1
|
Huang Q, Mu Z, Xu H, Bilawal A, Jiang Z, Han L. Comparison in structure, physicochemical and emulsifying properties of alpha lactoglobulin and beta lactalbumin exposed to prior γ-oryzanol by the multi-spectroscopic and silico methods. Int J Biol Macromol 2024; 282:136771. [PMID: 39442849 DOI: 10.1016/j.ijbiomac.2024.136771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
In this work, effects of γ-oryzanol (GO) on structure, physicochemical and emulsifying properties of α-lactalbumin (α-La) and β-lactoglobulin (β-Lg) were compared by using multi-spectroscopic analysis and computer simulation. Specifically, the intrinsic fluorescence of both whey proteins was quenched by GO, with GO being a stronger quenching for β-Lg than for α-La. The addition of GO caused the backbone of α-La to become denser, whereas for β-Lg, its spatial structure shifted from ordered to disordered after the addition of GO. Additionally, the surface hydrophobicity, emulsifying properties, and DPPH free radical scavenging capacity of β-Lg were higher than α-La after the addition of GO. Molecular docking indicated that the primary driving force in the whey protein-GO system was hydrophobic force. The hydrophobic pocket at the cleft between two structural domains in β-Lg and α-La was the binding area for GO, and GO had greater binding affinity for β-Lg than α-La. Furthermore, molecular dynamics simulations demonstrated that β-Lg-GO system was more stabilized than α-La-GO system. This research contributed to a deeper understanding of the mechanisms by which α-La and β-Lg interact with GO, offering the potential to develop whey protein-GO complexes as novel emulsifiers.
Collapse
Affiliation(s)
- Qiang Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Heyang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liying Han
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Vocational College for Nationalities, Harbin 150066, China.
| |
Collapse
|
2
|
Tian Z, Ding T, Niu H, Wang T, Zhang Z, Gao J, Kong M, Ming L, Tian Z, Ma J, Luo W, Wang C. 2-Phenylquinoline-polyamine conjugate (QPC): Interaction with bovine serum albumin (BSA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122875. [PMID: 37276638 DOI: 10.1016/j.saa.2023.122875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
A novel 2-phenylquinoline-polyamine conjugate (QPC) was synthesized and characterized, its interaction with bovine serum albumin (BSA) was evaluated using UV-Vis, fluorescence and circular dichroism (CD) spectroscopy. The results showed that QPC caused a whole train of spectral variation, including enhancement of UV-vis absorption and reduction of fluorescence (FL), indicating QPC-BSA complex formed. FL results showed that the type of FL quenching waslarge static quenching, which was also accompanied with a process of dynamic quenching. Binding constants, thermodynamic parameters and docking results showed that the interaction between QPC and BSA was basically a Van der Waals, hydrogen bond and hydrophobic interaction. Synchronous and 3D-FL analysis revealed that QPC resulted in unapparent conformational alteration of BSA. The docking study suggested QPC was situated at the binding sites II of BSA, and 2-phenylquinoline moiety contributed to the hydrophobic interaction. The results of molecular dynamics revealed QPC altered the conformation of BSA, which showed that the inconsistency between experimental data and theoretical calculation results may be due to the instability of the compound.
Collapse
Affiliation(s)
- Zhiyong Tian
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Tengli Ding
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hanjing Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ting Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China
| | - Zhongze Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinhua Gao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ming Kong
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Li Ming
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Zhihui Tian
- The National Supercomputing Center in Zhengzhou, Zhengzhou University, Henan 450001, China
| | - Jing Ma
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Hashemizadeh M, Shiri F, Shahraki S, Razmara Z. A multidisciplinary study for investigating the interaction of an iron complex with bovine liver catalase. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
The effect of putrescine on the lysozyme activity and structure: Spectroscopic approaches and molecular dynamic simulation. Colloids Surf B Biointerfaces 2022; 213:112402. [PMID: 35151046 DOI: 10.1016/j.colsurfb.2022.112402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
Abstract
The present research addressed the influence of polyamine (putrescine) on the compound as well as function of lysozyme; accordingly, UV- Visible, fluorescence spectroscopy and simulation method were applied to fulfill this goal. Lysozyme's structural variability was examined at various putrescine concentrations; also, the putrescine binding to lysozyme was addressed using spectrofluorescence, circular dichroism (CD) and UV-Vis measurements. The obtained results indicated that with raising the putrescine concentration, the intrinsic quenching fluorescence of lysozyme was decreased based on the static mechanism. Analysis of thermodynamic parameters also indicated that van der Waals as well as hydrogen bond forces served a fundamental role in determining the resulting stability; this was in agreement with modeling studies. Measurement of UV absorption spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy also demonstrated that lysozyme's second and tertiary structures were altered in a putrescine concentration-dependent manner. Putrescine inhibited lysozyme's enzymatic activity, displaying its affinity with the lysozyme's active site. Further, molecular simulation conducted revealed that putrescine could have spontaneous binding to lysozyme, changing its structure, thus further emphasizing the experimental results.
