1
|
Rodella C, Lazaridi S, Lemmin T. TemBERTure: advancing protein thermostability prediction with deep learning and attention mechanisms. BIOINFORMATICS ADVANCES 2024; 4:vbae103. [PMID: 39040220 PMCID: PMC11262459 DOI: 10.1093/bioadv/vbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Motivation Understanding protein thermostability is essential for numerous biotechnological applications, but traditional experimental methods are time-consuming, expensive, and error-prone. Recently, deep learning (DL) techniques from natural language processing (NLP) was extended to the field of biology, since the primary sequence of proteins can be viewed as a string of amino acids that follow a physicochemical grammar. Results In this study, we developed TemBERTure, a DL framework that predicts thermostability class and melting temperature from protein sequences. Our findings emphasize the importance of data diversity for training robust models, especially by including sequences from a wider range of organisms. Additionally, we suggest using attention scores from Deep Learning models to gain deeper insights into protein thermostability. Analyzing these scores in conjunction with the 3D protein structure can enhance understanding of the complex interactions among amino acid properties, their positioning, and the surrounding microenvironment. By addressing the limitations of current prediction methods and introducing new exploration avenues, this research paves the way for more accurate and informative protein thermostability predictions, ultimately accelerating advancements in protein engineering. Availability and implementation TemBERTure model and the data are available at: https://github.com/ibmm-unibe-ch/TemBERTure.
Collapse
Affiliation(s)
- Chiara Rodella
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern CH-3012, Switzerland
| | - Symela Lazaridi
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern CH-3012, Switzerland
| | - Thomas Lemmin
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
| |
Collapse
|
2
|
Yan M, Chen Y, Feng Y, Saeed M, Fang Z, Zhen W, Ni Z, Chen H. Perspective on Agricultural Industrialization: Modification Strategies for Enhancing the Catalytic Capacity of Keratinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38832583 DOI: 10.1021/acs.jafc.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.
Collapse
Affiliation(s)
- Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Ying Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhen Fang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Wang Zhen
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
3
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Xiong N, Xie D, Dong Y, Xue YP, Zheng YG. Efficient biosynthesis of 1-cyanocyclohexaneacetic acid using a highly soluble nitrilase by N-terminus modification of novel peptide tags. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Ma H, Xu KZ, Wang YJ, Yan N, Liao XR, Guan ZB. Enhancing the decolorization activity of Bacillus pumilus W3 CotA-laccase to Reactive Black 5 by site-saturation mutagenesis. Appl Microbiol Biotechnol 2020; 104:9193-9204. [PMID: 32918582 DOI: 10.1007/s00253-020-10897-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
Reactive Black 5 (RB5) is a typical refractory azo dye. Widespread utilization of RB5 has caused a variety of environmental and health problems. The enzymatic degradation of RB5 can be a promising solution due to its superiority as an eco-friendly and cost-competitive process. Bacterial CotA-laccase shows great application prospect to eliminate hazardous dyes from wastewater. However, efficient decolorization of RB5 CotA-laccase generally requires the participation of costly, toxic mediators. In the present study, we modified the amino acids Thr415 and Thr418 near the type 1 copper site and the amino acid Gln442 at the entrance of the substrate-binding pocket of Bacillus pumilus W3 CotA-laccase to boost its RB5 decolorization activity based on molecular docking analysis and site-saturation mutagenesis. Through the strategies, two double site mutants T415D/Q442A and T418K/Q442A obtained demonstrated 43.94 and 52.64% RB5 decolorization rates in the absence of a mediator at pH 10.0, respectively, which were about 3.70- and 4.43-fold higher compared with the wild-type CotA-laccase. Unexpectedly, the catalytic efficiency of the T418K/Q442A to ABTS was enhanced by 5.33-fold compared with the wild-type CotA-laccase. The mechanisms of conferring enhanced activity to the mutants were proposed by structural analysis. In summary, the mutants T415D/Q442A and T418K/Q442A have good application potentials for the biodegradation of RB5. KEY POINTS: • Three amino acids of CotA-laccase were manipulated by site-saturation mutagenesis. • Decolorization rate of two mutants to RB5 was enhanced 3.70- and 4.43-fold, respectively. • The mechanisms of awarding enhanced activity to the mutants were supposed.
