1
|
Hormati A, Shiran JA, Molazadeh M, Kaboudin B, Ahmadpour S. Synthesis of New Thioureas Derivatives and Evaluation of Their Efficacy as Proliferation Inhibitors in MCF-7 Breast Cancer Cells by Using 99mTc-MIBI Radiotracer. Med Chem 2021; 17:766-778. [PMID: 32334505 DOI: 10.2174/1573406416666200425224921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Anti-tumor activity of some thioureas derivatives is well documented in literature and received considerable attention. The present study aims to synthesize and characterize some novel thioureas and carbonylthioureas as anti-tumor agents for MCF-7 breast cancer cells in vitro and in vivo. MATERIALS AND METHODS Several 1-allyl-3-(substituted phenyl), N,N'-(phenylene) bis(3- allyldithithiourea) and 1-cyclopropanecarbonyl-3-(substituted phenyl)-thioureas derivatives were synthesized and confirmed by FT-IR spectroscopy, NMR and 13C-NMR. Anti-tumor activity of these compounds was determined by various in vitro and in vivo assays including; MTT, tumor volume measurement as well as,99mTc-MIBI tumor uptake in MCF-7 tumor bearing nude mice. RESULTS Among all of the synthesized compounds, some thioureas derivatives [3i] and [4b] at 100 nM concentration exhibited significant inhibitory effects on the proliferation of MCF-7 cell in vitro. However, this inhibition was not observed in HUVEC human endothelial normal cells. In vivo anti-tumor effects of the synthesized compounds on MCF-7 xenograft mouse models demonstrated a reduction in the tumor volume for various concentrations between 2 to 10 mg/kg after 21 days. These effects were comparable with Tamoxifen as standard anti-estrogen drug. According to the 99mTc-MIBI biodistribution result, treatment of MCF-7 bearing nude mice with both [3i] and [4b] compounds at the maximum concentration (10 mg/kg) can lead to a significant decrease of 99mTc- MIBI tumor uptake. CONCLUSION Compounds [3i] and [4b] suppressed the growth of MCF-7 cells in the xenograft nude mice at the doses that were well-tolerated. Our study suggests that these new compounds with their significant anti-tumor effects, may serve as useful candidates for breast cancer therapy.
Collapse
Affiliation(s)
- Ahmad Hormati
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Jafar Abbasi Shiran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Sajjad Ahmadpour
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
2
|
Sabolova D, Kristian P, Kozurkova M. Proflavine/acriflavine derivatives with versatile biological activities. J Appl Toxicol 2019; 40:64-71. [PMID: 31222780 DOI: 10.1002/jat.3818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Proflavine derivatives are extremely interesting chemotherapeutic agents, which have shown promising pharmaceutical potential due to their wide range of biological activities. This review summarizes the current state of research into the anticancer, antimicrobial, antimalarial and antileishmanial properties of these attractive compounds. Our attention has focused on new classes of proflavine conjugates, which display significant levels of anticancer activity. Highly promising cytotoxic properties have been identified in proflavine conjugates with imidazolidinones, ureas and thioureas. In particular, proflavine-dialkyldithioureas displayed substantial cytotoxic effect against the human leukemia HL-60 cells with IC50 values from 7.2 to 34.0 μm. As well, palladium complexes with proflavine ligand have important biologic activity. The LC50 values of these complexes were significantly lower than that of cisplatin against the SK-BR-3 cell line.
Collapse
Affiliation(s)
- Danica Sabolova
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Kosice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Kosice, Slovak Republic
| | - Mária Kozurkova
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Kosice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Janockova J, Korabecny J, Plsikova J, Babkova K, Konkolova E, Kucerova D, Vargova J, Koval J, Jendzelovsky R, Fedorocko P, Kasparkova J, Brabec V, Rosocha J, Soukup O, Hamulakova S, Kuca K, Kozurkova M. In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers. J Enzyme Inhib Med Chem 2019; 34:877-897. [PMID: 30938202 PMCID: PMC6450562 DOI: 10.1080/14756366.2019.1593159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A combination of biochemical, biophysical and biological techniques was used to study calf thymus DNA interaction with newly synthesized 7-MEOTA-tacrine thiourea 12-17 and urea heterodimers 18-22, and to measure interference with type I and II topoisomerases. Their biological profile was also inspected in vitro on the HL-60 cell line using different flow cytometric techniques (cell cycle distribution, detection of mitochondrial membrane potential dissipation, and analysis of metabolic activity/viability). The compounds exhibited a profound inhibitory effect on topoisomerase activity (e.g. compound 22 inhibited type I topoisomerase at 1 µM concentration). The treatment of HL-60 cells with the studied compounds showed inhibition of cell growth especially with hybrids containing thiourea (14-17) and urea moieties (21 and 22). Moreover, treatment of human dermal fibroblasts with the studied compounds did not indicate significant cytotoxicity. The observed results suggest beneficial selectivity of the heterodimers as potential drugs to target cancer cells.
