1
|
Castor RB, do Nascimento MH, Gorlach-Lira K. Exploring fungal bioemulsifiers: insights into chemical composition, microbial sources, and cross-field applications. World J Microbiol Biotechnol 2024; 40:127. [PMID: 38451356 DOI: 10.1007/s11274-024-03883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/01/2024] [Indexed: 03/08/2024]
Abstract
The demand for emulsion-based products is crucial for economic development and societal well-being, spanning diverse industries such as food, cosmetics, pharmaceuticals, and oil extraction. Formulating these products relies on emulsifiers, a distinct class of surfactants. However, many conventional emulsifiers are derived from petrochemicals or synthetic sources, posing potential environmental and human health risks. In this context, fungal bioemulsifiers emerge as a compelling and sustainable alternative, demonstrating superior performance, enhanced biodegradability, and safety for human consumption. From this perspective, the present work provides the first comprehensive review of fungal bioemulsifiers, categorizing them based on their chemical nature and microbial origin. This includes polysaccharides, proteins, glycoproteins, polymeric glycolipids, and carbohydrate-lipid-protein complexes. Examples of particular interest are scleroglucan, a polysaccharide produced by Sclerotium rolfsii, and mannoproteins present in the cell walls of various yeasts, including Saccharomyces cerevisiae. Furthermore, this study examines the feasibility of incorporating fungal bioemulsifiers in the food and oil industries and their potential role in bioremediation events for oil-polluted marine environments. Finally, this exploration encourages further research on fungal bioemulsifier bioprospecting, with far-reaching implications for advancing sustainable and eco-friendly practices across various industrial sectors.
Collapse
Affiliation(s)
- Rádamis Barbosa Castor
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Maria Helena do Nascimento
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Krystyna Gorlach-Lira
- Molecular Biology Department, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
2
|
Castro RH, Corredor LM, Llanos S, Causil MA, Arias A, Pérez E, Quintero HI, Romero Bohórquez AR, Franco CA, Cortés FB. Experimental Investigation of the Viscosity and Stability of Scleroglucan-Based Nanofluids for Enhanced Oil Recovery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:156. [PMID: 38251121 PMCID: PMC10818491 DOI: 10.3390/nano14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/23/2024]
Abstract
Biopolymers emerge as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures, which exhibit better stability than polyacrylamides under harsh conditions. Nonetheless, biopolymers are susceptible to oxidation and biological degradation. Biopolymers reinforced with nanoparticles could be a potential solution to the issue. The nanofluids' stability and performance depend on the nanoparticles' properties and the preparation method. The primary objective of this study was to evaluate the effect of the preparation method and the nanoparticle type (SiO2, Al2O3, and TiO2) on the viscosity and stability of the scleroglucan (SG). The thickening effect of the SG solution was improved by adding all NPs due to the formation of three-dimensional structures between the NPs and the SG chains. The stability test showed that the SG + Al2O3 and SG + TiO2 nanofluids are highly unstable, but the SG + SiO2 nanofluids are highly stable (regardless of the preparation method). According to the ANOVA results, the preparation method and standing time influence the nanofluid viscosity with a statistical significance of 95%. On the contrary, the heating temperature and NP type are insignificant. Finally, the nanofluid with the best performance was 1000 ppm of SG + 100 ppm of SiO2_120 NPs prepared by method II.
Collapse
Affiliation(s)
- Rubén H. Castro
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| | - Laura M. Corredor
- Centro de Innovación y Tecnología—ICP, Ecopetrol S.A., Piedecuesta 681011, Colombia; (L.M.C.); (H.I.Q.)
| | - Sebastián Llanos
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia; (S.L.); (A.A.); (A.R.R.B.)
| | - María A. Causil
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| | - Adriana Arias
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia; (S.L.); (A.A.); (A.R.R.B.)
| | - Eduar Pérez
- Departamento de Ingeniería Mecánica, Universidad Francisco de Paula Santander, Ocaña 546551, Colombia;
| | - Henderson I. Quintero
- Centro de Innovación y Tecnología—ICP, Ecopetrol S.A., Piedecuesta 681011, Colombia; (L.M.C.); (H.I.Q.)
