1
|
Kurganov BI. Kinetic regime of aggregation of UV-irradiated glyceraldehyde-3-phosphate dehydrogenase from rabbit skeletal muscle. Biochem Biophys Res Commun 2018; 495:1182-1186. [DOI: 10.1016/j.bbrc.2017.11.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/25/2017] [Indexed: 11/15/2022]
|
2
|
Mikhaylova VV, Eronina TB, Chebotareva NA, Kleymenov SY, Shubin VV, Kurganov BI. A thermal after-effect of UV irradiation of muscle glycogen phosphorylase b. PLoS One 2017; 12:e0189125. [PMID: 29216272 PMCID: PMC5720721 DOI: 10.1371/journal.pone.0189125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 01/21/2023] Open
Abstract
Different test systems are used to characterize the anti-aggregation efficiency of molecular chaperone proteins and of low-molecular-weight chemical chaperones. Test systems based on aggregation of UV-irradiated protein are of special interest because they allow studying the protective action of different agents at physiological temperatures. The kinetics of UV-irradiated glycogen phosphorylase b (UV-Phb) from rabbit skeletal muscle was studied at 37°C using dynamic light scattering in a wide range of protein concentrations. It has been shown that the order of aggregation with respect to the protein is equal to unity. A conclusion has been made that the rate-limiting stage of the overall process of aggregation is heat-induced structural reorganization of a UV-Phb molecule, which contains concealed damage.
Collapse
Affiliation(s)
- Valeriya V. Mikhaylova
- Department of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow, Russia
- * E-mail: (VVM); (BIK)
| | - Tatiana B. Eronina
- Department of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow, Russia
| | - Natalia A. Chebotareva
- Department of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow, Russia
| | - Sergey Yu. Kleymenov
- Department of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow, Russia
- Kol’tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V. Shubin
- Department of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow, Russia
| | - Boris I. Kurganov
- Department of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow, Russia
- * E-mail: (VVM); (BIK)
| |
Collapse
|
3
|
Kurganov BI. Quantification of anti-aggregation activity of chaperones. Int J Biol Macromol 2017; 100:104-117. [DOI: 10.1016/j.ijbiomac.2016.07.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
|
4
|
Roman SG, Chebotareva NA, Kurganov BI. Anti-aggregation activity of small heat shock proteins under crowded conditions. Int J Biol Macromol 2016; 100:97-103. [PMID: 27234495 DOI: 10.1016/j.ijbiomac.2016.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
It is becoming evident that small heat shock proteins (sHsps) are important players of protein homeostasis system. Their ability to bind misfolded proteins may play a crucial role in preventing protein aggregation in cells. The remarkable structural plasticity of sHsps is considered to underlie the mechanism of their activity. However, all our knowledge of the anti-aggregation functioning of sHsps is based on data obtained in vitro in media greatly different from the cellular highly crowded milieu. The present review highlights available data on the effect of crowding on the anti-aggregation activity of sHsps. There is some evidence that crowding affects conformation and dynamics of sHsps oligomers as well as their anti-aggregation properties. Crowding stimulates association of sHsp-client protein complexes into large-sized aggregates thus diminishing the apparent anti-aggregation activity of sHsps. Nevertheless, it is also shown that complexes between suboligomers (dissociated forms) of sHsps and client proteins may be stabilized and exist for longer period of time under crowded conditions. Moreover, crowding may retard the initial stages of aggregation which correspond to the formation of sHsp-containing nuclei and their clusters. Thus, dissociation of sHsps into suboligomers appears to be an important feature for the anti-aggregation activity of sHsps in crowded media.
Collapse
Affiliation(s)
- Svetlana G Roman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
5
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Makeeva VF, Kurganov BI. Checking for reversibility of aggregation of UV-irradiated glycogen phosphorylase b under crowding conditions. Int J Biol Macromol 2016; 86:829-39. [DOI: 10.1016/j.ijbiomac.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
|
6
|
Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients. Int J Biol Macromol 2016; 82:328-38. [DOI: 10.1016/j.ijbiomac.2015.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 11/19/2022]
|
7
|
Borzova VA, Markossian KA, Kara DA, Kurganov B. Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin. Int J Biol Macromol 2015; 80:130-8. [PMID: 26116389 DOI: 10.1016/j.ijbiomac.2015.06.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 12/25/2022]
Abstract
A search for agents, which are capable of effectively suppressing protein aggregation, and elaboration of the appropriate test systems, are among important problems of modern biochemistry and biotechnology. One such test system is based on dithiothreitol (DTT)-induced aggregation of bovine serum albumin (BSA). Study of the kinetics of DTT-induced aggregation of BSA by asymmetric flow field flow fractionation showed that a decrease in the portion of the non-aggregated protein in time followed the exponential law, the rate constant of the first order remaining unchanged at varying protein concentration (0.1M Na-phosphate buffer, pH 7.0; 45 °C). The obtained results indicate that the rate-limiting stage of the general aggregation process is that of unfolding of the protein molecule. When studying the kinetics of DTT-induced aggregation of BSA by dynamic light scattering, we proposed to use parameter K(LS) as a measure of the initial rate of aggregation. Parameter K(LS) corresponds to the initial slope of the dependence of (I-I0)(0.5) on time (I0 and I are the initial and current values of the light scattering intensity, respectively). The K(LS) value has been applied to estimate anti-aggregation activity of chemical chaperones (arginine, its derivatives and proline).