Collapse
Affiliation(s)
- Jana Janockova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Jana Plsikova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Katerina Babkova
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Eva Konkolova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Dana Kucerova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Vargova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jan Koval
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Rastislav Jendzelovsky
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Peter Fedorocko
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Kasparkova
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Viktor Brabec
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Jan Rosocha
- d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Ondrej Soukup
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Slavka Hamulakova
- g Department of Organic Chemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Kamil Kuca
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Maria Kozurkova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
4
|
Intracellular distribution of new tacrine analogues as a potential cause of their cytotoxicity against human neuroblastoma cells SH-SY5Y. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Dichiara M, Prezzavento O, Marrazzo A, Pittalà V, Salerno L, Rescifina A, Amata E. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents. Eur J Med Chem 2017; 142:459-485. [DOI: 10.1016/j.ejmech.2017.08.070] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
|
6
|
Synthesis, spectral characterization, DNA binding ability and anti-cancer screening of new acridine-based derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Kožurková M, Sabolová D, Kristian P. A review on acridinylthioureas and its derivatives: biological and cytotoxic activity. J Appl Toxicol 2017; 37:1132-1139. [PMID: 28370171 DOI: 10.1002/jat.3464] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/07/2022]
Abstract
Acridines possess two characteristics that have led many researchers to consider the agents interesting targets for future development as potential farmacophores: the planar acridine skeleton, which is able to intercalate into DNA, and the intense fluorescence of the agents. This review offers a study of the multifunctional character of acridines and the synthesis of novel acridine derivatives, with particular focus being placed on isothiocyanates and their congeners, e.g. thioureas, isothioureas, quaternary ammonium salts and platinum/gold conjugates. The review provides an overview of the structure, spectral properties, DNA binding and biological activity of acridinylthiourea congeners. These acridinylthiourea derivatives display significant cytotoxic activities against different types of cancer cell lines at micromolar concentrations. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mária Kožurková
- Department of Biochemisty, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova 11, Košice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, Hradec Kralove, Czech Republic
| | - Danica Sabolová
- Department of Biochemisty, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova 11, Košice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova 11, Košice, Slovak Republic
| |
Collapse
|
8
|
Cisáriková A, Barbieriková Z, Janovec L, Imrich J, Hunáková L, Bačová Z, Paulíková H. Acridin-3,6-dialkyldithiourea hydrochlorides as new photosensitizers for photodynamic therapy of mouse leukemia cells. Bioorg Med Chem 2016; 24:2011-22. [DOI: 10.1016/j.bmc.2016.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/20/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
9
|
Unexpected regiospecific formation and DNA binding of new 3-(acridin-9-yl)methyl-2-iminothiazolidin-4-ones. J CHEM SCI 2016. [DOI: 10.1007/s12039-015-1023-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
DNA binding, anti-tumour activity and reactivity toward cell thiols of acridin-9-ylalkenoic derivatives. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0851-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Čižeková L, Grolmusová A, Ipóthová Z, Barbieriková Z, Brezová V, Hunáková L, Imrich J, Janovec L, Dovinová I, Paulíková H. Novel 3,6-bis(imidazolidine)acridines as effective photosensitizers for photodynamic therapy. Bioorg Med Chem 2014; 22:4684-93. [DOI: 10.1016/j.bmc.2014.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 01/28/2023]
|
12
|
Ungvarsky J, Plsikova J, Janovec L, Koval J, Mikes J, Mikesová L, Harvanova D, Fedorocko P, Kristian P, Kasparkova J, Brabec V, Vojtickova M, Sabolova D, Stramova Z, Rosocha J, Imrich J, Kozurkova M. Novel trisubstituted acridines as human telomeric quadruplex binding ligands. Bioorg Chem 2014; 57:13-29. [PMID: 25171773 DOI: 10.1016/j.bioorg.2014.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 11/24/2022]
Abstract
A novel series of trisubstituted acridines were synthesized with the aim of mimicking the effects of BRACO19. These compounds were synthesized by modifying the molecular structure of BRACO19 at positions 3 and 6 with heteroacyclic moieties. All of the derivatives presented in the study exhibited stabilizing effects on the human telomeric DNA quadruplex. UV-vis spectroscopy, circular dichroism, linear dichroism and viscosimetry were used in order to study the nature of the DNA binding in more detail. The results show that all of the novel derivatives were able to fold the single-stranded DNA sequences into antiparallel G-quadruplex structures, with derivative 15 exhibiting the highest stabilizing capability. Cell cycle analysis revealed that a primary trend of the "braco"-like derivatives was to arrest the cells in the S- and G2M-phases of the cell cycle within the first 72h, with derivative 13 and BRACO19 proving particularly effective in suppressing cell proliferation. All studies derivatives were less toxic to human fibroblast cell line in comparison with HT 29 cancer cell line.
