1
|
Yin B, Xie W, Fang S, He S, Ma W, Liang L, Yin Y, Zhou D, Wang Z, Wang D. Research Progress on Saccharide Molecule Detection Based on Nanopores. SENSORS (BASEL, SWITZERLAND) 2024; 24:5442. [PMID: 39205136 PMCID: PMC11360570 DOI: 10.3390/s24165442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wenhao Ma
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Daming Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| |
Collapse
|
2
|
Wang B, Yan L, Guo S, Wen L, Yu M, Feng L, Jia X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front Nutr 2022; 9:908175. [PMID: 35669078 PMCID: PMC9163837 DOI: 10.3389/fnut.2022.908175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides, which are widely found in Chinese herbs and work as one of the important active ingredients. Its biological activity is attributed to its complex chemical structure with diverse spatial conformations. However, the structural elucidation is the foundation but a bottleneck problem because the majority of CHPs are heteropolysaccharides with more complex structures. Similarly, the studies on the relationship between structure and function of CHPs are even more scarce. Therefore, this review summarizes the structure-activity relationship of CHPs. Meanwhile, we reviewed the structural elucidation strategies and some new progress especially in the advanced structural analysis methods. The characteristics and applicable scopes of various methods are compared to provide reference for selecting the most efficient method and developing new hyphenated techniques. Additionally, the principle structural modification methods of CHPs and their effects on activity are summarized. The shortcomings, potential breakthroughs, and developing directions of the study of CHPs are discussed. We hope to provide a reference for further research and promote the application of CHPs.
Collapse
|
3
|
Yang L, Kang X, Dong W, Wang L, Liu S, Zhong X, Liu D. Prebiotic properties of Ganoderma lucidum polysaccharides with special enrichment of Bacteroides ovatus and B. uniformis in vitro. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
4
|
Characterization of Acidic Tea Polysaccharides from Yellow Leaves of Wuyi Rock Tea and Their Hypoglycemic Activity via Intestinal Flora Regulation in Rats. Foods 2022; 11:foods11040617. [PMID: 35206093 PMCID: PMC8871580 DOI: 10.3390/foods11040617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
A bioactive acidic tea polysaccharide from yellow leaves of Wuyi rock tea was successively prepared via DEAE-52 and Superdex-200 columns. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-l-Araf-(1→, →5)-α-l-Araf-(1→, →4)-α-d-Glcp-(1→, Arap-(1→, →6)-α-d-Glcp-(1→, →2,4)-α-l-Rhap-(1→, →3,4)-α-d-Glcp-(1→, →4)-α-d-GalAp-(1→, →4)-α-d-GalAp-(1→, α-d-Galp-(1→, →6)-β-d-Galp-(1→ and →4)-β-d-Galp-(1→. The molecular weight was 3.9285 × 104 Da. The hypoglycemic effect of acidic tea polysaccharides on streptozotocin-induced type 2 diabetes mellitus rats was evaluated through histopathology and biochemistry analysis. The acidic tea polysaccharide could improve plasma and liver lipid metabolism. Moreover, 16S rRNA gene sequencing revealed that the composition of the intestinal flora changed drastically after treatment, namely, blooms of Bifidobacterium, Blautia, Dorea, and Oscillospira, and a strong reduction in Desulfovibrio and Lactobacillus. The above results illustrated that tea polysaccharides might serve as an effective ingredient to ameliorate glucose metabolism disorders and intestinal flora in hyperglycemic rats.
Collapse
|
5
|
Xiang-Li, Si-Chen, Zhao ZT, Meng-Zhao, Yi-Han, Ye XM, Qi-An, Ouyang KH, Wang WJ. Effects of polysaccharides from Yingshan Yunwu tea on meat quality, immune status and intestinal microflora in chickens. Int J Biol Macromol 2020; 155:61-70. [PMID: 32224178 DOI: 10.1016/j.ijbiomac.2020.03.198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
The present study was aimed to investigate the effects of the addition of Yingshan Yunwu green tea polysaccharide conjugates (GTPC) on meat quality, immune response and gut microflora in chickens. A total of 200 chickens with average initial body weight were randomly allotted to 4 groups. Intestinal samples were collected at the end of experiment for bacterial culture and microbial community analysis by 16S rDNA gene sequencing using Illumina MiSeq. Chicken breast muscle and serum were also sampled for analysis of meat quality and immune function. The results showed that dietary GTPC addition increased (P < 0.05) chicken breast muscle pH and redness-greenness (a*) value and decreased (P < 0.05) the values of lightness (L*), yellowness-blueness (b*), hardness, toughness and adhesiveness. In addition, dietary supplementation of GTPC increased (P < 0.05) the weight of thymus and bursa and serum concentrations of IgA and IgG. Furthermore, of the 10 bacterial phyla, the predominant taxa across all sampling time-points were Bacteroidetes, Firmicutes, Proteobacteria, and Deferribacteres, representing >97% of all sequences. GTPC increased the abundance of Bacteroidetes and Lactobacillus, and decreased the abundance of Proteobacteria. These findings provided some references of the application of GTPC in the poultry industry.
