1
|
Guzmán-Pincheira C, Moeini A, Oliveira PE, Abril D, Paredes-Padilla YA, Benavides-Valenzuela S. Development of Alginate-Chitosan Bioactive Films Containing Essential Oils for Use in Food Packaging. Foods 2025; 14:256. [PMID: 39856921 PMCID: PMC11764708 DOI: 10.3390/foods14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The effect on the physical, mechanical, and antibacterial properties of films composed of alginate-chitosan with the incorporation of oregano (EOO) or thyme (EOT) essential oils was evaluated. These films showed a thickness between 37.7 and 38.2 µm, with no significant differences for essential oil content. Water vapor permeability decreased from 4.03 (oil-free film) to 1.65 (g/msPa) × 10-9 in 3% EO. Mechanical properties reflected a reduction in tensile strength (TS) from 73 (oil-free films) to values between 34 and 38 MPa with 3% EO, while elongation (E%) increased from 4.8% to 10.4-11.8%. Regarding antibacterial capacity, as the concentration of essential oil increases, the antibacterial capacity also increases. On average, the increase from 1.0% to 3.0% of EOO increased the antimicrobial capacity against Gram-negative and Gram-positive bacteria. EOO outperformed EOT against E. coli and L. monocytogenes. In addition, films with 2-3% EOT showed a significant dark yellow color compared to the control. These results suggest that films with the addition of oregano and thyme essential oils can be promising for food packaging applications with the ability to improve food safety and increase product shelf life by achieving functional packaging characteristics.
Collapse
Affiliation(s)
- Carla Guzmán-Pincheira
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| | - Arash Moeini
- Research Group of Fluid Dynamics, Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Patricia E. Oliveira
- Departamento de Ingeniería de Procesos Industriales, Núcleo de Investigación en Bioproductos y Materiales Avanzados, Universidad Católica de Temuco, Temuco 4810399, Chile;
| | - Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad del Maule, Talca 3460000, Chile;
| | - Yeni A. Paredes-Padilla
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| | - Sergio Benavides-Valenzuela
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| |
Collapse
|
2
|
Kang J, Zajforoushan Moghaddam S, Thormann E. Self-Cross-Linkable Chitosan-Alginate Complexes Inspired by Mussel Glue Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15499-15506. [PMID: 37870990 DOI: 10.1021/acs.langmuir.3c01750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this study, mussel-inspired chemistry, based on catechol-amine reactions, was adopted to develop self-cross-linkable chitosan-alginate (Chi-Alg) complexes. To do so, the biopolymers were each substituted with ∼20% catechol groups (ChiC and AlgC), and then four complex combinations (Chi-Alg, ChiC-Alg, Chi-AlgC, ChiC-AlgC) were prepared at the surface and in bulk solution. Based on QCM-D and lap shear adhesion tests, the complex with catechol only on Chi (ChiC-Alg) did not show a significant variation from the control complex (Chi-Alg). Conversely, the complexes with catechol on alginate (Chi-AlgC and ChiC-AlgC) rendered a self-cross-linking property and enhanced cohesive properties.
Collapse
Affiliation(s)
- Junjie Kang
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Blagodatskikh IV, Vyshivannaya OV, Tishchenko NA, Orlov VN, Tikhonov VE, Bezrodnykh EA, Ezernitskaya MA, Khokhlov AR. Complexation between chitosan and carboxymethyl cellulose in weakly acidic, neutral, and weakly alcaline media. Int J Biol Macromol 2023:125277. [PMID: 37301345 DOI: 10.1016/j.ijbiomac.2023.125277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The interaction between carboxymethyl cellulose and partially reacetylated chitosan soluble in acidic and alkaline aqueous media is studied by light scattering and isothermal titration calorimetry in a wide pH range. It is shown that the formation of polyelectrolyte complexes (PEC) can occur in the pH range of 6-8, while this pair of polyelectrolytes loses the ability to complexation upon transition to a more alkaline medium. The revealed dependence of the observed enthalpy of interaction on the ionization enthalpy of the buffer indicates the participation of proton transfer from the buffer substance to chitosan and its additional ionization in the binding process. This phenomenon is first observed in a mixture of a weak polybase chitosan and a weak polyacid. The possibility to obtain soluble nonstoichiometric PEC by a direct mixing of the components in a weakly alkaline medium is shown. The resulting PECs are polymolecular particles in shape close to homogeneous spheres with a radius of about 100 nm. The obtained results are promising for creating of biocompatible and biodegradable drug delivery systems.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow 119334, Russia.
