1
|
Bu Y, Chen X, Wu T, Zhang R, Yan H, Lin Q. Synthesis, Optimization and Molecular Self-Assembly Behavior of Alginate-g-Oleylamine Derivatives Based on Ugi Reaction for Hydrophobic Drug Delivery. Int J Mol Sci 2024; 25:8551. [PMID: 39126119 PMCID: PMC11313573 DOI: 10.3390/ijms25158551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
To achieve the optimal alginate-based oral formulation for delivery of hydrophobic drugs, on the basis of previous research, we further optimized the synthesis process parameters of alginate-g-oleylamine derivatives (Ugi-FOlT) and explored the effects of different degrees of substitution (DSs) on the molecular self-assembly properties of Ugi-FOlT, as well as the in vitro cytotoxicity and drug release behavior of Ugi-FOlT. The resultant Ugi-FOlT exhibited good amphiphilic properties with the critical micelle concentration (CMC) ranging from 0.043 mg/mL to 0.091 mg/mL, which decreased with the increase in the DS of Ugi-FOlT. Furthermore, Ugi-FOlT was able to self-assemble into spherical micellar aggregates in aqueous solution, whose sizes and zeta potentials with various DSs measured by dynamic light scattering (DLS) were in the range of 653 ± 25~710 ± 40 nm and -58.2 ± 1.92~-48.9 ± 2.86 mV, respectively. In addition, RAW 264.7 macrophages were used for MTT assay to evaluate the in vitro cytotoxicity of Ugi-FOlT in the range of 100~500 μg/mL, and the results indicated good cytocompatibility for Ugi-FOlT. Ugi-FOlT micellar aggregates with favorable stability also showed a certain sustained and pH-responsive release behavior for the hydrophobic drug ibuprofen (IBU). Meanwhile, it is feasible to control the drug release rate by regulating the DS of Ugi-FOlT. The influence of different DSs on the properties of Ugi-FOlT is helpful to fully understand the relationship between the micromolecular structure of Ugi-FOlT and its macroscopic properties.
Collapse
Affiliation(s)
- Yanan Bu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.B.); (X.C.); (T.W.); (R.Z.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.B.); (X.C.); (T.W.); (R.Z.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.B.); (X.C.); (T.W.); (R.Z.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ruolin Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.B.); (X.C.); (T.W.); (R.Z.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.B.); (X.C.); (T.W.); (R.Z.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Y.B.); (X.C.); (T.W.); (R.Z.); (Q.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
2
|
Noreen A, Zia KM, Tabasum S, Khalid S, Shareef R. A review on grafting of hydroxyethylcellulose for versatile applications. Int J Biol Macromol 2020; 150:289-303. [PMID: 32004607 DOI: 10.1016/j.ijbiomac.2020.01.265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023]
Abstract
Hydroxyethylcellulose (HEC) is a biocompatible, biodegradable, nontoxic, hydrophilic, non- ionic water soluble derivative of cellulose. It is broadly used in biomedical field, paint industry, as a soil amendment in agriculture, coal dewatering, cosmetics, absorbent pads, wastewater treatment and gel electrolyte membranes. Industrial uses of HEC can be extended by the its grafting with different polymers including poly acrylic acid, polyacrylamide, polylactic acid, polyethyleneglycol, polydimethyleamide, polycaprolactone, polylactic acid and dimethylamino ethylmethacrylate. This permits the formation of new biomaterials with improved properties and versatile applications. In this article, a comprehensive overview of graft copolymers of HEC with other polymers/compounds and their applications in drug delivery, stimuli sensitive hydrogels, super absorbents, personal hygiene products and coal dewatering is presented.
Collapse
Affiliation(s)
- Aqdas Noreen
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Khalid Mahmood Zia
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan.