Collapse
Affiliation(s)
- Xiang-Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si-Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng-Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi-Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi-An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China..
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China..
| |
Collapse
|
6
|
Xiang-Li, Si-Chen, Zhao ZT, Meng-Zhao, Yi-Han, Ye XM, Qi-An, Ouyang KH, Wang WJ. Effects of polysaccharides from Yingshan Yunwu tea on meat quality, immune status and intestinal microflora in chickens. Int J Biol Macromol 2020. [DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Fan M, Zhu J, Qian Y, Yue W, Xu Y, Zhang D, Yang Y, Gao X, He H, Wang D. Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities. J Food Biochem 2020; 44:e13277. [PMID: 32557675 DOI: 10.1111/jfbc.13277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
The effects of purity of tea polysaccharides (TPS) on its five antioxidant activities and hypoglycemic activities in vitro were studied. The results showed that the higher the purity of TPS, the lower the antioxidant capacity. The purity of FTPSI is the highest (sugar content 80.72%), but its antioxidant activities were lower than those of Fujian tea polysaccharides (FTPS) and FTPSII. The antioxidant activity of tea polysaccharide is related to its protein and polyphenol content (Pearson r > .90). The protective effect of Zhejiang tea polysaccharides and FTPS on human umbilical vein endothelial cells (HUVEC) was better than that of its purified fractions. The inhibition rates of FTPSII (5 and 2 mg/ml) on α-glucosidase (32.76%) and α-amylase (-11.93%) were higher than those of FTPS and FTPSII. Purification does not change the basic structure of TPS. This study has certain reference value for the study of the antioxidant activities of TPS. Meanwhile, TPS can be used as a potential resource with hypoglycemic function. PRACTICAL APPLICATIONS: A large number of studies have shown that TPS have antioxidant activity. However, several studies considered that the antioxidant activity of TPS mainly comes from the residues of tea polyphenols. Therefore, the in vitro and cell antioxidant activities of TPS were studied in this paper. We believe that both glycoprotein and tea polyphenol are antioxidants of tea, and tea polysaccharide perform preferable effect on hypoglycemic. HUVEC cell model and four in vitro antioxidant test methods were used to study the antioxidant activities of TPS, and two enzyme inhibition activities were used to study the hypoglycemic effect of TPS, in order to provide a theoretical basis for the study of biological activity of TPS.
Collapse
Affiliation(s)
- Minghao Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Wei Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dandan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yuqi Yang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, People's Republic of China
| | - Xiaoya Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Haiyue He
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
8
|
Zhang S, Li Z, Wang X, An L, Bao J, Zhang J, Cui J, Li Y, Jin DQ, Tuerhong M, Abudukeremu M, Ohizumi Y, Xu J, Guo Y. Isolation, structural elucidation, and immunoregulation properties of an arabinofuranan from the rinds of Garcinia mangostana. Carbohydr Polym 2020; 246:116567. [PMID: 32747240 DOI: 10.1016/j.carbpol.2020.116567] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
In our search for bioactive polysaccharides as immunomodulatory agents, an arabinofuranan (GMP90-1) was purified and characterized from the rinds of Garcinia mangostana L. GMP90-1 (absolute molecular weight: 5.30 × 103 g/mol) was found to be composed of arabinose, galactose, and rhamnose. The backbone of GMP90-1 was determined as (1→5)-linked α-l-Araf, (1→2,3,5)-linked α-l-Araf, (1→3,5)-linked α-l-Araf, (1→6)-linked β-d-Galp, and (1→2)-linked α-l-Rhap. Conformational analysis revealed GMP90-1 to exist as a rigid rod structure in sodium chloride solution. To explore its potential as immunomodulatory agents, an in vitro cell screening was performed and GMP90-1 was found to significantly enhance the phagocytic uptake of neutral red and improve the secreted level of nitric oxide (NO), interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) of macrophages. Furthermore, the cellular immunomodulatory activities were confirmed by the in vivo zebrafish experiment, which suggested that GMP90-1 with immunomodulatory effects could be considered as a potential immunomodulatory for immune diseases.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhengguo Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuelian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiahe Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
9
|