| | - Oxana V Vyshivannaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow 119334, Russia
| | - Nikita A Tishchenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow 119334, Russia
| | - Victor N Orlov
- A.N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow, 119992, Russia
| | - Vladimir E Tikhonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow 119334, Russia
| | - Evgeniya A Bezrodnykh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow 119334, Russia
| | - Mariam A Ezernitskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow 119334, Russia
| | - Alexey R Khokhlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow 119334, Russia; Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Rheological, morphological and swelling properties of dysprosium-based composite hydrogel beads of alginate and chitosan: A promising material for the effective cationic and anionic dye removal. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Effects of Chitosan Molecular Weight and Degree of Deacetylation on Chitosan-Cellulose Nanocrystal Complexes and Their Formation. Molecules 2023; 28:molecules28031361. [PMID: 36771029 PMCID: PMC9920826 DOI: 10.3390/molecules28031361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
This study was conducted to determine the effects of chitosan molecular weight and degree of deacetylation (DD) on chitosan-cellulose nanocrystal (CNC) polyelectrolyte-macroion complexes (PMCs) and their formation. Chitosan samples with three different molecular weights (81, 3 · 103, 6 · 103 kDa) and four different DDs (77, 80, 85, 89%) were used. The effects on PMC formation were determined by turbidimetric titration. An effect of the molecular weight of chitosan was not observed in turbidimetric titrations. Turbidity levels were higher for CNCs with lower sulfate group density and larger hydrodynamic diameter than for CNCs with higher sulfate group density and smaller hydrodynamic diameter. Conversely, turbidity levels were higher for chitosans with higher DD (higher charge density) than for chitosans with lower DD (lower charge density). PMC particles from chitosans with different molecular weights were characterized by scanning electron microscopy, laser Doppler electrophoresis, and dynamic light scattering. PMCs from high-molecular-weight chitosan were more spherical and those from medium-molecular-weight chitosan had a slightly larger hydrodynamic diameter than PMCs from the respective other two chitosans. The molecular weight of the chitosan was concluded to have no effect on the formation of chitosan-CNC PMC particles and only a minor effect on the shape and size of the particles. The higher turbidity levels for CNCs with lower sulfate group density and larger hydrodynamic diameter and for chitosans with higher DD were attributed to a larger number of CNCs being required for charge compensation.
Collapse
|
6
|
Elghobashy SA, Abeer Mohammed AB, Tayel AA, Alshubaily FA, Abdella A. Thyme/garlic essential oils loaded chitosan–alginate nanocomposite: Characterization and antibacterial activities. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
For controlling pathogenic bacteria using nanopolymer composites with essential oils, the formulation of chitosan/alginate nanocomposites (CS/ALG NCs) loaded with thyme oil, garlic oil, and thyme/garlic oil was investigated. Oils were encapsulated in CS/ALG NCs through oil-in-water emulsification and ionic gelation. The CS/ALG NCs loaded with oils of garlic, thyme, and garlic–thyme complex had mean diameters of 143.8, 173.9, and 203.4 nm, respectively. They had spherical, smooth surfaces, and zeta potential of +28.4 mV for thyme–garlic-loaded CS/ALG NCs. The bactericidal efficacy of loaded NCs with mixed oils outperformed individual loaded oils and ampicillin, against foodborne pathogens. Staphylococcus aureus was the most susceptible (with 28.7 mm inhibition zone and 12.5 µg·mL−1 bactericidal concentration), whereas Escherichia coli was the most resistant (17.5 µg·mL−1 bactericidal concentration). Scanning electron microscopy images of bacteria treated with NCs revealed strong disruptive effects on S. aureus and Aeromonas hydrophila cells; treated cells were totally exploded or lysed within 8 h. These environmentally friendly nanosystems might be a viable alternative to synthetic preservatives and be of interest in terms of health and food safety.
Collapse
Affiliation(s)
- Shrifa A. Elghobashy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - A. B. Abeer Mohammed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC) , El-Sadat City 32897 , Egypt
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Asmaa Abdella
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC) , El-Sadat City 32897 , Egypt
| |
Collapse
|
7
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
8
|
Sodium Alginate—Natural Microencapsulation Material of Polymeric Microparticles. Int J Mol Sci 2022; 23:ijms232012108. [PMID: 36292962 PMCID: PMC9603258 DOI: 10.3390/ijms232012108] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
From the multitude of materials currently available on the market that can be used in the development of microparticles, sodium alginate has become one of the most studied natural anionic polymers that can be included in controlled-release pharmaceutical systems alongside other polymers due to its low cost, low toxicity, biocompatibility, biodegradability and gelatinous die-forming capacity in the presence of Ca2+ ions. In this review, we have shown that through coacervation, the particulate systems for the dispensing of drugs consisting of natural polymers are nontoxic, allowing the repeated administration of medicinal substances and the protection of better the medicinal substances from degradation, which can increase the capture capacity of the drug and extend its release from the pharmaceutical form.