Collapse
|
5
|
Sahebi U, Gholami H, Ghalandari B, Badalkhani-khamseh F, Nikzamir A, Divsalar A. Evaluation of BLG ability for binding to 5-FU and Irinotecan simultaneously under acidic condition: A spectroscopic, molecular docking and molecular dynamic simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Xue X, He H, Liu C, Wang L, Wang L, Wang Y, Wang L, Yang C, Wang J, Hou R. l-Theanine improves emulsification stability and antioxidant capacity of diacylglycerol by hydrophobic binding β-lactoglobulin as emulsion surface stabilizer. Food Chem 2021; 366:130557. [PMID: 34284195 DOI: 10.1016/j.foodchem.2021.130557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
Diacylglycerol (DAG) is commonly used as fat substitute in food manufacture due to its functional properties, but DAG has poor emulsification and oxidation stability, which limits its wide application in food industry. In this work, fluorescence quenching data and thermodynamic parameters were analyzed to investigate the interaction mechanism between l-theanine (L-Th) and β-lactoglobulin (β-LG). DAG emulsion was prepared by using β-lactoglobulin-theanine (β-LG-Th) as surface stabilizer, and its emulsification and oxidation stability were evaluated. The results showed that the hydrophobic interaction played an important role on the conjugate of β-LG and L-Th due to the negative values for ΔG, positive values for ΔH and ΔS at pH 4.0, pH 6.0 and pH 8.0. The DAG has been better embedded by using β-LG-Th as surface stabilizer, and the droplet size was about 0.2 µm to 1.5 µm when the pH was 6.0, the ratio of L-Th to β-LG was 1:1. β-LG-Th as surface stabilizer for DAG can increase the ζ-potential and emulsion index, make the emulsion droplet size distribution more uniform. The l-theanine was better to be used to improve the emulsification stability and antioxidant capacity of DAG by binding β-LG as surface stabilizer.
Collapse
Affiliation(s)
- Xiuheng Xue
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Haiyong He
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Cunjun Liu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Li Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Lu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yueji Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Luping Wang
- College of Animal Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Chen Yang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Juhua Wang
- College of Animal Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
8
|
Azarakhsh F, Divsalar A, Saboury AA, Eidi A. Simultaneous delivery of oxali-palladium and iron nanoparticles by β-casein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Protein interaction and in vitro cytotoxicity studies of newly designed palladium (II) nitrate complexes: spectrochemical, theoretical and biological assessments. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Waghmare MN, Qureshi TS, Krishna CM, Pansare K, Gadewal N, Hole A, Dongre PM. β-Lactoglobulin-gold nanoparticles interface and its interaction with some anticancer drugs - an approach for targeted drug delivery. J Biomol Struct Dyn 2021; 40:6193-6210. [PMID: 33509048 DOI: 10.1080/07391102.2021.1879270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The protein-nanoparticle interface plays a crucial role in drug binding and stability, in turn enhancing efficacy in targeted drug delivery. In the present study, whey protein β-lactoglobulin (BLG) is conjugated with gold nanoparticles (AuNP) and its interaction with curcumin (CUR) and gemcitabine (GEM) has been explored. Further, AuNP-BLG conjugate interactions with anticancer drugs were characterized using dynamic light scattering (DLS), zeta potential, UV-visible, Raman spectroscopy, fluorescence, circular dichroism along with molecular dynamics simulation. The cytotoxicity studies were performed using breast cancer cell lines (MCF-7). ∼8 µM of BLG resides on AuNP (∼29 nm) surface revealed by DLS. Raman scattering of AuNP-BLG conjugate showed orientation of the central calyx of BLG towards solvent. BLG fluorescence confirmed the interaction between AuNP-BLG conjugate with drugs and indicated strong binding and affinity (for CUR KD = 3.71 x 108 M -1, n = 1.83, and for GEM KD = 3.78 x 103 M -1, n = 0.94), enhanced in the presence of AuNP. CD and Raman analysis exhibited selective hydrophilic and hydrophobic conformations induced by drug binding. Computational studies on BLG-drug complexes revealed that the residues Pro38, Leu39 and Met107 are largely associated with CUR binding, while GEM interaction is via hydrophilic contacts which significantly matches with spectroscopic investigation. IC50 values were calculated for all components of this loading system on MCF-7. The possible mechanisms of interaction between AuNP-BLG with anticancer drugs has been explored at the molecular level. We believe that these conjugates could be considered in the targeted drug delivery studies for cancer research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manik N Waghmare
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - Tazeen S Qureshi
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - C Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Kshama Pansare
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Arti Hole
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Chanphai P, Bourassa P, Tajmir-Riahi HA. An Overview of the Loading Efficacy of Cationic Lipids with Milk Proteins: A Potential Application for Lipid Delivery. Curr Med Chem 2020; 27:4109-4117. [DOI: 10.2174/0929867325666180608122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
In this review, the loading efficacies of helper and Cationic Lipids Cholesterol
(CHOL), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), Dioctadecyl Dimethyl-
Ammonium Bromide (DDAB) and Dioleoyl Phosphatidylethanolamine (DOPE) with milk β-
lactoglobulin, α-casein and β-casein were compared in aqueous solution at physiological conditions.