Li X, Chen S, Li JE, Wang N, Liu X, An Q, Ye XM, Zhao ZT, Zhao M, Han Y, Ouyang KH, Wang WJ. Chemical Composition and Antioxidant Activities of Polysaccharides from Yingshan Cloud Mist Tea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019. [DOI: https:/doi.org/10.1155/2019/1915967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study was designed to investigate the chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist Tea. The chemical composition of green tea polysaccharides (GTPS) was analyzed by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric (TGA), gas chromatograph (GC), and high-performance gel-permeation chromatography (HPGPC). Then, the antioxidant activities in vitro of GTPS, effects of GTPS on body weight, and the antioxidant activities in chickens were studied. The results showed that GTPS were composed of rhamnose (Rha), arabinose (Ara), xylose (Xyl), mannose (Man), glucose (Glu), and galactose (Gal) in a molar ratio of 11.4 : 26.1 : 1.9 : 3.0 : 30.7 : 26.8 and the average molecular weight was 9.69×104 Da. Furthermore, GTPS exhibited obvious capacity of scavenging DPPH radical, hydroxyl radical, and superoxide radical and enhanced the ferric-reducing power in vitro. Last, GTPS significantly increased the body weight of chickens, enhanced the T-AOC, SOD, and GSH-Px level, and decreased the content of MDA in chickens. The results indicated that GTPS might be a kind of natural antioxidant, which had the potential application in feed industry.
Collapse
Affiliation(s)
- Xiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Li X, Chen S, Li JE, Wang N, Liu X, An Q, Ye XM, Zhao ZT, Zhao M, Han Y, Ouyang KH, Wang WJ. Chemical Composition and Antioxidant Activities of Polysaccharides from Yingshan Cloud Mist Tea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019. [DOI: https://doi.org/10.1155/2019/1915967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The study was designed to investigate the chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist Tea. The chemical composition of green tea polysaccharides (GTPS) was analyzed by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric (TGA), gas chromatograph (GC), and high-performance gel-permeation chromatography (HPGPC). Then, the antioxidant activities in vitro of GTPS, effects of GTPS on body weight, and the antioxidant activities in chickens were studied. The results showed that GTPS were composed of rhamnose (Rha), arabinose (Ara), xylose (Xyl), mannose (Man), glucose (Glu), and galactose (Gal) in a molar ratio of 11.4 : 26.1 : 1.9 : 3.0 : 30.7 : 26.8 and the average molecular weight was 9.69×104 Da. Furthermore, GTPS exhibited obvious capacity of scavenging DPPH radical, hydroxyl radical, and superoxide radical and enhanced the ferric-reducing power in vitro. Last, GTPS significantly increased the body weight of chickens, enhanced the T-AOC, SOD, and GSH-Px level, and decreased the content of MDA in chickens. The results indicated that GTPS might be a kind of natural antioxidant, which had the potential application in feed industry.
Collapse
Affiliation(s)
- Xiang Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-En Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota. Food Chem 2019; 289:177-186. [DOI: 10.1016/j.foodchem.2019.03.050] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
|
12
|
Li X, Chen S, Li JE, Wang N, Liu X, An Q, Ye XM, Zhao ZT, Zhao M, Han Y, Ouyang KH, Wang WJ. Chemical Composition and Antioxidant Activities of Polysaccharides from Yingshan Cloud Mist Tea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1915967. [PMID: 31531180 PMCID: PMC6721110 DOI: 10.1155/2019/1915967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
The study was designed to investigate the chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist Tea. The chemical composition of green tea polysaccharides (GTPS) was analyzed by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric (TGA), gas chromatograph (GC), and high-performance gel-permeation chromatography (HPGPC). Then, the antioxidant activities in vitro of GTPS, effects of GTPS on body weight, and the antioxidant activities in chickens were studied. The results showed that GTPS were composed of rhamnose (Rha), arabinose (Ara), xylose (Xyl), mannose (Man), glucose (Glu), and galactose (Gal) in a molar ratio of 11.4 : 26.1 : 1.9 : 3.0 : 30.7 : 26.8 and the average molecular weight was 9.69 × 104 Da. Furthermore, GTPS exhibited obvious capacity of scavenging DPPH radical, hydroxyl radical, and superoxide radical and enhanced the ferric-reducing power in vitro. Last, GTPS significantly increased the body weight of chickens, enhanced the T-AOC, SOD, and GSH-Px level, and decreased the content of MDA in chickens. The results indicated that GTPS might be a kind of natural antioxidant, which had the potential application in feed industry.