| | - Arnold R. Romero Bohórquez
- Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia; (S.L.); (A.A.); (A.R.R.B.)
| | - Camilo A. Franco
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| | - Farid B. Cortés
- Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (M.A.C.); (C.A.F.); (F.B.C.)
| |
Collapse
|
3
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
4
|
Exopolysaccharides of Fungal Origin: Properties and Pharmaceutical Applications. Processes (Basel) 2023. [DOI: 10.3390/pr11020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fungal exopolysaccharides (EPSs) represent an important group of bioactive compounds secreted by fungi. These biopolymers can be utilized individually or in combination with different bioactive substances for a broad range of pharmaceutical field applications, due to their various biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antiviral, anti-diabetic, and anticoagulant effects. The paper presents an up-to-date review of the main fungal polysaccharides (pullulan, schizophyllan, scleroglucan, botryosphaeran, lentinan, grifolan, and lasiodiplodan), highlighting their structures, producing strains, and useful properties in a double position, as controlled release (rate and selectively targeting) drug carriers, but mostly as active immunomodulating and antitumor compounds in cancer therapy.
Collapse
|
5
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Formulation and Physical Characterization of a Polysaccharidic Gel for the Vehiculation of an Insoluble Phytoextract for Mucosal Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Maintaining insoluble plant-based ingredients in suspension and ensuring long-term physical stability is particularly challenging for formulators of green cosmetics. This study aimed to evaluate the structure and applicative properties of gel and gel-cream topical formulations suitable for delivering an insoluble phytocomplex on the vaginal mucosa and maintaining its integrity. For this purpose, we studied the compatibility of Perilla frutescens (L.) Britton phytocomplex (PFP), derived from in vitro plant cell cultures and presented as a powder finely dispersed in glycerin, with different classes of natural rheological modifiers (such as xanthan gum, sclerotium gum, succinoglycan, xyloglucan, diutan gum, hydroxypropyl guar gum derivative) in gel and gel-cream formulations, to meet the needs of the cosmetic market for naturalness and biodegradability. Through rheological and texture analyses, we studied the physico–mechanical properties of the samples, comparing the performances of the chosen polysaccharides to those of acrylic polymeric rheological modifiers, evaluating their contribution in terms of stability and applicative properties. Since a weak-gel rheological pattern proved to be the optimal one to keep the actives in suspension, the associations of tamarind seed polysaccharides with succinoglycan or scleroglucan were the most suitable for the formulation of mucoadhesive gels.
Collapse
|
7
|
Guo H, Su Y, Guo C, Chen Q, Liu Z, Geng H, Mu K, Wang J, Chen D. Polysaccharide based drug delivery systems for Chinese medicines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Dhanya BE, Prabhu A, Rekha PD. Extraction and characterization of an exopolysaccharide from a marine bacterium. Int Microbiol 2021; 25:285-295. [PMID: 34668088 DOI: 10.1007/s10123-021-00216-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
The marine bacterial exopolysaccharides (EPS) have transfigured the biotech sector with their myriad applications and prospects. This work was carried out to characterize and analyze the functional and biochemical properties of an EPS (EPS-DR3A) produced by a marine bacterium, Pseudoalteromonas sp. YU16-DR3A. The bacterium was cultured in Zobell marine broth for the production of EPS. The extracted EPS designated as EPS-DR3A was composed of 69% carbohydrates and 7.6% proteins with a molecular weight of 20 kDa. FT-IR spectra showed the presence of different functional groups. The monosaccharide analysis performed using GC-MS showed the presence of fucose, erythrotetrose, ribose, and glucose as monomers. EPS-DR3A showed excellent emulsifying activity against the tested hydrocarbons and food oils with stable emulsions. Rheological analysis of EPS-DR3A revealed the pseudoplastic behavior. The EPS-DR3A displayed good thermal stability with a degradation temperature of 249 °C and a melting point at 322 °C. Further, it had the ability to scavenge DPPH and nitric oxide free radicals with good total antioxidant activity. The in vitro biocompatibility study of EPS-DR3A showed high degree of biocompatibility with human dermal fibroblast cells at the tested concentrations. Taken together, the findings such as thermostability, emulsifying activity, pseudoplasticity, antioxidant activity, and biocompatibility of EPS-DR3A make this biomolecule an important candidate for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Bythadka Erappa Dhanya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Karnataka, 575018, Mangalore, India.,Department of Biosciences, Mangalagangothri, Mangalore University, Mangalore, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Karnataka, 575018, Mangalore, India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Karnataka, 575018, Mangalore, India.