Structural analysis showed that lipids bind milk proteins via hydrophilic, hydrophobic
and H-bonding contacts with DOTAP and DDAB forming more stable protein conjugates.
Loading efficacy was 30-50% and enhanced with cationic lipids. Lipid conjugation altered
protein conformation, causing a partial protein structural destabilization. Milk proteins are
capable of transporting lipids in vitro.
Collapse
Affiliation(s)
- Penprapa Chanphai
- Department de Chemistry-Biochemistry, University of Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres (Quebec) G9A 5H7, Canada
| | - Philippe Bourassa
- Department de Chemistry-Biochemistry, University of Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres (Quebec) G9A 5H7, Canada
| | - Heidar Ali Tajmir-Riahi
- Department de Chemistry-Biochemistry, University of Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres (Quebec) G9A 5H7, Canada
| |
Collapse
|
12
|
Chanphai P, Tajmir-Riahi HA. Locating the binding sites of citric acid and gallic acid on milk β-lactoglobulin. J Biomol Struct Dyn 2020; 39:5160-5165. [PMID: 32579075 DOI: 10.1080/07391102.2020.1784290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
β-Lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic and hydrophilic molecules. We located the binding sites of citric acid and gallic acid on β-lactoglobulin (β-LG) in aqueous solution at physiological conditions, using spectroscopic methods, thermodynamic analysis and molecular modeling. Thermodynamic parameters ΔH0 -9.5 to -6.9 (kJ mol-1), ΔS0 23.9 to 13.6 (J mol-1K-1) and ΔG0 -14.5 to -13.6 (kJ mol-1) showed that acid binds protein via ionic contacts with gallic acid forming stronger protein conjugates consistent with theoretical modeling. Different amino acids are involved in gallic acid and citric acid complexation. Protein conformation was altered with reduction of β-sheet from 58% (free protein) to 46-43% and a major increase in α-helix from 11% (free protein) to 29-23% and random coil structure in the acid-protein, indicating a partial protein destabilization. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, Trois-Rivieres, Quebec, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, Trois-Rivieres, Quebec, Canada
| |
Collapse
|
13
|
Kuznetsova DA, Gabdrakhmanov DR, Lukashenko SS, Faizullin DA, Zuev YF, Nizameev IR, Kadirov MK, Kuznetsov DM, Zakharova LY. Interaction of bovine serum albumin with cationic imidazolium-containing amphiphiles bearing urethane fragment: Effect of hydrophobic tail length. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Tian Z, Tian L, Shi M, Zhao S, Guo S, Luo W, Wang C, Tian Z. Investigation of the interaction of a polyamine-modified flavonoid with bovine serum albumin (BSA) by spectroscopic methods and molecular simulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111917. [PMID: 32679511 DOI: 10.1016/j.jphotobiol.2020.111917] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
The interaction between BSA and compound 1 was studied by UV-vis, fluorescence and circular dichroism spectroscopy under physiological conditions (pH = 7.4). Molecular docking and molecular dynamics analyses were also performed. The results showed that compound 1 could bind to BSA. When compound 1 bound to BSA, there were a series of changes in the spectral properties of BSA, which were an enhancement effect of the UV-Vis spectrum of BSA, fluorescence quenching and a weak conformational change in the CD spectrum. The results of the fluorescence experiments at 298, 303 and 310 K showed that fluorescence quenching caused by the addition of compound 1 to BSA was generally static quenching accompanied by a dynamic quenching process, which was shown by the quenching constants of 2.010 × 104 L∙M-1, 1.850 × 104 L∙M-1, and 1.970 × 104 L∙M-1 at the three different temperatures, respectively. From the obtained binding constants and thermodynamic parameters, it was found that hydrophobic forces played an important role in the binding process of 1 to BSA. The results of synchronous fluorescence and three-dimensional fluorescence showed that compound 1 caused a weak conformational change in BSA. Docking results showed that compound 1 was located at binding site II of bovine serum albumin protease. In addition, the flavonoid moiety of compound 1 contributes to the hydrophobic binding of compound 1 to BSA. The results of molecular dynamics, including the root-mean-square deviation (RMSD) and RMS fluctuation (RMSF) values, showed that the binding of compound 1 to BSA did not cause a significant conformational change in BSA.