Collapse
Affiliation(s)
- Xiang Li
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Si Chen
- 2College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-En Li
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi An
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Mei Ye
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zi-Tong Zhao
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- 2College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- 1Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
13
|
Li T, Li C, Wu D, Yang Y, Jin Y. Studies on the acid degradation process and in vitro immune activity of the polysaccharide H6PC20 in Hericium erinaceus. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/392/5/052014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 2016; 153:663-678. [PMID: 27561538 DOI: 10.1016/j.carbpol.2016.08.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Saeeduddin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
15
|
Xiao JB, Jiang H. A review on the structure-function relationship aspect of polysaccharides from tea materials. Crit Rev Food Sci Nutr 2016; 55:930-8. [PMID: 24915319 DOI: 10.1080/10408398.2012.678423] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tea (Camellia sinensis) has a long history of medicinal use in the world. The chemical components of tea mainly consist of polyphenols (TPP), proteins, polysaccharides (TPS), chlorophyll, alkaloids, and so on. Great advances have been made in chemical and bioactive studies of catechins and TPP from tea in recent decades. However, the TPS from tea materials have received much less consideration than that of TPP. The number of relevant publications on the TPS from tea leaves and flowers has increased rapidly in recent years. This mini-review summarizes the structure-function relationship of TPS from tea leaves and flowers. The application of purified TPS from tea material as functional or nutritional foods was still little. It will help to develop the function foods with tea TPS and better understand the structure-bioactivity relationship of tea TPS.
Collapse
Affiliation(s)
- Jian Bo Xiao
- a Department of Biology , College of Life & Environment Science, Shanghai Normal University , Shanghai , 200234 , PR China
| | | |
Collapse
|
16
|
Liu W, Liu Y, Zhu R, Yu J, Lu W, Pan C, Yao W, Gao X. Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydr Polym 2016; 147:114-124. [PMID: 27178915 DOI: 10.1016/j.carbpol.2016.03.087] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 12/19/2022]
Abstract
An acidic polysaccharide, named as p-LBP, was isolated from Lycium barbarum L. by water extraction and purified by decoloration, ion exchange chromatography, dialysis and gel chromatography, successively. The primary structure analysis was determined by HPAEC-PAD, HPSEC, FT-IR, GC-MS, and NMR. The results showed p-LBP was a homogeneous heteropolysaccharide as a pectin molecule with an average molecular weight of 64kDa p-LBP was an approximately 87nm hollow sphere in 0.05mol/L sodium sulfate solution determined by HPSEC-MALLS, DLS and TEM. A discussion of degradation patterns gave the detailed structural information of p-LBP. Therefore, the results from degraded fragments elucidated that the backbone of p-LBP was formed by →4-α-GalpA-(1→, repeatedly. Partial region was connected by →4-α-GalpA-(1→ and →2-α-Rhap-(1→, alternatively. On the C-4 of partial →2-α-Rhap-(1→ residues existed branches forming by →4-β-Galp-(1→, →3-β-Galp-(1→ or →5-α-Araf-(1→, while on the C-6 of partial →3-β-Galp-(1→ residues existed secondary branches forming by terminal-α-Araf, terminal-β-Galp or →3-α-Araf-(1→.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yameng Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rui Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juping Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weisheng Lu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chun Pan
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, PR China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Guo R, Cao N, Wu Y, Wu J. Optimized extraction and molecular characterization of polysaccharides from Sophora alopecuroides L. seeds. Int J Biol Macromol 2016; 82:231-42. [DOI: 10.1016/j.ijbiomac.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/19/2015] [Accepted: 10/01/2015] [Indexed: 01/23/2023]
|
18
|
Li T, Yang Y, Liu Y, Zhou S, Yan MQ, Wu D, Zhang J, Tang C. Physicochemical characteristics and biological activities of polysaccharide fractions from Phellinus baumii cultured with different methods. Int J Biol Macromol 2015; 81:1082-8. [DOI: 10.1016/j.ijbiomac.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
19
|
Shao L, Wu Z, Tian F, Zhang H, Liu Z, Chen W, Guo B. Molecular characteristics of an exopolysaccharide from Lactobacillus rhamnosus KF5 in solution. Int J Biol Macromol 2015; 72:1429-34. [DOI: 10.1016/j.ijbiomac.2014.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/17/2023]
|
20
|
Deng YT, Lin-Shiau SY, Shyur LF, Lin JK. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice. Food Funct 2015; 6:1539-46. [DOI: 10.1039/c4fo01025f] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this report we describe a group of carbohydrates found in pu-erh tea polysaccharide (PTPS) that can decrease blood sugar by inhibiting alpha-glucosidase.