Collapse
Affiliation(s)
- Jan Ungvarsky
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jana Plsikova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic; Associated Tissue Bank of Faculty of Medicine, L. Pasteur University Hospital, Trieda SNP 1, 04166 Kosice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jan Koval
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jaromir Mikes
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Lucia Mikesová
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Denisa Harvanova
- Associated Tissue Bank of Faculty of Medicine, L. Pasteur University Hospital, Trieda SNP 1, 04166 Kosice, Slovak Republic
| | - Peter Fedorocko
- Department of Cellular Biology, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jana Kasparkova
- Institute of Biophysics, Department of Molecular Biophysics and Pharmacology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Department of Molecular Biophysics and Pharmacology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Maria Vojtickova
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Danica Sabolova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Zuzana Stramova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jan Rosocha
- Associated Tissue Bank of Faculty of Medicine, L. Pasteur University Hospital, Trieda SNP 1, 04166 Kosice, Slovak Republic
| | - Jan Imrich
- Department of Organic Chemistry, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Maria Kozurkova
- Department of Biochemistry, Moyzesova 11, 04001 Kosice, Slovak Republic.
| |
Collapse
|
13
|
Janockova J, Gulasova Z, Plsikova J, Musilek K, Kuca K, Mikes J, Culka L, Fedorocko P, Kozurkova M. Interaction of cholinesterase modulators with DNA and their cytotoxic activity. Int J Biol Macromol 2013; 64:53-62. [PMID: 24296409 DOI: 10.1016/j.ijbiomac.2013.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022]
Abstract
This research was focused on a study of the binding properties of a series of cholinesterase reactivators compounds K075 (1), K027 (2) and inhibitors compounds K524, K009 and 7-MEOTA (3-5) with calf thymus DNA. The nature of the interactions between compounds 1-5 and DNA were studied using spectroscopic techniques (UV-vis, fluorescence spectroscopy and circular dichroism). The binding constants for complexes of cholinesterase modulators with DNA were determined from UV-vis spectroscopic titrations (K=0.5 × 10(4)-8.9 × 10(5)M(-1)). The ability of the prepared analogues to relax topoisomerase I was studied with electrophoretic techniques and it was proved that ligands 4 and 5 inhibited this enzyme at a concentration of 30 μM. The biological activity of the novel compounds was assessed through an examination of changes in cell cycle distribution, mitochondrial membrane potential and cellular viability. Inhibitors 3-5 exhibited a cytotoxic effect on HL-60 (human acute promyelocytic leukaemia) cell culture, demonstrated a tendency to affect mitochondrial physiology and viability, and also forced cells to accumulate in the G1/G0-phase of the cell cycle. The cholinesterase reactivators 1 and 2 were found relatively save from the point of view of DNA binding, whereas cholinesterase inhibitors 3-5 resulted as strong DNA binding agents that limit their plausible use.
Collapse
Affiliation(s)
- Jana Janockova
- Institute of Chemistry, Department of Biochemistry, P. J. Šafárik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Zuzana Gulasova
- Institute of Chemistry, Department of Biochemistry, P. J. Šafárik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Jana Plsikova
- Institute of Chemistry, Department of Biochemistry, P. J. Šafárik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jaromir Mikes
- Institute of Biology and Ecology, Department of Cellular Biology, P. J. Šafárik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Lubomir Culka
- Institute of Biology and Ecology, Department of Cellular Biology, P. J. Šafárik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Peter Fedorocko
- Institute of Biology and Ecology, Department of Cellular Biology, P. J. Šafárik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic
| | - Maria Kozurkova
- Institute of Chemistry, Department of Biochemistry, P. J. Šafárik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic.
| |
Collapse
|
14
|
DNA binding acridine-thiazolidinone agents affecting intracellular glutathione. Bioorg Med Chem 2012; 20:7139-48. [PMID: 23122936 DOI: 10.1016/j.bmc.2012.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/21/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Three new acridine-thiazolidinone derivatives (2a-2c) have been synthesized and their interactions with calf thymus DNA and a number of cell lines (leukemic cells HL-60 and L1210 and human epithelial ovarian cancer cell lines A2780) were studied. The compounds 2a-2c possessed high affinity to calf thymus DNA and their binding constants determined by spectrofluorimetry were in the range of 1.37 × 10(6)-5.89 × 10(6) M(-1). All of the tested derivatives displayed strong cytotoxic activity in vitro, the highest activity in cytotoxic tests was found for 2c with IC(50) = 1.3 ± 0.2 μM (HL-60), 3.1 ± 0.4 μM (L1210), and 7.7 ± 0.5 μM (A2780) after 72 h incubation. The cancer cells accumulated acridine derivatives very fast and the changes of the glutathione level were confirmed. The compounds inhibited proliferation of the cells and induced an arrest of the cell cycle and cell death. Their influence upon cells was associated with their reactivity towards thiols and DNA binding activity.
Collapse
|
15
|
Janovec L, Kožurková M, Sabolová D, Ungvarský J, Paulíková H, Plšíková J, Vantová Z, Imrich J. Cytotoxic 3,6-bis((imidazolidinone)imino)acridines: Synthesis, DNA binding and molecular modeling. Bioorg Med Chem 2011; 19:1790-801. [DOI: 10.1016/j.bmc.2011.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 01/04/2011] [Accepted: 01/08/2011] [Indexed: 11/27/2022]
|