| | - Shazia Tabasum
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Sana Khalid
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Rahila Shareef
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| |
Collapse
|
3
|
Liu S, Zhang L, Chen X, Chu T, Guo Y, Niu M. Cationic micelles self-assembled from quaternized cellulose-g-oligo (ε-caprolactone) amphiphilic copolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Yu Y, Gao X, Jiang Z, Zhang W, Ma J, Liu X, Zhang L. Homogeneous grafting of cellulose with polycaprolactone using quaternary ammonium salt systems and its application for ultraviolet-shielding composite films. RSC Adv 2018; 8:10865-10872. [PMID: 35541510 PMCID: PMC9078967 DOI: 10.1039/c8ra00120k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Microcrystalline cellulose grafted polycaprolactone (MCC-g-PCL) was successfully synthesized by ring-opening copolymerization catalyzed by 4-dimethylaminopyridine in a dual tetrabutylammonium acetate/dimethyl sulfoxide solvent system. A novel ultraviolet-shielding film based on MCC-g-PCL was prepared by introducing graphene oxide (GO). The results obtained showed that the introduction of GO not only obviously influenced the inherent structure of the MCC-g-PCL but remarkably changed the surface morphology of the composite film. Moreover, the GO/MCC-g-PCL composite showed a significant improvement in tensile strength, from 2.63 to 4.55 MPa, as well as elongation-at-break, from 6.4% to 15.5%, compared with the pure MCC-g-PCL film, owing to the strong hydrogen-bonding interaction that physically crosslinked GO with MCC-g-PCL. Importantly, GO/MCC-g-PCL composite films offered an effective high-energy light-shielding capacity; in particular MCC-g-PCL film containing 1.0 wt% GO possessed good absorbance between 200 nm and 300 nm. This study provides a framework for developing cellulose-based ultraviolet-shielding polymers and better understanding the ultraviolet-shielding mechanism. Microcrystalline cellulose graft polycaprolactone (MCC-g-PCL) was successfully synthesized by ring-opening copolymerization catalyzed by 4-dimethylaminopyridine in a dual tetrabutylammonium acetate/dimethyl sulfoxide solvent system.![]()
Collapse
Affiliation(s)
- Yongqi Yu
- Department of Material Science and Technology
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- P. R. China
| | - Xin Gao
- Department of Material Science and Technology
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- P. R. China
| | - Zeming Jiang
- Department of Material Science and Technology
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- P. R. China
| | - Wentao Zhang
- Department of Material Science and Technology
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- P. R. China
| | - Jiwei Ma
- Department of Material Science and Technology
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- P. R. China
| | - Xuejiao Liu
- Department of Material Science and Technology
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- P. R. China
| | - Liping Zhang
- Department of Material Science and Technology
- MOE Key Laboratory of Wooden Material Science and Application
- Beijing Forestry University
- Beijing
- P. R. China
| |
Collapse
|
5
|
Xu Q, Song L, Zhang L, Hu G, Du J, Liu E, Zheng Q, Liu Y, Li N, Xie H. Organocatalytic Cellulose Dissolution and In Situ Grafting of ϵ-Caprolactone via ROP in a Reversible DBU/DMSO/CO2
System. ChemistrySelect 2017. [DOI: 10.1002/slct.201701639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qinqin Xu
- Department of Polymer Materials and Engineering; College of Materials and Metallurgy; Guizhou University, Huaxi District; 550025 Guiyang P.R. China
| | - Longchu Song
- Key Laboratory of Environmentally Friendly Chemistry; Applications of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 P.R. China
| | - Lihua Zhang
- Department of Polymer Materials and Engineering; College of Materials and Metallurgy; Guizhou University, Huaxi District; 550025 Guiyang P.R. China
| | - Gang Hu
- Department of Polymer Materials and Engineering; College of Materials and Metallurgy; Guizhou University, Huaxi District; 550025 Guiyang P.R. China
| | - Jiehao Du
- Department of Polymer Materials and Engineering; College of Materials and Metallurgy; Guizhou University, Huaxi District; 550025 Guiyang P.R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry; Applications of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 P.R. China
| | - Qiang Zheng
- Department of Polymer Materials and Engineering; College of Materials and Metallurgy; Guizhou University, Huaxi District; 550025 Guiyang P.R. China
| | - Yu Liu
- Key Laboratory of Pulp and Paper Science & Technology of; Ministry of Education of China; Qilu University of Technology; Jinan 250353 P.R. China
| | - Nanwen Li
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry; Chinese Academy of Sciences; P.R. China
| | - Haibo Xie
- Department of Polymer Materials and Engineering; College of Materials and Metallurgy; Guizhou University, Huaxi District; 550025 Guiyang P.R. China
| |
Collapse
|
6
|
Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3736-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Song F, Shi WT, Dong XT, Han X, Wang XL, Chen SC, Wang YZ. Fennel-like nanoaggregates based on polysaccharide derivatives and their application in drug delivery. Colloids Surf B Biointerfaces 2014; 113:501-4. [DOI: 10.1016/j.colsurfb.2013.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/16/2022]
|
8
|
Thakur VK, Thakur MK, Gupta RK. Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 2013; 61:121-6. [DOI: 10.1016/j.ijbiomac.2013.06.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
9
|
Thakur VK, Thakur MK, Gupta RK. Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 2013; 62:44-51. [PMID: 23994197 DOI: 10.1016/j.ijbiomac.2013.08.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 11/20/2022]
Abstract
Natural lignocellulosic polymers are one of the most promising biodegradable, non-toxic and eco-friendly polymeric materials which have been used to develop various products for number of applications especially in green composites. However, these cellulosic materials have certain drawbacks, like sensitivity to water and moisture, and need to be modified. So in this article, a treatment of lignocellulose biopolymers with suitable acrylate monomer was investigated. The influence of different reaction parameters on efficiency (grafting) was investigated. SEM, TGA and Fourier transform infrared spectroscopy (FT-IR) were used to study the graft copolymerization between the monomer and hydroxyl groups of lignocellulosic biopolymers. This article also discusses swelling, and chemical resistance properties of the both the grafted/ungrafted cellulosic biopolymer and their potential candidature for green composite applications.