| |
Collapse
|
10
|
Valdez AL, Delgado OD, Fariña JI. Cost-effective optimized scleroglucan production by Sclerotium rolfsii ATCC 201126 at bioreactor scale. A quantity-quality assessment. Carbohydr Polym 2020; 260:117505. [PMID: 33712177 DOI: 10.1016/j.carbpol.2020.117505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Exopolysaccharide (EPS) secretion by Sclerotium rolfsii ATCC 201126 in submerged cultures, already identified as high-osmolarity responsive, was assessed by reducing C-source without compromising EPS yields. A designed medium with 80 g sucrose L-1 (MOPT80) was tested at 3 L-bioreactor scale at different temperature, agitation, aeration and pH (uncontrolled vs. controlled) values. Optimal operative conditions (200 rpm, 28 °C, 0.5 vvm and initial pH -pHi- 4.5) were validated, as well as the possibility to work at pHi 5.5 to reduce biomass production. Purified EPSs produced in MOPT80 at optimal and other valid operative conditions exhibited refined grade (<1 % proteins and ash, 3-4 % reducing sugars, 87-99 % total sugars). EPS purity, MW and rheological parameters led to discourage pH controlled at 4.5. Relatively constant MW (6-8 × 106 Da) and outstanding viscosifying ability were found. Polyphasic EPS analysis (titre, purity, macromolecular features and rheological fitness) would support to properly select production conditions.
Collapse
Affiliation(s)
- Alejandra L Valdez
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina.
| | - Osvaldo D Delgado
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina; Universidad Nacional de Catamarca (UNCa), Facultad de Ciencias Exactas y Naturales, Centro de Biología Molecular y Biotecnología (CEBIOTEC), Av. Belgrano 300, (K4751XAK) S.F.V., Catamarca, Catamarca, Argentina.
| | - Julia I Fariña
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina.
| |
Collapse
|
11
|
Elsehemy IA, Noor El Deen AM, Awad HM, Kalaba MH, Moghannem SA, Tolba IH, Farid MAM. Structural, physical characteristics and biological activities assessment of scleroglucan from a local strain Athelia rolfsii TEMG. Int J Biol Macromol 2020; 163:1196-1207. [PMID: 32622769 DOI: 10.1016/j.ijbiomac.2020.06.272] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
Athelia rolfsii TEMG (MH 236106) an exopolysaccharide (EPS) producing fungal strain was isolated and identified. Extraction, purification, characterization, antimicrobial, antioxidant, antiviral and antitumor activities of the polysaccharide were investigated. It characterized as a homopolysaccharide of glucose with a molecular weight of 345.622 kDa. The identification of the polysaccharide was conducted using scanning electron microscopy, energy dispersive X-ray analysis, 1H and 13C NMR spectra. The existence of β-1,3 and β-1,6 linkages suggests that EPS could be scleroglucan. The purified scleroglucan showed considerable antibacterial and antioxidant activities. The results indicated that, there was no cytotoxicity on normal cell (W138) and no effect on tumor cell lines including HepG2 and PC3 showing IC50 of 5096.83, 5885.80 and 4803.90 μg/mL, respectively. The results showed also that Sclg could reduce the cytopathic effect by 50% (EC50) at 15 and 50 μg/mL of herpes simplex virus type-1 (HSV-1) and influenza virus (H5N1), respectively.