Collapse
|
9
|
Safi C, Solano AG, Liberelle B, Therriault H, Delattre L, Abdelkhalek M, Wang C, Bergeron-Fortier S, Moreau V, De Crescenzo G, Faucheux N, Lauzon MA, Paquette B, Virgilio N. Effect of Chitosan on Alginate-Based Macroporous Hydrogels for the Capture of Glioblastoma Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4531-4540. [PMID: 35948423 DOI: 10.1021/acsabm.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme is a type of brain cancer associated with a very low survival rate since a large number of cancer cells remain infiltrated in the brain despite the treatments currently available. This work presents a macroporous hydrogel trap, destined to be implanted in the surgical cavity following tumor resection and designed to attract and retain cancer cells, in order to eliminate them afterward with a lethal dose of stereotactic radiotherapy. The biocompatible hydrogel formulation comprises sodium alginate (SA) and chitosan (CHI) bearing complementary electrostatic charges and stabilizing the gels in saline and cell culture media, as compared to pristine SA gels. The highly controlled and interconnected porosity, characterized by X-ray microCT, yields mechanical properties comparable to those of brain tissues and allows F98 glioblastoma cells to penetrate the gels within the entire volume, as confirmed by fluorescence microscopy. The addition of a grafted -RGD peptide on SA, combined with CHI, significantly enhances the adhesion and retention of F98 cells within the gels. Overall, the best compromise between low proliferation and a high level of accumulation and retention of F98 cells was obtained with the hydrogel formulated with 1% SA and 0.2% CHI, without the -RGD adhesion peptide.
Collapse
Affiliation(s)
- Caroline Safi
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Angela Giraldo Solano
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Lisa Delattre
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Melek Abdelkhalek
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Changsheng Wang
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Simon Bergeron-Fortier
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Vaiana Moreau
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nick Virgilio
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
10
|
Rial R, Hassan N, Liu Z, Ruso JM. The design and green nanofabrication of noble hydrogel systems with encapsulation of doped bioactive hydroxyapatite toward sustained drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Zhao J, Wang X, Deng X, Liu K. Chitosan-based nanoparticles for controlled release of hydrophobic and hydrophilic drugs. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanoparticles encapsulating different kinds of therapeutic drugs are promising drug delivery systems for controlling release and targeting tumor cells. Chitosan nanoparticles made by polyelectrolyte complexation were designed as drug carriers using doxorubicin (DOX)/5-fluorouracil (5-FU) as hydrophobic/hydrophilic model drugs. The sizes of nanoparticles were 235 ± 13 and 177 ± 7 nm with narrow distributions. The effects of the initial drug amount and pH of the medium on drug-controlled release properties were evaluated, the model-fitting results and release mechanisms were analyzed as well. For 5-FU-loaded chitosan nanoparticles, the controlled-release effect was superior to that of DOX, indicating that the polyelectrolyte complex nanoparticles were more suitable for hydrophilic drugs, particularly for negatively charged or electrically neutral drugs. Moreover, the release behaviors conformed with the first-order kinetic model, indicating that the nanoparticles were mainly released by diffusion during the drug release process; the system could also be fitted using the Higuchi model, showing that the entire drug release process was dominated by diffusion and supplemented by gradual dissolution. In all, the results suggested that chitosan nanoparticles made by polyelectrolyte complexation can be launched as a smart drug delivery system for cancer treatments.
Collapse
Affiliation(s)
- Jing Zhao
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, People’s Republic of China
| | - Xiaoran Wang
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, People’s Republic of China
| | - Xingyue Deng
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, People’s Republic of China
| | - Kaiwen Liu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, People’s Republic of China
| |
Collapse
|
12
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
13
|
Medvecky L, Štulajterová R, Giretova M, Luptakova L, Sopčák T. Injectable Enzymatically Hardened Calcium Phosphate Biocement. J Funct Biomater 2020; 11:jfb11040074. [PMID: 33053846 PMCID: PMC7711669 DOI: 10.3390/jfb11040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The preparation and characterization of novel fully injectable enzymatically hardened tetracalcium phosphate/monetite cements (CXI cements) using phytic acid/phytase (PHYT/F3P) hardening liquid with a small addition of polyacrylic acid/carboxymethyl cellulose anionic polyelectrolyte (PAA/CMC) and enhanced bioactivity. (2) Methods: Composite cements were prepared by mixing of calcium phosphate powder mixture with hardening liquid containing anionic polyelectrolyte. Phase and microstructural analysis, compressive strength, release of ions and in vitro testing were used for the evaluation of cement properties. (3) Results: The simple possibility to control the setting time of self-setting CXI cements was shown (7–28 min) by the change in P/L ratio or PHYT/F3P reaction time. The wet compressive strength of cements (up to 15 MPa) was close to cancellous bone. The increase in PAA content to 1 wt% caused refinement and change in the morphology of hydroxyapatite particles. Cement pastes had a high resistance to wash-out in a short time after cement mixing. The noncytotoxic character of CX cement extracts was verified. Moreover, PHYT supported the formation of Ca deposits, and the additional synergistic effect of PAA and CMC on enhanced ALP activity was found, along with the strong up-regulation of osteogenic gene expressions for osteopontin, osteocalcin and IGF1 growth factor evaluated by the RT-qPCR analysis in osteogenic αMEM 50% CXI extracts. (4) Conclusions: The fully injectable composite calcium phosphate bicements with anionic polyelectrolyte addition showed good mechanical and physico-chemical properties and enhanced osteogenic bioactivity which is a promising assumption for their application in bone defect regeneration.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