Collapse
Affiliation(s)
- Yea-Tyz Deng
- Institute of Biochemistry and Molecular Biology
- College of Medicine
- National Taiwan University
- Taipei
- Taiwan
| | - Shoei-Yn Lin-Shiau
- Institute of Oral medicine
- College of Oral Medicine
- Chung Shan Medical University
- Taichung
- Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center
- Academia Sinica
- Taipei
- Taiwan
| | - Jen-Kun Lin
- Institute of Biochemistry and Molecular Biology
- College of Medicine
- National Taiwan University
- Taipei
- Taiwan
| |
Collapse
|
21
|
Kim MJ, Kim SS, Lee SI. Quality Characteristics and Content of Polysaccharides in Green Tea Fermented by Monascus pilosus. Prev Nutr Food Sci 2014; 17:293-8. [PMID: 24471099 PMCID: PMC3866730 DOI: 10.3746/pnf.2012.17.4.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/17/2012] [Indexed: 11/06/2022] Open
Abstract
In this study, we designed a method to manufacture elevated fermented green tea by using Monascus pilosus, which is known as a functional microbe, and observe its antioxidant abilities and quality characteristics. The water-soluble substance (WSS) content of the fermented tea by M. pilosus (FTM) was lower than that of the non-fermented tea (NFT), although the alcohol-insoluble substance (AIS) content of the FTM was higher than that of NTM. On the other hand, the fractionated distilled water-soluble polysaccharide (DWSP), CDTA-soluble polysaccharides (CDSP), sodium carbonate-soluble polysaccharide (SCSP) and KOH soluble hemicellulose (HC) obtained from the AIS of the FTM was markedly higher than that of NFT. In the antioxidant parameters, the electron donating ability of all fractions, except HC, extracted from FTM was higher than that of NFT, and iron chelating ability of all fractions, except CDSP, extracted from FTM was higher than that of NFT. Whereas the DWSP and SCSP obtained from the FTM were higher than that of NFT, the activity of the HC fraction from both NFT and the FTM could not be detected. In addition, the xanthin oxidase (XO) inhibitory activities of the DWSP, CDSP and the SCSP obtained from the NFT were significantly higher than that of FTM, the aldehyde oxidase (AO) inhibitory activities of the DWSP and SCSP extracted from the FTM were markedly higher than that of the NFT. Meanwhile, the acceptance of NFT and FTM had no significant difference, while the quality of aroma, taste and mouthfeel of the FTM was higher than that of NFT. These results suggest that the post-fermented tea by Monascus microorgan-isms may be responsible for functional components as well as contribute to the improvement of the tea quality.
Collapse
Affiliation(s)
- Mee-Jung Kim
- Division of Hotel Food & Bakery, Shinsung University, Chungnam 343-861, Korea
| | - Song-Suk Kim
- Department of Food & Nutritional Sciences, Gumi University, Gyeongbuk 730-711, Korea
| | - Sang-Il Lee
- Department of Food, Nutrition and Cookery, Keimyung College, Daegu 704-703, Korea
| |
Collapse
|
22
|
Bashari M, Lagnika C, Ocen D, Chen H, Wang J, Xu X, Jin Z. Separation and characterization of dextran extracted from deteriorated sugarcane. Int J Biol Macromol 2013; 59:246-54. [DOI: 10.1016/j.ijbiomac.2013.04.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/06/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
|
23
|
Wang Y, Xian J, Xi X, Wei X. Multi-fingerprint and quality control analysis of tea polysaccharides. Carbohydr Polym 2013; 92:583-90. [DOI: 10.1016/j.carbpol.2012.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
|
24
|
Guo L, Zhu Y, Du XF. Compatibility studies on tea polysaccharide/amylose/water and tea polysaccharide/amylopectin/water. Carbohydr Polym 2013; 92:441-7. [DOI: 10.1016/j.carbpol.2012.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 08/15/2012] [Accepted: 09/21/2012] [Indexed: 11/24/2022]
|
25
|
Xia L, Liu X, Guo H, Zhang H, Zhu J, Ren F. Partial characterization and immunomodulatory activity of polysaccharides from the stem of Dendrobium officinale (Tiepishihu) in vitro. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.12.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
26
|
Wei X, Mao F, Cai X, Wang Y. Composition and bioactivity of polysaccharides from tea seeds obtained by water extraction. Int J Biol Macromol 2011; 49:587-90. [DOI: 10.1016/j.ijbiomac.2011.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|