Collapse
Affiliation(s)
- Zhiyong Tian
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Luyao Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 475001, China
| | - Man Shi
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Sihan Zhao
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shudi Guo
- Institute for innovative drug design and evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Zhihui Tian
- Smart city institute of Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
15
|
Simões LS, Abrunhosa L, Vicente AA, Ramos OL. Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Ameen F, Siddiqui S, Jahan I, Nayeem SM, Rehman SU, Tabish M. A detailed insight into the interaction of memantine with bovine serum albumin: A spectroscopic and computational approach. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Abdollahi K, Ince C, Condict L, Hung A, Kasapis S. Combined spectroscopic and molecular docking study on the pH dependence of molecular interactions between β-lactoglobulin and ferulic acid. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105461] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Gholami H, Divsalar A, Abbasalipourkabir R, Ziamajidi N, Saeidifar M. The simultaneous carrier ability of natural antioxidant of astaxanthin and chemotherapeutic drug of 5-fluorouracil by whey protein of β-lactoglobulin: spectroscopic and molecular docking study. J Biomol Struct Dyn 2020; 39:1004-1016. [DOI: 10.1080/07391102.2020.1733091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hamid Gholami
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Nasrin Ziamajidi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Saeidifar
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
19
|
Analyses on the binding interaction between rice glutelin and conjugated linoleic acid by multi-spectroscopy and computational docking simulation. Journal of Food Science and Technology 2020; 57:886-894. [PMID: 32123409 DOI: 10.1007/s13197-019-04121-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023]
Abstract
It is an interesting topic to elucidate the interaction among plant proteins and bioactive lipid components. However, there is a shortage of understanding regarding the nature of the interaction between rice protein and conjugated linoleic acid (CLA). In this study, the intrinsic fluorescence intensity of rice glutelin (RG) was quenched upon increasing concentrations of CLA, indicating the occurrence of an interaction between them. Thermodynamic analysis showed that the RG-CLA binding process occurred spontaneously and hydrogen bonds were the primary driving force. Moreover, only one binding site was calculated between RG and CLA by the intrinsic fluorescence data. The surface hydrophobicity of RG was reduced with increasing CLA. Circular dichroism and synchronous fluorescence spectroscopy showed conformational and microenvironmental changes around the chromophores of RG. The α-helical content increased and β-sheet content declined after the binding reaction. The computational docking program displayed the target site in which CLA and amino acid residues of RG might be linked together. This study provides valuable insights into the nature of the interactions between plant proteins and fatty acids.
Collapse
|
20
|
Chanphai P, Cloutier F, Oufqir Y, Leclerc MF, Eiján AM, Reyes-Moreno C, Bérubé G, Tajmir-Riahi HA. Biomolecular study and conjugation of two para-aminobenzoic acid derivatives with serum proteins: drug binding efficacy and protein structural analysis. J Biomol Struct Dyn 2020; 39:79-90. [PMID: 31980010 DOI: 10.1080/07391102.2020.1719889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two aminobenzoic acid derivatives DAB-0 and DAB-1 showed distinct biological properties on murine bladder cancer (BCa) cell line MB49-I. In contrast to DAB-1, DAB-0 does not possess any anti-inflammatory activity and is less toxic. Furthermore, DAB-0 does not interfere with INFγ-induced STAT1 activation and TNFα-induced IκB phosphorylation, while DAB-1 does. In order to rationalize these results, the binding efficacy of DAB-0 and DAB-1 with serum proteins such a human serum albumin (HSA), bovine serum albumin (BSA) and beta-lactoglobulin (β-LG) was investigated in aqueous solution at physiological pH. Multiple spectroscopic methods and thermodynamic analysis were used to determine the binding efficacy of DAB-0 and DAB-1 with serum proteins. Drug-protein conjugation was observed via through ionic contacts. DAB-1 forms stronger adducts than DAB-0, while β-LG shows more affinity with the order of stability β-LG > BSA > HSA. The stronger complexation of DAB-1 with serum proteins might account for its biological potential and transport in the blood. The binding efficacy ranged from 40 to 60%. Major alterations of protein secondary structures were detected upon drug complexation. Serum proteins are capable of delivering DAB-1 in vitro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - F Cloutier
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Y Oufqir
- Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Department of Medical Biology, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - M-F Leclerc
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - A M Eiján
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad De Buenos Aires, Argentina
| | - C Reyes-Moreno
- Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Department of Medical Biology, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - G Bérubé