- Correspondence:
| | - Radoslava Štulajterová
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| | - Maria Giretova
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| | - Lenka Luptakova
- Institute of Biology, Zoology and Radiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia;
| | - Tibor Sopčák
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| |
Collapse
|
14
|
Rabelo RS, Tavares GM, Prata AS, Hubinger MD. Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration. Carbohydr Polym 2019; 223:115120. [DOI: 10.1016/j.carbpol.2019.115120] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
|
15
|
Rufato KB, Almeida VC, Kipper MJ, Rubira AF, Martins AF, Muniz EC. Polysaccharide-based adsorbents prepared in ionic liquid with high performance for removing Pb(II) from aqueous systems. Carbohydr Polym 2019; 215:272-279. [DOI: 10.1016/j.carbpol.2019.03.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
|
16
|
Afzal S, Maswal M, Dar AA. Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: Characterization and its use in encapsulation of citral. Colloids Surf B Biointerfaces 2018; 169:99-106. [DOI: 10.1016/j.colsurfb.2018.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023]
|
17
|
Castel-Molieres M, Conzatti G, Torrisani J, Rouilly A, Cavalie S, Carrere N, Tourrette A. Influence of Homogenization Technique and Blend Ratio on Chitosan/Alginate Polyelectrolyte Complex Properties. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0304-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Nita L, Chiriac A, Bercea M, Asandulesa M, Wolf BA. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions. Int J Biol Macromol 2017; 95:412-420. [DOI: 10.1016/j.ijbiomac.2016.11.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/24/2022]
|
19
|
Segale L, Giovannelli L, Mannina P, Pattarino F. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase. SCIENTIFICA 2016; 2016:5062706. [PMID: 27127680 PMCID: PMC4834166 DOI: 10.1155/2016/5062706] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm). Morphology, particle size, swelling behavior, and in vitro drug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery.
Collapse
Affiliation(s)
- Lorena Segale
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Lorella Giovannelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Paolo Mannina
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Franco Pattarino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
20
|
Magalhães GA, Moura Neto E, Sombra VG, Richter AR, Abreu CMWS, Feitosa JPA, Paula HCB, Goycoolea FM, de Paula RCM. Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. Int J Biol Macromol 2016; 88:244-53. [PMID: 27041650 DOI: 10.1016/j.ijbiomac.2016.03.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022]
Abstract
Nanoparticles are produced by means of polyelectrolyte complexation (PEC) of oppositely charged polycationic chitosan (CH) with polyanionic polysaccharide extracted from Sterculia striata exudates (rhamnogalacturonoglycan (RG)-type polysaccharide). The nanoparticles formed with low-molar-mass CH are larger than those formed with high-molar-mass CH. This behavior is in contrast with that previously observed for other systems and may be attributed to different mechanisms related to the association of CH with RG of higher persistence length chain than that of CH. Nanoparticles harnessed with a charge ratio (n(+)/n(-)) of <1 are smaller than particles with an excess of polycations. Particles with hydrodynamic sizes smaller than 100nm are achieved using a polyelectrolyte concentration of 10(-4)gmL(-1) and charge ratio (n(+)/n(-)) of <1. The CH/RG nanoparticles are associated with chloroquine (CQ) with an efficiency of 28% and release it for up to ∼60% within ∼10h, whereas in the latter, only ∼40% of the CQ was released after 24h. The main factor that influenced drug release rate is the nanoparticle charge ratio.
Collapse
Affiliation(s)
- Guilherme A Magalhães
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Erico Moura Neto
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Venícios G Sombra
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Ana R Richter
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Clara M W S Abreu
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Judith P A Feitosa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Haroldo C B Paula
- Departamento de Química Analitica e Fisico-Química, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021,CEP 60455-760
| | | | - Regina C M de Paula
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760.
| |
Collapse
|
21
|
Development of liquid oral sustained release formulations of nateglinide: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Kassem AA, Ismail FA, Naggar VF, Aboulmagd E. Preparation and evaluation of periodontal films based onpolyelectrolyte complexformation. Pharm Dev Technol 2014; 20:297-305. [DOI: 10.3109/10837450.2013.862262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Formulation Development and Evaluation of Drug Release Kinetics from Colon-Targeted Ibuprofen Tablets Based on Eudragit RL 100-Chitosan Interpolyelectrolyte Complexes. ISRN PHARMACEUTICS 2013; 2013:838403. [PMID: 23986877 PMCID: PMC3748778 DOI: 10.1155/2013/838403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/07/2013] [Indexed: 12/19/2022]
Abstract
Colon-targeted drug delivery systems (CTDDSs) could be useful for local treatment of inflammatory bowel diseases (IBDs). In this study, various interpolyelectrolyte complexes (IPECs), formed between Eudragit RL100 (EL) and chitosan (CS), by nonstoichiometric method, and tablets based on the IPECs, prepared by wet granulation, were evaluated as potential oral CTDDSs for ibuprofen (IBF). Results obtained showed that the tablets conformed to compendial requirements for acceptance and that CS and EL formed IPECs that showed pH-dependent swelling properties and prolonged the in vitro release of IBF from the tablets in the following descending order: 3 : 2 > 2 : 3 > 1 : 1 ratios of CS and EL. An electrostatic interaction between the carbonyl (–CO–) group of EL and amino (–NH3+) group of CS of the tablets formulated with the IPECs was capable of preventing drug release in the stomach and small intestine and helped in delivering the drug to the colon. Kinetic analysis of drug release profiles showed that the systems predominantly released IBF in a zero-order manner. IPECs based on CS and EL could be exploited successfully for colon-targeted delivery of IBF in the treatment of IBDs.