Collapse
Affiliation(s)
- Islam A Elsehemy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Div., National Research Centre, Dokki, Cairo, Egypt
| | - Azza M Noor El Deen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Div., National Research Centre, Dokki, Cairo, Egypt
| | - Hassan M Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Div., National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Saad A Moghannem
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Tolba
- Plant Pathology Branch, Agricultural Botany Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohamed A M Farid
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Div., National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
12
|
Tan R, Lyu Y, Zeng W, Zhou J. Enhancing scleroglucan production by Sclerotium rolfsii WSH-G01 through a pH-shift strategy based on kinetic analysis. BIORESOURCE TECHNOLOGY 2019; 293:122098. [PMID: 31514118 DOI: 10.1016/j.biortech.2019.122098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
As a stable microbial polysaccharide, scleroglucan has extensive application in the food, medicine, and cosmetics industries. However, its large-scale industrial application is limited by its high production cost, low yield, long production time, etc. This study aims to enhance scleroglucan production by Sclerotium rolfsii WSH-G01. Based on the analysis of batch fermentation kinetics parameters, a pH-shift strategy was adopted. Through systematic kinetics analysis, a 32.4 g/L scleroglucan was accomplished. The kinetic model of the pH-shift batch fermentation process was established using a logistic equation, Luedeking-Piret equation, and a Luedeking-Piret-like equation. As decreased glucose concentration could cause decreased scleroglucan synthesis rates during the batch fermentation process, 30 g/L glucose was fed in the later phase of fermentation. As a result, scleroglucan production increased to 42 g/L, with a productivity of 0.5 g/L·h. Thus, the pH-shift strategy and feeding approach could be useful for industrial scleroglucan production.
Collapse
Affiliation(s)
- Runqing Tan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
14
|
Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc). Int J Biol Macromol 2018; 113:20-28. [DOI: 10.1016/j.ijbiomac.2018.01.223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/01/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023]
|
15
|
Paolicelli P, Varani G, Pacelli S, Ogliani E, Nardoni M, Petralito S, Adrover A, Casadei MA. DESIGN AND CHARACTERIZATION OF A BIOCOMPATIBLE PHYSICAL HYDROGEL BASED ON SCLEROGLUCAN FOR TOPICAL DRUG DELIVERY. Carbohydr Polym 2017; 174:960-969. [DOI: 10.1016/j.carbpol.2017.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/14/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
16
|
Rheology of Laponite-scleroglucan hydrogels. Carbohydr Polym 2017; 168:290-300. [DOI: 10.1016/j.carbpol.2017.03.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022]
|
17
|
Castillo NA, Valdez AL, Fariña JI. Microbial production of scleroglucan and downstream processing. Front Microbiol 2015; 6:1106. [PMID: 26528259 PMCID: PMC4606123 DOI: 10.3389/fmicb.2015.01106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/25/2015] [Indexed: 02/04/2023] Open
Abstract
Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.
Collapse
Affiliation(s)
- Natalia A Castillo
- Laboratorio de Biotecnología Fúngica, Planta Piloto de Procesos Industriales Microbiológicos-CONICET San Miguel de Tucumán, Argentina ; Cátedra de Micología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán San Miguel de Tucumán, Argentina
| | - Alejandra L Valdez
- Laboratorio de Biotecnología Fúngica, Planta Piloto de Procesos Industriales Microbiológicos-CONICET San Miguel de Tucumán, Argentina ; Cátedra de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán San Miguel de Tucumán, Argentina
| | - Julia I Fariña
- Laboratorio de Biotecnología Fúngica, Planta Piloto de Procesos Industriales Microbiológicos-CONICET San Miguel de Tucumán, Argentina ; Cátedra de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca San Fernando del Valle de Catamarca, Argentina
| |
Collapse
|
18
|
Priyanka P, Arun AB, Ashwini P, Rekha PD. Versatile properties of an exopolysaccharide R-PS18 produced by Rhizobium sp. PRIM-18. Carbohydr Polym 2015; 126:215-21. [PMID: 25933542 DOI: 10.1016/j.carbpol.2015.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
Exopolysaccharides (EPS) produced by bacteria have attracted scientific and industrial attention due to their multifunctional properties and relatively easier production. In this study, an EPS viz., R-PS18 produced by Rhizobium sp. PRIM-18 was characterized and its functional properties were assessed. Cell proliferative and in vitro wound healing activities of the EPS were established using human dermal fibroblast (HDF) cells. The isolate produced 2.1 g L(-1) purified EPS (molecular weight 9.33×10(6) Da) comprising of glucose, galactose, and mannose (6.1:1.8:1). Viscosity of 0.25% solution was 23.4 mPa s (shear rate 75 s(-1)) and it showed pseudoplastic and thixotropic behavior. High emulsification, iron chelation, and superoxide scavenging abilities were also observed. Significant increase in HDF cell proliferation and wound healing in vitro was achieved by R-PS18 treatment. Sulfation of R-PS18 significantly enhanced the cell proliferative and wound healing activities. In conclusion, these findings indicate potential applications of R-PS18.