Collapse
Affiliation(s)
- Vera A Borzova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Kira A Markossian
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Dmitriy A Kara
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
8
|
Borzova VA, Markossian KA, Muranov KO, Polyansky NB, Kleymenov SY, Kurganov BI. Quantification of anti-aggregation activity of UV-irradiated α-crystallin. Int J Biol Macromol 2015; 73:84-91. [DOI: 10.1016/j.ijbiomac.2014.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
|
9
|
Eronina TB, Chebotareva NA, Roman SG, Kleymenov SY, Makeeva VF, Poliansky NB, Muranov KO, Kurganov BI. Thermal denaturation and aggregation of apoform of glycogen phosphorylaseb. Effect of crowding agents and chaperones. Biopolymers 2014; 101:504-16. [DOI: 10.1002/bip.22410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/13/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Tatyana B. Eronina
- Department of Structural Biochemistry of Proteins; A.N. Bach Institute of Biochemistry; Russian Academy of Sciences, Leninsky Prospect 33 Moscow 119071 Russia
| | - Natalia A. Chebotareva
- Department of Structural Biochemistry of Proteins; A.N. Bach Institute of Biochemistry; Russian Academy of Sciences, Leninsky Prospect 33 Moscow 119071 Russia
| | - Svetlana G. Roman
- Department of Structural Biochemistry of Proteins; A.N. Bach Institute of Biochemistry; Russian Academy of Sciences, Leninsky Prospect 33 Moscow 119071 Russia
| | - Sergey Yu. Kleymenov
- Koltsov's Institute of Developmental Biology; Russian Academy of Sciences, Vavilov st 26 Moscow 119334 Russia
| | - Valentina F. Makeeva
- Department of Structural Biochemistry of Proteins; A.N. Bach Institute of Biochemistry; Russian Academy of Sciences, Leninsky Prospect 33 Moscow 119071 Russia
| | - Nikolay B. Poliansky
- Emanuel Institute of Biochemical Physics; Russian Academy of Sciences, Kosygin st. 4 Moscow 119991 Russia
| | - Konstantin O. Muranov
- Emanuel Institute of Biochemical Physics; Russian Academy of Sciences, Kosygin st. 4 Moscow 119991 Russia
| | - Boris I. Kurganov
- Department of Structural Biochemistry of Proteins; A.N. Bach Institute of Biochemistry; Russian Academy of Sciences, Leninsky Prospect 33 Moscow 119071 Russia
| |
Collapse
|
10
|
Kurganov BI. Antiaggregation activity of chaperones and its quantification. BIOCHEMISTRY (MOSCOW) 2014; 78:1554-66. [DOI: 10.1134/s0006297913130129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Borzova VA, Markossian KA, Kara DA, Chebotareva NA, Makeeva VF, Poliansky NB, Muranov KO, Kurganov BI. Quantification of anti-aggregation activity of chaperones: a test-system based on dithiothreitol-induced aggregation of bovine serum albumin. PLoS One 2013; 8:e74367. [PMID: 24058554 PMCID: PMC3769246 DOI: 10.1371/journal.pone.0074367] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/03/2013] [Indexed: 12/22/2022] Open
Abstract
The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation (v agg) have been discussed. The comparison of the dependences of v agg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of v agg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin-target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L]0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L]0.5 = 53 and 58 mM, respectively).
Collapse
Affiliation(s)
- Vera A. Borzova
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kira A. Markossian
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy A. Kara
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A. Chebotareva
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentina F. Makeeva
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay B. Poliansky
- Department of Chemical and Biological Processes Kinetics, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin O. Muranov
- Department of Chemical and Biological Processes Kinetics, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Boris I. Kurganov
- Department of Molecular Organization of Biological Structures, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Effect of crowding and chaperones on self-association, aggregation and reconstitution of apophosphorylase b. Int J Biol Macromol 2013; 60:69-76. [DOI: 10.1016/j.ijbiomac.2013.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022]
|