Collapse
|
24
|
Araujo V, Gamboa A, Caro N, Abugoch L, Gotteland M, Valenzuela F, Merchant HA, Basit AW, Tapia C. Release of prednisolone and inulin from a new calcium-alginate chitosan-coated matrix system for colonic delivery. J Pharm Sci 2013; 102:2748-59. [PMID: 23839971 DOI: 10.1002/jps.23656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 11/05/2022]
Abstract
Putative colonic release formulations of calcium (Ca)-alginate coated with chitosan containing two different actives, prednisolone and inulin, were prepared in three different sizes, beads (D50 = 2104 μm) and microparticles (D50 = 354 and 136 μm). The formulations were tested in standard phosphate buffer and biorelevant Krebs bicarbonate buffer at pH 7.4, and were further evaluated in the presence of the bacterium E. coli. Product yield and encapsulation were higher with prednisolone than with inulin. In Krebs bicarbonate buffer, a clear relationship between particle size and prednisolone release was observed. In contrast, release of inulin was independent of the particle size. In phosphate buffer, the particles eroded quickly, whereas in Krebs buffer, the particles swelled slowly. The difference in behavior can be attributed to the formation of calcium phosphate in the phosphate buffer medium, which in turn weakens the Ca-alginate matrix core. In the presence of E. coli, the formulations were fermented and the release of prednisolone was accelerated. In conclusion, the buffer media affects formulation behavior and drug release, with the bicarbonate media providing a better simulation of in vivo behavior. Moreover, the susceptibility of the formulations to bacterial action indicates their suitability as carriers for colonic drug delivery.
Collapse
Affiliation(s)
- Valeria Araujo
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Vicuña Mackenna 20, Providencia, Santiago de Chile, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Effect of stoichiometry and pH on the structure and properties of Chitosan/Chondroitin sulfate complexes. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2497-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Preparation of chitosan/alginate microcapsules by high-voltage electrostatic method. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11458-011-0230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Meng X, Tian F, Yang J, He CN, Xing N, Li F. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1751-1759. [PMID: 20101440 DOI: 10.1007/s10856-010-3996-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/08/2010] [Indexed: 05/28/2023]
Abstract
This study investigated the characteristics and drug release properties of membranes of chitosan and alginate prepared via a casting/solvent evaporation technique. Membranes of chitosan and alginate with silver sulfadiazine as model drug incorporated in different concentrations and different membrane compositions were obtained. The polyblend solution viscosity reached to the highest at the composition polyblends of (1:1). This chitosan/alginate membranes showed pH- and ionic strength-dependent water uptake properties and had the WVTR rang from 442 to 618 g/m(2)/day. The maximum value of the dry membrane of breaking strength was 52.16 MPa and the maximum value of the wet membrane breaking elongation was 46.28%. The results of controlled release studies showed that the silver sulfadiazine release rate was the fastest when the alginate content was 50%. On the basis of the requisite physical properties, the chitosan-alginate PEC membrane can be considered for potential wound dressing or controlled release application.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin, 300161, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Obeidat WM, Abuznait AH, Sallam ASA. Sustained release tablets containing soluble polymethacrylates: comparison with tableted polymethacrylate IPEC polymers. AAPS PharmSciTech 2010; 11:54-63. [PMID: 20054671 DOI: 10.1208/s12249-009-9348-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 11/17/2009] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to compare a novel sustained release tablet formulation that has the potential to be used for drugs of different physicochemical properties using a binary mixture of polymethacrylate polymers in their salt forms with the polymethacrylate interpolyelectrolyte complex (IPEC) tablets in terms of drug release and compactness. Also, we aimed to compare this formulation with an IPEC tablet in terms of drug release. Tablets prepared using Eudragit E-Citrate and Eudragit L-Sodium were more convenient, easier to prepare, and showed better sustained release and compactness characteristics compared to IPEC tablets of similar concentrations and preparation methods.
Collapse
|
29
|
Abreu FOMS, Bianchini C, Kist TBL, Forte MMC. Preparation and properties of core-shell alginate-carboxymethylchitosan hydrogels. POLYM INT 2009. [DOI: 10.1002/pi.2657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Microspheres of chitosan/carboxymethyl cashew gum (CH/CMCG): Effect of chitosan molar mass and CMCG degree of substitution on the swelling and BSA release. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
|
32
|
Tapia C, Montezuma V, Yazdani-Pedram M. Microencapsulation by spray coagulation of diltiazem HCl in calcium alginate-coated chitosan. AAPS PharmSciTech 2008; 9:1198-206. [PMID: 19082741 DOI: 10.1208/s12249-008-9164-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 11/05/2008] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to develop a procedure for encapsulation of diltiazem HCl by spray coagulation. Factors affecting the formulations such as the effect of NaCl on the solubility of diltiazem in alginate solution, surface tension, pH, viscosity of the coagulation medium, and the effect of drug load on drug release were studied. The drug load was increased substantially from 10 up to 320 mg/mL by adding 1.2% w/v NaCl in 1% w/v alginate solution. More stable microcapsules were obtained at pH 4.6 (acetate buffer) than at a pH 2.8 (lactic acid), and the microencapsulation process was favored by the type of chitosan that produced low turbidity and viscosity in the coagulation medium. A dose of 50 mg/mL of diltiazem HCl, 1.2% w/v NaCl, and chitosan CS allowed higher amount of drug to be encapsulated. The high water solubility of diltiazem HCl leads to fast release from the microcapsules.