Collapse
Affiliation(s)
- P Priyanka
- Yenepoya Research Centre, Yenepoya University, Mangalore, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya University, Mangalore, India
| | - P Ashwini
- Yenepoya Research Centre, Yenepoya University, Mangalore, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya University, Mangalore, India.
| |
Collapse
|
19
|
Viñarta SC, Delgado OD, Figueroa LI, Fariña JI. Effects of thermal, alkaline and ultrasonic treatments on scleroglucan stability and flow behavior. Carbohydr Polym 2013; 94:496-504. [DOI: 10.1016/j.carbpol.2013.01.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/11/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|
20
|
Viñarta SC, Yossen MM, Vega JR, Figueroa LI, Fariña JI. Scleroglucan compatibility with thickeners, alcohols and polyalcohols and downstream processing implications. Carbohydr Polym 2013; 92:1107-15. [DOI: 10.1016/j.carbpol.2012.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 10/20/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
|
21
|
François NJ, Viñarta SC, Fariña JI, Daraio ME. Investigation on the film-forming properties of lab fermenter scale produced scleroglucans from Sclerotium rolfsii ATCC 201126. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 2011; 91:937-47. [DOI: 10.1007/s00253-011-3438-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
23
|
Preparation and characterization of scleroglucan drug delivery films: The effect of freeze-thaw cycling. J Appl Polym Sci 2009. [DOI: 10.1002/app.29651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Soltanian S, Stuyven E, Cox E, Sorgeloos P, Bossier P. Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit Rev Microbiol 2009; 35:109-38. [DOI: 10.1080/10408410902753746] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Fariña JI, Viñarta SC, Cattaneo M, Figueroa LIC. Structural stability of Sclerotium rolfsii ATCC 201126 beta-glucan with fermentation time: a chemical, infrared spectroscopic and enzymatic approach. J Appl Microbiol 2008; 106:221-32. [PMID: 19054236 DOI: 10.1111/j.1365-2672.2008.03995.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Sclerotium rolfsii ATCC 201126 exopolysaccharides (EPSs) recovered at 48 h (EPS I) and 72 h (EPS II) of fermentation, with differences in rheological parameters, hydrogel topography, salt tolerance, antisyneresis, emulsifying and suspending properties, were subjected to a polyphasic characterization in order to detect structural divergences. METHODS AND RESULTS Fermenter-scale production led to productivity (P(r)) and yield (Y(P/C)) values higher at 48 h (P(r) = 0.542 g l(-1) h(-1); Y(P/C) = 0.74) than at 72 h (P(r) = 0.336 g l(-1) h(-1); Y(P/C) = 0.50). Both EPSs were neutral glucose-homopolysaccharides with a beta-(1,3)-glycosidic backbone and single beta-(1,6)-glucopyranosyl sidechains regularly attached every three residues in the main chain, as revealed by chemical analyses. The infra-red diagnostic peak at 890 cm(-1) confirmed beta-glycosidic linkages, while gentiobiose released by beta-(1,3)-glucanases confirmed single beta-1,6-glycosidic branching for both EPSs. CONCLUSIONS The true modular repeating unit of S. rolfsii ATCC 201126 scleroglucan could be resolved. Structural stability was corroborated and no structural differences could be detected as to account for the variations in EPSs behaviour. SIGNIFICANCE AND IMPACT OF THE STUDY Recovery of S. rolfsii ATCC 201126 scleroglucan at 48 h might be considered based on better fermentation kinetic parameters and no detrimental effects on EPS structural features.
Collapse
Affiliation(s)
- J I Fariña
- PROIMI-CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina.
| | | | | | | |
Collapse
|