Collapse
Affiliation(s)
- Vijay Kumar Thakur
- Department of Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | | | | |
Collapse
|
10
|
Guo Y, Wang X, Shen Z, Shu X, Sun R. Preparation of cellulose-graft-poly(ɛ-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydr Polym 2013; 92:77-83. [DOI: 10.1016/j.carbpol.2012.09.058] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022]
|
11
|
Dong XT, Shi WT, Dang HC, Bao WY, Wang XL, Wang YZ. Thermal, Crystallization Properties, and Micellization Behavior of HEC-g-PPDO Copolymer: Microstructure Parameters Effect. Ind Eng Chem Res 2012. [DOI: 10.1021/ie300873a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xue-Ting Dong
- Center for
Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College
of Chemistry, State Key Laboratory of Polymer Materials Engineering,
National Engineering Laboratory of Eco-Friendly Polymeric Materials
(Sichuan), Sichuan University, 29 Wangjiang
Road, Chengdu 610064, China
| | - Wen-Ting Shi
- Center for
Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College
of Chemistry, State Key Laboratory of Polymer Materials Engineering,
National Engineering Laboratory of Eco-Friendly Polymeric Materials
(Sichuan), Sichuan University, 29 Wangjiang
Road, Chengdu 610064, China
| | - Hai-Chun Dang
- Center for
Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College
of Chemistry, State Key Laboratory of Polymer Materials Engineering,
National Engineering Laboratory of Eco-Friendly Polymeric Materials
(Sichuan), Sichuan University, 29 Wangjiang
Road, Chengdu 610064, China
| | - Wen-Yi Bao
- Center for
Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College
of Chemistry, State Key Laboratory of Polymer Materials Engineering,
National Engineering Laboratory of Eco-Friendly Polymeric Materials
(Sichuan), Sichuan University, 29 Wangjiang
Road, Chengdu 610064, China
| | - Xiu-Li Wang
- Center for
Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College
of Chemistry, State Key Laboratory of Polymer Materials Engineering,
National Engineering Laboratory of Eco-Friendly Polymeric Materials
(Sichuan), Sichuan University, 29 Wangjiang
Road, Chengdu 610064, China
| | - Yu-Zhong Wang
- Center for
Degradable and Flame-Retardant Polymeric Materials (ERCPM-MoE), College
of Chemistry, State Key Laboratory of Polymer Materials Engineering,
National Engineering Laboratory of Eco-Friendly Polymeric Materials
(Sichuan), Sichuan University, 29 Wangjiang
Road, Chengdu 610064, China
| |
Collapse
|
12
|
|
13
|
Yuan F, Pan H, Cheng F, Chen Y, Jiang SC. One-pot synthesis of comb-like copolymer bearing side chains composed of branched and linear polylactides. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Guo Y, Wang X, Shu X, Shen Z, Sun RC. Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3900-3908. [PMID: 22439596 DOI: 10.1021/jf3001873] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A series of amiphiphilic cellulose-based graft copolymers (MCC-g-PLA) with various molecular factors were synthesized in ionic liquid BmimCl and characterized by FT-IR, (1)H NMR, (13)C NMR, XRD, and TGA. Their solubility in a variety of solvents was compared. The prepared MCC-g-PLA copolymers can self-assemble into spherical nanomicelles (10-50 nm) in aqueous solution. The self-assembly behaviors of the MCC-g-PLA copolymers were systematically investigated by fluorescence probe. Furthermore, the hydrophobic antitumor drug paclitaxel (PTX) was successfully encapsulated into the MCC-g-PLA micelles. The drug encapsulation efficiency and loading content were found to be as high as 89.30% (w/w) and 4.97%, respectively. Results in this study not only suggest a promising cellulose-based antitumor drug carrier but also provide information for property-directed synthesis of the cellulose graft PLA copolymers.
Collapse
Affiliation(s)
- Yanzhu Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | | | | | | | | |
Collapse
|
15
|
Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0729-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|