Collapse
|
33
|
Sæther HV, Holme HK, Maurstad G, Smidsrød O, Stokke BT. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2008.04.048] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Srinatha A, Pandit JK. Alternate Polyelectrolyte Coating of Chitosan Beads for Extending Drug Release. Drug Deliv 2008; 15:193-9. [DOI: 10.1080/10717540801952654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Reis CP, Ribeiro AJ, Veiga F, Neufeld RJ, Damgé C. Polyelectrolyte Biomaterial Interactions Provide Nanoparticulate Carrier for Oral Insulin Delivery. Drug Deliv 2008; 15:127-39. [DOI: 10.1080/10717540801905165] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Abreu FO, Bianchini C, Forte MM, Kist TB. Influence of the composition and preparation method on the morphology and swelling behavior of alginate–chitosan hydrogels. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2008.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Dai Y, Li P, Zhang J, Wang A, Wei Q. Swelling characteristics and drug delivery properties of nifedipine‐loaded pH sensitive alginate–chitosan hydrogel beads. J Biomed Mater Res B Appl Biomater 2008; 86:493-500. [DOI: 10.1002/jbm.b.31046] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Basu SK, Rajendran A. Studies in the Development of Nateglinide Loaded Calcium Alginate and Chitosan Coated Calcium Alginate Beads. Chem Pharm Bull (Tokyo) 2008; 56:1077-84. [DOI: 10.1248/cpb.56.1077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sanat Kumar Basu
- Division of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University
| | | |
Collapse
|
39
|
Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. POLYM INT 2008. [DOI: 10.1002/pi.2378] [Citation(s) in RCA: 672] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Xu Y, Zhan C, Fan L, Wang L, Zheng H. Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 2007; 336:329-37. [PMID: 17223290 DOI: 10.1016/j.ijpharm.2006.12.019] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 12/09/2006] [Indexed: 11/21/2022]
Abstract
Alginate-chitosan (ALG-CS) blend gel beads were prepared based on Ca2+ or dual crosslinking with various proportions of alginate and chitosan. The homogeneous solution of alginate and chitosan was dripped into the solution of calcium chloride; the resultant Ca2+ single crosslinked beads were dipped in the solution of sodium sulfate sequentially to prepare dual crosslinked beads. The dual crosslinkage effectively promoted the stability of beads under gastrointestinal tract conditions. The sustained release profiles of single and dual crosslinked gel beads loaded bovine serum albumin (BSA), a model protein drug, were investigated in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). In SGF, compared to Ca2+ single crosslinked beads, from which BSA released fast and the cumulative drug release percentages were about 80% of all formations in 4 h, the BSA total release from dual crosslinked gel beads was no more than 3% in 8 h. In SIF and SCF, Ca2+ single crosslinked beads were disrupted soon associating with the fast drug release. As to the dual crosslinked beads, the BSA total release from the ALG-CS mass ratio 9:1 (81.24%) was higher than that of 7:3 and 5:5 (less than 60%) in 8 h in SIF; the BSA release from all beads was much faster in SCF than in SIF. The dual crosslinked beads incubated in gastrointestinal tract conditions, the BSA cumulative release of ALG-CS mass ratios 9:1, 7:3 and 5:5 were respectively 2.35, 1.96, 1.76% (in SGF 4 h), 82.86, 78.83, 52.91% (in SIF 3 h) and 97.84, 96.81, 87.26% (in SCF 3 h), which suggested that the dual crosslinked beads have potential small intestine or colon site-specific drug delivery property.
Collapse
Affiliation(s)
- Yongmei Xu
- College of Chemical Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|
41
|
Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm 2006; 323:34-42. [PMID: 16828245 DOI: 10.1016/j.ijpharm.2006.05.054] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 04/12/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
The aim of the present work was to investigate the swelling behavior and the in vitro release of the antihypertensive drug verapamil hydrochloride from calcium alginate and chitosan treated calcium alginate beads. Calcium-alginate beads, chitosan-coated alginate beads and alginate-chitosan mixed beads were synthesized and their morphology was investigated by scanning electron microscopy. The swelling ability of the beads in different media was found to be dependent on the presence of the polyelectrolyte complex between alginate and chitosan, the pH of the aqueous media and the initial physical state of the beads. The results revealed that the encapsulation of verapamil in both calcium-alginate and calcium alginate-chitosan mixed beads exceeded 80%. Considering the in vitro stability of verapamil encapsulating beads, 70% of the drug released from wet and dry plain calcium alginate beads within 1 and 3h, respectively. The presence of chitosan was found to retard significantly the release from wet beads. However, in the case of dry beads the presence of chitosan had no significant effect on the initial release stage and significantly increased the release on the later stage. The results were analyzed by using a semi-empirical equation and it was found that the drug release mechanisms were either "anomalous transport" or "case-II transport".