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada.,Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
21
|
Balasco N, Ferraro G, Loreto D, Iacobucci I, Monti M, Merlino A. Cisplatin binding to β-lactoglobulin: a structural study. Dalton Trans 2020; 49:12450-12457. [PMID: 32852026 DOI: 10.1039/d0dt02582h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first structural study on the interaction of β-lactoglobulin with the anticancer compound cisplatin is here reported by combining spectroscopic, crystallographic and mass spectrometry techniques.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging
- CNR
- 80134 Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Domenico Loreto
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Maria Monti
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| |
Collapse
|
22
|
Chanphai P, Tajmir-Riahi H. Conjugation of vitamin C with serum proteins: A potential application for vitamin delivery. Int J Biol Macromol 2019; 137:966-972. [DOI: 10.1016/j.ijbiomac.2019.07.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 11/27/2022]
|
23
|
Chanphai P, Bariyanga J, Bérubé G, Tajmir-Riahi HA. Complexation of cis-Pt and trans-Pt(NH 3) 2Cl 2 with serum proteins: A potential application for drug delivery. J Biomol Struct Dyn 2019; 38:2777-2783. [PMID: 31402755 DOI: 10.1080/07391102.2019.1654408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbbreviationsHAShuman serum albuminBSAbovine serum albuminβ-LGbeta-lactoglobulincis-Pt and trans-PtPt(NH3)2Cl2FTIRFourier transform infraredCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry, Biochemistry and Physics
| | - J Bariyanga
- Division of Humanities: Math/Sciences, University of Hawai'i e West O'ahu, Kapolei, HI, USA
| | - G Bérubé
- Department of Chemistry, Biochemistry and Physics.,Groupe de Recherche en Signalisation Cellulaire, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | | |
Collapse
|
24
|
Shahraki S, Samareh Delarami H, Saeidifar M. Catalase inhibition by two Schiff base derivatives. Kinetics, thermodynamic and molecular docking studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Swiatek S, Komorek P, Jachimska B. Adsorption of β-lactoglobulin A on gold surface determined in situ by QCM-D measurements. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Sannaikar M, Inamdar (Doddamani) LS, Inamdar SR. Interaction between human serum albumin and toxic free InP/ZnS QDs using multi-spectroscopic study: An excellent alternate to heavy metal based QDs. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Shahraki S, Heydari A, Delarami HS, Oveisi Keikha A, Azizi Z, Fathollahi Zonouz A. Preparation, characterization and comparison of biological potency in two new Zn(II) and Pd(II) complexes of butanedione monoxime derivatives. J Biomol Struct Dyn 2019; 38:997-1011. [PMID: 30938659 DOI: 10.1080/07391102.2019.1591305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel Schiff base ligand (2-iminothiophenol-2,3-butanedione monoxime, ITBM) and its complexes with Pd(II) and Zn(II) metal ions ([M(ITBM)2]Cl2) were synthesized and characterized in the present study. The formulated complexes were evaluated for in vitro antioxidant activity as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•). According to the results, antioxidant activity of Pd complex (IC50=36 mg L-1) was more effective than that of Zn(II) complex (IC50=72 mg L-1). Biophysical techniques along with computational modeling were employed to examine the binding of these complexes with human serum albumin (HSA) as the model protein. The trial findings revealed an interaction between Schiff base complexes and HSA with a modest binding affinity [Kb=6.31(±0.11)×104 M-1 for Zn(II) complex and 0.71(±0.05)×104 M-1 for Pd(II) complex at 310 K]. An intense fluorescence quenching of protein through a static quenching mechanism was occurred due to the binding of both complexes to HSA. Hydrogen bonds and van der Waals forces in both examined systems were the main stabilizing forces in the development of drug-protein complex. Based on far-UV-CD observations, the content of α-helical structure in the protein was reduced through induction by both complexes. Analysis of protein-ligand docking demonstrated binding of the two Schiff base complexes to residues placed in the IIA subdomain of HSA. In addition, Zn complex with HSA showed a stronger binding ability than that of Pd complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ali Heydari
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | | | - Zahra Azizi
- Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | | |
Collapse
|
28
|
Shahraki S, Shiri F, Heidari Majd M, Dahmardeh S. Investigating the biological potency of novel lanthanum(III) amino acid complex: MCF-7 breast cancer cell line, BSA and β-LG as targets. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-1508-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Shahraki S, Majd MH, Heydari A. Novel tetradentate Schiff base zinc(II) complex as a potential antioxidant and cancer chemotherapeutic agent: Insights from the photophysical and computational approach. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Shahraki S, Shiri F, Razmara Z, Majd MH. A comparative study of the impact of metal complex size on the in vitro biological behavior of hetero di- and poly-nuclear Mn-Co complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Shahraki S, Shiri F, Heidari Majd M, Dahmardeh S. Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs. J Biomol Struct Dyn 2018; 37:2072-2085. [PMID: 29768984 DOI: 10.1080/07391102.2018.1476266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, a new lanthanum (III)-amino acid complex utilizing cysteine has been synthesized and characterized. The anticancer activities of the prepared La(III) complex against MCF-7 cell lines were studied. Results of MTT assay showed that at all three incubation times, the cytotoxic effect of prepared La(III) complex on MCF-7 breast cancer cell lines displays a time- and dose-dependent inhibitory effects. The interactions of the La(III) complex with two whey proteins (bovine serum albumin, BSA, and Bovine β-lactoglobulin, βLG) have been explored by using spectroscopic and molecular dicking methods. The obtained results indicated that La(III) complex strongly quenched the fluorescence of two carrier proteins in static quenching mode and also, BSA hah stronger binding affinity toward studied complex than βLG whit binding constant values of KBSA-La Complex ∼ 0.11 × 104 M-1 and KβLG-La Complex ∼ 0.63 × 103 M-1 at 300 K. The thermodynamic parameters revealed the contribution of hydrogen bond and Vander Waals interactions in both systems. The distances of the La(III) complex whit whey proteins were calculated using Förster energy transfer theory and proved existence of the energy transfer between two proteins and prepared La(III) complex with a high probability. FT-IR and UV-Vis absorption measurements indicated that the binding of the La(III) to BSA and βLG may induce conformational and micro-environmental changes of the proteins. The docking results indicate that the La(III) complex bind to residues located in the site II of BSA and second site of βLG. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somaye Shahraki
- a Department of Chemistry , University of Zabol , P.O. Box 98615-538 , Zabol , Iran
| | - Fereshteh Shiri
- a Department of Chemistry , University of Zabol , P.O. Box 98615-538 , Zabol , Iran
| | | | - Somaye Dahmardeh
- b Faculty of Pharmacy , Zabol University of Medical Sciences , Zabol , Iran
| |
Collapse
|
32
|
Ghalandari B, Poursoleiman A, Fekri M, Komeili A, Divsalar A, Eslami Moghadam M, Kamrava SK, Saboury AA. Biological evaluations of newly-designed Pt(II) and Pd(II) complexes using spectroscopic and molecular docking approaches. J Biomol Struct Dyn 2018; 37:3422-3433. [PMID: 30146941 DOI: 10.1080/07391102.2018.1516164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To perform biological evaluations of newly-designed Pt(II) and Pd(II) complexes, the present study was conducted with targeted protein human serum albumin (HSA) and HCT116 cell line as model of human colorectal carcinoma. The binding of Pt(II) and Pd(II) complexes to HSA was analyzed using fluorescence spectroscopy and molecular docking. The thermal stability and alterations in the secondary structure of HSA in the presence of Pt(II) and Pd(II) complexes were investigated using the thermal denaturation method and circular dichroism (CD) spectroscopy. The cytotoxicity of the Pt(II) and Pd(II) complexes was studied against the HCT116 cell line using MTT assay. The binding analysis revealed that the fluorescence findings were well in agreement with docking results such that there is only one binding site for each complex on HSA. Binding constants of 8.7 × 103 M-1, 2.65 × 103 M-1, 0.3 × 103 M-1, and 4.4 × 103 M-1 were determined for Pd(II) and Pt(II) complexes (I-IV) at temperature of 25 °C, respectively. Also, binding constants of 1.9 × 103 M-1, 15.17 × 103 M-1, 1.9 × 103 M-1, and 13.1 × 103 M-1 were determined for Pd(II) and Pt(II) complexes (I-IV) at temperature of 37 °C, respectively. The results of CD and thermal denaturation showed that the molecular structure of HSA affected by interaction with Pt(II) and Pd(II) complexes is stable. Cytotoxicity studies represented the growth suppression effect of the Pt(II) and Pd(II) complexes toward the human colorectal carcinoma cell line. Therefore, the results suggest that the new designed Pt(II) and Pd(II) complexes are well promising candidates for use in cancer treatment, particularly for human colorectal cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Behafarid Ghalandari
- a Department of Medical Nanotechnology , Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Atefeh Poursoleiman
- b Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mina Fekri
- c Faculty of Biological Sciences, Department of Cell and Molecular Biology' Kharazmi University , Tehran , Iran
| | - Ali Komeili
- a Department of Medical Nanotechnology , Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Adeleh Divsalar
- c Faculty of Biological Sciences, Department of Cell and Molecular Biology' Kharazmi University , Tehran , Iran
| | | | - Seyed Kamran Kamrava
- e Clinical Nanomedicine Laboratory , ENT and Head and Neck Surgery Research Center, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Ali Akbar Saboury
- b Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran.,f Center of Excellence in Biothermodynamics , University of Tehran , Tehran , Iran
| |
Collapse
|
33
|
Chanphai P, Ouellette V, Bérubé G, Tajmir-Riahi H. Conjugation of testo and testo-Pt(II) with serum proteins: Loading efficacy and protein conformation. Int J Biol Macromol 2018; 118:1112-1119. [DOI: 10.1016/j.ijbiomac.2018.06.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 01/02/2023]
|
34
|