Collapse
Affiliation(s)
- Hui Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Kai-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Ya-Jing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Na Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
6
|
Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. CHEMOSPHERE 2020; 250:126202. [PMID: 32092569 DOI: 10.1016/j.chemosphere.2020.126202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
As the primary source of a wide range of industrial products, the study of petroleum-derived compounds is of pivotal importance. However, the process of oil extraction and refinement is among the most environmentally hazardous practices, impacting almost all levels of the ecological chain. So far, the most appropriate strategy to overcome such an issue is through bioremediation, which revolves around the employment of different microorganisms to degrade hazardous compounds, generating less environmental impact and lower monetary costs. In this sense, a myriad of organisms and enzymes are considered possible candidates for the bioremediation process. Amidst the potential candidates is α-amylase, an evolutionary conserved starch-degrading enzyme. Notably, α-amylase was not only seen to degrade n-alkanes, a subclass of alkanes considered the most abundant petroleum-derived compounds but also low-density polyethylene, a dangerous pollutant produced from petroleum. Thus, due to its high conservation in both eukaryotic and prokaryotic lineages, in addition to the capability to degrade different types of hazardous compounds, the study of α-amylase becomes a rising interest. Nevertheless, there are no studies that review all biotechnological applications of α-amylase for bioremediation. In this work, we critically review the potential biotechnological applications of α-amylase, focusing on the biodegradation of petroleum-derived compounds. Evolutionary aspects are discussed, as well for all structural information and all features that could impact on the employment of this protein in the biotechnological industry, such as pH, temperature, and medium conditions. New perspectives and critical assessments are conducted regarding the application of α-amylase in the bioremediation of n-alkanes.
Collapse
Affiliation(s)
- Éderson Sales Moreira Pinto
- Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Márcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Gao Y, Huang M, Sun X, Zhang X, Zhang Y, Zhou X, Cai M. Single-site mutation of C363G or N463T strengthens thermostability improvement of IG181–182 deleted acidic α-amylase from deep-sea thermophile Geobacillus sp. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2016.1276462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yanyun Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyue Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Rahimzadeh M, Poodat M, Javadpour S, Qeshmi FI, Shamsipour F. Purification, Characterization and Comparison between Two New L-asparaginases from Bacillus PG03 and Bacillus PG04. Open Biochem J 2016; 10:35-45. [PMID: 27999622 PMCID: PMC5144114 DOI: 10.2174/1874091x01610010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 08/25/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND L-asparaginase has been used as a chemotherapeutic agent in treatment of lymphoblastic leukemia. In the present investigation, Bacillus sp. PG03 and Bacillus sp. PG04 were studied. METHODS L- asparaginases were produced using different culture media and were purified using ion exchange chromatography. RESULTS Maximum productivity was obtained when asparagine was used as the nitrogen source at pH 7 and 48 h after cultivation. New intracellular L-asparaginases showed an apparent molecular weight of 25 kDa and 30 kDa by SDS-PAGE respectively. These enzymes were active in a wide pH range (3-9) with maximum activity at pH 6 for Bacillus PG03 and pH 7 for Bacillus PG04 L-asparaginase. Bacillus PG03 enzyme was optimally active at 37 ˚C and Bacillus PG04 maximum activity was observed at 40˚C. Kinetic parameters km and Vmax of both enzymes were studied using L-asparagine as the substrate. Thermal inactivation studies of Bacillus PG03 and Bacillus PG04 L-asparaginase exhibited t1/2 of 69.3 min and 34.6 min in 37 ˚C respectively. Also T50 and ∆G of inactivation were measured for both enzymes. CONCLUSION The results revealed that both enzymes had appropriate characteristics and thus could be a potential candidate for medical applications.