Collapse
Affiliation(s)
- George Pasparakis
- Department of Materials Science, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
42
|
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release 2006; 114:1-14. [PMID: 16828914 DOI: 10.1016/j.jconrel.2006.04.017] [Citation(s) in RCA: 1210] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 04/26/2006] [Indexed: 11/24/2022]
Abstract
The protein pharmaceutical market is rapidly growing, since it is gaining support from the recombinant DNA technology. To deliver these drugs via the oral route, the most preferred route, is the toughest challenge. In the design of oral delivery of peptide or protein drugs, pH sensitive hydrogels like alginate and chitosan have attracted increasing attention, since most of the synthetic polymers are immunogenic and the incorporation of proteins in to these polymers require harsh environment which may denature and inactivate the desired protein. Alginate is a water-soluble linear polysaccharide composed of alternating blocks of 1-4 linked alpha-L-guluronic and beta-D-mannuronic acid residues where as chitosan is a co polymer of D-glucosamine and N-acetyl glucosamine. The incorporation of protein into these two matrices can be done under relatively mild environment and hence the chances of protein denaturation are minimal. The limitations of these polymers, like drug leaching during preparation can be overcome by different techniques which increase their encapsulation efficiency. Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent. The pore size of alginate gel microbeads has been shown to be between 5 and 200 nm and coated beads and microspheres are found to be better oral delivery vehicles. Cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginate with other polymers such as neutral gums, pectin, chitosan, and eudragit have been found to solve the problem of drug leaching. Chitosan has only limited ability for controlling the release of encapsulated compound due to its hydrophilic nature and easy solubility in acidic medium. By simple covalent modifications of the polymer, its physicochemical properties can be changed and can be made suitable for the peroral drug delivery purpose. Ionic interactions between positively charged amino groups in chitosan and the negatively charged mucus gel layer make it mucoadhesive. The favourable properties like biocompatibility, biodegradability, pH sensitiveness, mucoadhesiveness, etc. has enabled these polymers to become the choice of the pharmacologists as oral delivery matrices for proteins.
Collapse
Affiliation(s)
- Meera George
- Polymer Section, Chemical Science Division, Regional Research Laboratory (CSIR), Trivandrum 695 019, India
| | | |
Collapse
|
43
|
de Vasconcelos CL, Bezerril PM, dos Santos DES, Dantas TNC, Pereira MR, Fonseca JLC. Effect of Molecular Weight and Ionic Strength on the Formation of Polyelectrolyte Complexes Based on Poly(methacrylic acid) and Chitosan. Biomacromolecules 2006; 7:1245-52. [PMID: 16602745 DOI: 10.1021/bm050963w] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitosan/poly(methacrylic acid) complexes, CS/PMAA, were prepared via dropwise addition of a solution of PMAA to a solution of chitosan in acetic acid 2 wt %. The increase in molecular weight of PMAA inhibited the formation of insoluble complexes, while the increase in ionic strength first favored the formation of the complex followed by inhibiting it at higher concentrations. These observations were related to a description of polyelectrolyte complexation that was strongly dependent on macromolecular dimensions, both in terms of molecular weight and of coil expansion/contraction driven by polyelectrolyte effect.
Collapse
Affiliation(s)
- C L de Vasconcelos
- Departamento de Química, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, RN 59078-970, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Zheng Y, Wu Y, Yang W, Wang C, Fu S, Shen X. Preparation, characterization, and drug release in vitro of chitosan-glycyrrhetic acid nanoparticles. J Pharm Sci 2006; 95:181-91. [PMID: 16315245 DOI: 10.1002/jps.20399] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A suitable carrier chitosan (CS) was used to prepare CS-Glycyrrhetic acid (GLA) nanoparticles under very mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and the physicochemical properties of which were investigated by FT-IR, dynamic light scattering, transmission electron microscope, fluorescence spectra and zeta potential. It was found that only when the weight ratio of CS to GLA was lower than 16.7, could the nanoparticles be formed. The prepared nanoparticles carried a positive charge and had the dried TEM-assessed size in the range from 20 to 30 nm. The mean hydrated diameter, size distribution and zeta potential of the nanoparticles could be controlled by some factors including the weight ratio of CS to GLA, the average molecular weight of CS and the pH value of the medium. It was also found that GLA encapsulation efficiency into the nanoparticles increased with the increase of the weight ratio of CS to GLA. The experiment of GLA release in vitro showed that the effect of CS encapsulation on GLA release was obvious and the CS-GLA nanoparticles system might be used to provide a continuous release.
