, Military Institute of Aviation Medicine, Krasińskiego 54/56, 01-755 Warsaw, Poland
| | - Paweł Kawalec
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College,31-066 Krakow, Poland
| |
Collapse
|
4
|
Hwanhlem N, Salaipeth L, Charoensook R, Kanjan P, Maneerat S. Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential. J Microbiol Biotechnol 2022; 32:355-364. [PMID: 35058398 PMCID: PMC9628785 DOI: 10.4014/jmb.2110.10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39°C, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.
Collapse
Affiliation(s)
- Noraphat Hwanhlem
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand,Corresponding author Phone: +6655962737 E-mail:
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rangsun Charoensook
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pochanart Kanjan
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000 Thailand
| | - Suppasil Maneerat
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Tian T, Xie W, Liu L, Fan S, Zhang H, Qin Z, Yang C. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34955061 DOI: 10.1080/10408398.2021.2019673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Last several years, a rapid increase in drug resistance to traditional antibiotics has driven the emergence and development of antimicrobial peptides (AMPs). AMPs have also gained considerable attention from scientists due to their high potency in combatting infectious pathogens. A subset of analogues and their derivatives with specific targets have been successfully designed based on natural peptide patterns. In this review, scientific knowledge on the mechanisms of action related to biological activity and structure-activity relationship (SAR) of AMPs are summarized, and the biological applications in several important fields are critically discussed. SAR shows that the positive charge, secondary structure, special amino acid residues, hydrophobicity, and helicity of AMPs are closely related to their biological activities. The combination of nanotechnology, bioinformatics, and genetic engineering can accelerate to achieve the application of AMPs as effective, safe, economical, and nonresistant antimicrobial agents in medicine, the food and feed industries, and agriculture in coming years. Given the intense interest in AMPs, further investigations are needed in the future to evaluate the specific structure and function that make their use favorable in several industries. This review may provide a comprehensive reference for future studies on chemical modifications, mechanistic exploration, and applications of AMPs.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, China
| | - Luxuan Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chao Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China.,State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied research in Medicine and Health, University of Science and Technology, Taipa, Macao, China
| |
Collapse
|