Collapse
Affiliation(s)
- Mahsa Rahimzadeh
- Molecular Medicine Research Center, Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Food and Cosmetic Health Research Center, Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Manijeh Poodat
- Department of Biochemistry, Faculty of Sciences, Payame Noor University of Mashhad, Mashhad, Iran
| | - Sedigheh Javadpour
- Molecular Medicine Research Center, Department of Microbiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Izadpanah Qeshmi
- Food and Cosmetic Health Research Center, Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Shamsipour
- Monoclonal Antibody Research Center, Avicenna Research Institute, (ACECR), Tehran, Iran
| |
Collapse
|
9
|
Dey TB, Kumar A, Banerjee R, Chandna P, Kuhad RC. Improvement of microbial α-amylase stability: Strategic approaches. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Kumar S, Prakash S, Gupta K, Dongre A, Balaram P, Balaram H. Unexpected functional implication of a stable succinimide in the structural stability of Methanocaldococcus jannaschii glutaminase. Nat Commun 2016; 7:12798. [PMID: 27677693 PMCID: PMC5052720 DOI: 10.1038/ncomms12798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
Protein ageing is often mediated by the formation of succinimide intermediates. These short-lived intermediates derive from asparaginyl deamidation and aspartyl dehydration and are rapidly converted into β-aspartyl or D-aspartyl residues. Here we report the presence of a highly stable succinimide intermediate in the glutaminase subunit of GMP synthetase from the hyperthermophile Methanocaldoccocus jannaschii. By comparing the biophysical properties of the wild-type protein and of several mutants, we show that the presence of succinimide increases the structural stability of the glutaminase subunit. The protein bearing this modification in fact remains folded at 100 °C and in 8 M guanidinium chloride. Mutation of the residue following the reactive asparagine provides insight into the factors that contribute to the hydrolytic stability of the succinimide. Our findings suggest that sequences that stabilize succinimides from hydrolysis may be evolutionarily selected to confer extreme thermal stability. Succinimide is a post-translational modification susceptible to rapid hydrolysis and generally associated with protein destabilisation. Here, the authors use mass spectroscopy to identify a stable succinimide intermediate that is responsible for the high thermostability of a thermophilic enzyme.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aparna Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
11
|
Joshi S, Satyanarayana T. In vitro engineering of microbial enzymes with multifarious applications: prospects and perspectives. BIORESOURCE TECHNOLOGY 2015; 176:273-283. [PMID: 25435065 DOI: 10.1016/j.biortech.2014.10.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
The discovery of a novel enzyme from a microbial source takes anywhere between months to years, and therefore, there has been an immense interest in modifying the existing microbial enzymes to suit the present day needs of the industry. The redesigning of industrially useful enzymes for improving their performance has become a challenge because bioinformatics databases have been revealing new facts on a day-to-day basis. Modification of the existing enzymes has become a trend for fine tuning of biocatalysts in the biotech industry. Hydrolases are employed in pharmaceutical, biofuel, detergent, food and feed industries that significantly contribute to the global annual revenue, and therefore, the emphasis has been on engineering them. Although a large data is accumulating on making alterations in microbial enzymes, there is a lack of definite information on redesigning industrial enzymes. This review focuses on the recent developments in improving the characteristics of various biotechnologically important enzymes.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
12
|
Thermostability enhancement of an endo-1,4-β-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Appl Microbiol Biotechnol 2014; 99:4245-53. [DOI: 10.1007/s00253-014-6244-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
|
13
|
Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol 2014; 98:8937-45. [DOI: 10.1007/s00253-014-5790-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
14
|
Chin IS, Murad AMA, Mahadi NM, Nathan S, Bakar FDA. Thermal stability engineering of Glomerella cingulata cutinase. Protein Eng Des Sel 2013; 26:369-75. [DOI: 10.1093/protein/gzt007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Chand N, Nateri AS, Sajedi RH, Mahdavi A, Rassa M. Enzymatic desizing of cotton fabric using a Ca2+-independent α-amylase with acidic pH profile. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|