Collapse
Affiliation(s)
- Yongli Zheng
- Department of Macromolecular Science, Key Laboratory of Molecular Engineering of Polymers of Educational Ministry, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Chen TW, Chang SJ, Niu GCC, Hsu YT, Kuo SM. Alginate-coated chitosan membrane for guided tissue regeneration. J Appl Polym Sci 2006. [DOI: 10.1002/app.24945] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Lima Vidal RR, Pereira Fagundes F, Cabral de Menezes SM, Machado da Silva Ruiz N, Balaban Garcia R. Solution Properties of Partially Hydrolysed Polyacrylamide and Chitosan Mixed Solutions. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/masy.200551114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Chen WB, Wang LF, Chen JS, Fan SY. Characterization of polyelectrolyte complexes between chondroitin sulfate and chitosan in the solid state. J Biomed Mater Res A 2005; 75:128-37. [PMID: 16041796 DOI: 10.1002/jbm.a.30393] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chondroitin sulfate (ChS) was used to form polyelectrolyte complexes with chitosan (ChI), and its potential as a colon-targeted drug carrier was investigated. In order to determine the optimal conditions for the formation of a stable polyelectrolyte complex, the formation of ChS/ChI complexes was examined at two different pH values with various weight ratios, or at a fixed molar ratio of ChS/ChI of 1/2 under various pH conditions. The molar compositions of the various ChS/ChI complexes were quantitated with the use of solid-state 13C CP MAS NMR. The equivalent molar ratios of the complexes ranged from 0.47 to 0.54, in agreement with the data determined by elemental analysis. The fact that these values were close to 0.5 suggests that most of the --OSO3- and the --COO- groups on ChS formed strong electrostatic interactions with the --NH3+ groups on ChI, obeying a simple stoichiometric reaction between two oppositely charged moieties. Similar compositions of the complexes were obtained under most conditions tested; however, different strengths of the interactions between the two polysaccharides were noted from measurements of the water-associated transition and thermal degradation temperatures and the degree of ChS dissolution. FTIR and 13C NMR clearly showed H-bond formation at low pH, indicating that in addition to the varying degrees of electrostatic interaction, H bonding may be involved in complex formation. The highest degradation temperature, as determined by thermal gravimetric analysis, and the lowest ChS sol fraction, as measured by gel permeation chromatography, were observed with the complex prepared at pH 5, with a 1:1 mole ratio of the two opposite charges in feed. This complex also exhibited the highest water-associated transition temperature, as determined by differential scanning calorimetry. Furthermore, the swelling behavior of these complexes was pH dependent; this is a property that can potentially be exploited to control drug release from these complexes under specific pH conditions.
Collapse
Affiliation(s)
- Wen-Bin Chen
- College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan 807, Republic of China
| | | | | | | |
Collapse
|
48
|
Etrych T, Leclercq L, Boustta M, Vert M. Polyelectrolyte complex formation and stability when mixing polyanions and polycations in salted media: a model study related to the case of body fluids. Eur J Pharm Sci 2005; 25:281-8. [PMID: 15911224 DOI: 10.1016/j.ejps.2005.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 02/09/2005] [Accepted: 03/07/2005] [Indexed: 11/19/2022]
Abstract
Controlled drug delivery and gene transfection involve contact of artificial polyelectrolytic systems that can interact dramatically with biopolymers and cells when they are introduced in blood. Given the complexity of body aqueous media in terms of physical chemistry, a model approach was selected in attempt to understand the behavior of artificial polyelectrolytes introduced in body fluids. Selection in terms of molecular weight was highlighted in a previous paper. In the present study the formation and the stability of fractions obtained when a polycation is added to a polyanion according to a titrating process mimicking injection into blood was considered for different polycation/polyanion couples. Poly(amino serinate) and poly(L-lysine) were used as polybases, and poly(acrylic acid), poly(L-lysine citramide) and poly(L-lysine citramide imide) as polyacids. Four fractions corresponding to different positive/negative charge ratios were formed for each couple. At low polyion concentration (13 mg/L) and given salt concentration, the stability of the complex fractions depended on molecular weight and charge density of the polyions. The NaCl concentration required to destabilize the different interpolyelectrolyte complexes was found to decrease from the first fraction to the fourth one. Upon decreasing the salt concentration, macroscopic flocculation occurred in the case of PLL/PAA complex fractions only. For the other couples, dynamic light scattering showed that several hundreds nanometer sized particles were formed that were stable in a broad range of NaCl concentration, including the physiological 0.15 ionic strength. At higher polyion concentrations, stable solid precipitate was formed regardless of the system. The absence of flocculation in the case of highly diluted poly(L-lysine citramide) and poly(L-lysine citramide imide) polyanions in salted media is assigned to the presence of non-ionic hydroxyl and amide polar groups along the complexed chains. Data show that introducing non-ionic functions along the polyelectrolyte chains is a good means to keep interpolyelectrolyte complexes dispersed in salted media, a conclusion of interest in the field of condensation of genes by polycations.
Collapse
Affiliation(s)
- Tomás Etrych
- Research Centre for Artificial Biopolymers - UMR CNRS 5473, University of Montpellier 1, Faculty of Pharmacy, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|