Mechanistic understanding and binding analysis of a novel Schiff base palladium (II) complex with β-lactoglobulin and human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Probing the interaction of two chemotherapeutic drugs of oxali-palladium and 5-fluorouracil simultaneously with milk carrier protein of β-lactoglobulin. Int J Biol Macromol 2018; 112:422-432. [DOI: 10.1016/j.ijbiomac.2018.01.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
36
|
Chanphai P, Bourassa P, Kanakis C, Tarantilis P, Polissiou M, Tajmir-Riahi H. Review on the loading efficacy of dietary tea polyphenols with milk proteins. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Shahraki S, Saeidifar M, Gomroki M. Probing the
in vitro
binding mechanism between human serum albumin and La
2
O
2
CO
3
nanoparticles. IET Nanobiotechnol 2018. [DOI: 10.1049/iet-nbt.2017.0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research CenterKarajIran
| | | |
Collapse
|
38
|
Agudelo D, Bourassa P, Bariyanga J, Tajmir-Riahi H. Loading efficacy and binding analysis of retinoids with milk proteins: a short review. J Biomol Struct Dyn 2017; 36:4246-4254. [DOI: 10.1080/07391102.2017.1411833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D. Agudelo
- Département de Chemistry-Biochemistry, Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| | - P. Bourassa
- Département de Chemistry-Biochemistry, Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| | - J. Bariyanga
- Department of Chemistry, University of Hawaii-West O’ahu, 96-129 Ala Ike, Pearl City 96782, HI, USA
| | - H.A. Tajmir-Riahi
- Département de Chemistry-Biochemistry, Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| |
Collapse
|
39
|
Shahraki S, Heydari A, Saeidifar M, Gomroki M. Biophysical and computational comparison on the binding affinity of three important nutrients to β-lactoglobulin: folic acid, ascorbic acid and vitamin K3. J Biomol Struct Dyn 2017; 36:3651-3665. [DOI: 10.1080/07391102.2017.1394222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Ali Heydari
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | |
Collapse
|
40
|
Shahraki S, Shiri F, Majd MH, Razmara Z. Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex [Co(dipic)2Ni(OH2)5]·2H2O (dipic = dipicolinate) with two carrier proteins. J Pharm Biomed Anal 2017; 145:273-282. [DOI: 10.1016/j.jpba.2017.06.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022]
|
41
|
Chaves OA, Mathew B, Cesarin-Sobrinho D, Lakshminarayanan B, Joy M, Mathew GE, Suresh J, Netto-Ferreira JC. Spectroscopic, zeta potential and molecular docking analysis on the interaction between human serum albumin and halogenated thienyl chalcones. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Shahraki S, Heydari A. Binding forces between a novel Schiff base palladium(II) complex and two carrier proteins: human serum albumi and β-lactoglobulin. J Biomol Struct Dyn 2017; 36:2807-2821. [PMID: 28812944 DOI: 10.1080/07391102.2017.1367723] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ligand binding studies on carrier proteins are crucial in determining the pharmacological properties of drug candidates. Here, a new palladium(II) complex was synthesized and characterized. The in vitro binding studies of this complex with two carrier proteins, human serum albumin (HSA), and β-lactoglobulin (βLG) were investigated by employing biophysical techniques as well as computational modeling. The experimental results showed that the Pd(II) complex interacted with two carrier proteins with moderate binding affinity (Kb ≈ .5 × 104 M-1 for HSA and .2 × 103 M-1 for βLG). Binding of Pd(II) complex to HSA and βLG caused strong fluorescence quenching of both proteins through static quenching mechanism. In two studied systems hydrogen bonds and van der Waals forces were the major stabilizing forces in the drug-protein complex formation. UV-Visible and FT-IR measurements indicated that the binding of above complex to HSA and βLG may induce conformational and micro-environmental changes of two proteins. Protein-ligand docking analysis confirmed that the Pd(II) complex binds to residues located in the subdomain IIA of HSA and site A of βLG. All these experimental and computational results suggest that βLG and HSA might act as carrier protein for Pd(II) complex to deliver it to the target molecules.
Collapse
Key Words
- Ala, Alanine
- Cys, Cysteine
- DFT, Density Functional Theory
- DMSO, Dimethyl sulfoxide
- HOMO, highest occupied molecular orbital
- HSA, Human Serum Albumin
- LUMO, lowest unoccupied molecular orbital
- Leu, Leucine
- Lys, Lysine
- NMR, Nuclear Magnetic Resonance
- Pd(II) complex
- Pro, Proline
- Schiff base
- TMS, Tetramethylsilane
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- human serum albumin
- protein interactions
- β-lactoglobulin
- βLG, β-lactoglobulin
Collapse
Affiliation(s)
- Somaye Shahraki
- a Department of Chemistry , University of Zabol , Zabol , Iran
| | - Ali Heydari
- b Department of Chemistry , University of Sistan and Baluchestan , Zahedan , Iran
| |
Collapse
|
43
|
Chanphai P, Kreplak L, Tajmir-Riahi HA. Al cation induces aggregation of serum proteins. J Pharm Biomed Anal 2017; 141:234-240. [PMID: 28458192 DOI: 10.1016/j.jpba.2017.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 11/28/2022]
Abstract
Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR, Quebec, Canada G9A 5H7
| | - L Kreplak
- Department of Physics and Atmospheric Science, Sir James Dunn Building Dalhousie University, Lord Dalhousie Drive, Halifax, Canada NS B3H 4R2
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR, Quebec, Canada G9A 5H7.
| |
Collapse
|
44
|
Zhang L, Sahu ID, Xu M, Wang Y, Hu X. Effect of metal ions on the binding reaction of (−)-epigallocatechin gallate to β-lactoglobulin. Food Chem 2017; 221:1923-1929. [DOI: 10.1016/j.foodchem.2016.11.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/26/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
|
45
|
Shafaei Z, Ghalandari B, Vaseghi A, Divsalar A, Haertlé T, Saboury AA, Sawyer L. β-Lactoglobulin: An efficient nanocarrier for advanced delivery systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1685-1692. [PMID: 28343017 DOI: 10.1016/j.nano.2017.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/18/2017] [Accepted: 03/14/2017] [Indexed: 01/10/2023]
Abstract
Thanks to the progress of nanotechnology there are several agent-delivery systems that can be selected to achieve rapid and specific delivery of a wide variety of biologically active agents. Consequently, the manipulation and engineering of biopolymers has become one of the most exciting subjects for those who study delivery systems on the nanoscale. In this regard, both nanoparticle formation and a carrier role have been observed in the case of the globular milk whey protein, β-lactoglobulin (β-LG), setting it apart from many other proteins. To date, many efforts adopting different approaches have created β-LG nanoparticles useful in forming delivery systems for various agents with specific targets. In this review, the potential of β-LG to play the role of an efficient and diverse carrier protein, as well as its ability to form a well-targeted nano-scale delivery system is discussed.
Collapse
Affiliation(s)
- Zahra Shafaei
- Department of Cell and Molecular Biology' Faculty of Biological Sciences' Kharazmi University, Tehran, Iran
| | - Behafarid Ghalandari
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Biology' Faculty of Biological Sciences' Kharazmi University, Tehran, Iran.
| | - Thomas Haertlé
- FIP, BIA UR1268, Institut National de la Recherche Agronomique, Nantes, France
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics' University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Lindsay Sawyer
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Chanphai P, Tajmir-Riahi H. Trypsin and trypsin inhibitor bind milk beta-lactoglobulin: Protein–protein interactions and morphology. Int J Biol Macromol 2017; 96:754-758. [DOI: 10.1016/j.ijbiomac.2016.12.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
|
47
|
Combined multispectroscopic and molecular dynamics simulation investigation on the interaction between cyclosporine A and β-lactoglobulin. Int J Biol Macromol 2017; 95:1-7. [DOI: 10.1016/j.ijbiomac.2016.10.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 11/15/2022]
|
48
|
Chanphai P, Froehlich E, Mandeville JS, Tajmir-Riahi HA. Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis. Colloids Surf B Biointerfaces 2016; 150:168-174. [PMID: 27914253 DOI: 10.1016/j.colsurfb.2016.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 11/26/2016] [Indexed: 01/05/2023]
Abstract
PAMAM dendrimers form strong protein conjugates that are used in drug delivery systems. We report the thermodynamic and binding analysis of polyamidoamine (PAMAM-G4) conjugation with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in PAMAM-protein interactions with more hydrophobic b-LG forming stronger polymer-protein conjugates. Thermodynamic parameters showed PAMAM-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der waals and H-bonding interactions prevail in HSA and BSA-polymer conjugates. The protein loading efficacy was 45-55%. PAMAM complexation induced major alterations of protein conformation. TEM images show major polymer morphological changes upon protein conjugation.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada
| | - E Froehlich
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada
| | - J S Mandeville
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, TR (Quebec) Canada G9A 5H7, Canada.
| |
Collapse
|
49
|
Bourassa P, Chanphai P, Tajmir-Riahi H. Folic acid delivery by serum proteins: loading efficacy and protein morphology. J Biomol Struct Dyn 2016; 35:3499-3506. [DOI: 10.1080/07391102.2016.1259589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- P. Bourassa
- Département of Chemistry-Biochemistry and Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| | - P. Chanphai
- Département of Chemistry-Biochemistry and Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| | - H.A. Tajmir-Riahi
- Département of Chemistry-Biochemistry and Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| |
Collapse
|
50
|
Chanphai P, Tajmir-Riahi H. Conjugation of chitosan nanoparticles with biogenic and synthetic polyamines: A delivery tool for antitumor polyamine analogues. Carbohydr Polym 2016; 152:665-671. [DOI: 10.1016/j.carbpol.2016.06.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
|