1
|
Du MW, Zhu XL, Zhang DX, Chen XZ, Yang LH, Xiao JZ, Fang WJ, Xue XC, Pan WH, Liao WQ, Yang T. X-Paste improves wound healing in diabetes via NF-E2-related factor/HO-1 signaling pathway. World J Diabetes 2024; 15:1299-1316. [PMID: 38983806 PMCID: PMC11229958 DOI: 10.4239/wjd.v15.i6.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU), as severe complications of diabetes mellitus (DM), significantly compromise patient health and carry risks of amputation and mortality. AIM To offer new insights into the occurrence and development of DFU, focusing on the therapeutic mechanisms of X-Paste (XP) of wound healing in diabetic mice. METHODS Employing traditional Chinese medicine ointment preparation methods, XP combines various medicinal ingredients. High-performance liquid chromatography (HPLC) identified XP's main components. Using streptozotocin (STZ)-induced diabetic, we aimed to investigate whether XP participated in the process of diabetic wound healing. RNA-sequencing analyzed gene expression differences between XP-treated and control groups. Molecular docking clarified XP's treatment mechanisms for diabetic wound healing. Human umbilical vein endothelial cells (HUVECs) were used to investigate the effects of Andrographolide (Andro) on cell viability, reactive oxygen species generation, apoptosis, proliferation, and metastasis in vitro following exposure to high glucose (HG), while NF-E2-related factor-2 (Nrf2) knockdown elucidated Andro's molecular mechanisms. RESULTS XP notably enhanced wound healing in mice, expediting the healing process. RNA-sequencing revealed Nrf2 upregulation in DM tissues following XP treatment. HPLC identified 21 primary XP components, with Andro exhibiting strong Nrf2 binding. Andro mitigated HG-induced HUVECs proliferation, metastasis, angiogenic injury, and inflammation inhibition. Andro alleviates HG-induced HUVECs damage through Nrf2/HO-1 pathway activation, with Nrf2 knockdown reducing Andro's proliferative and endothelial protective effects. CONCLUSION XP significantly promotes wound healing in STZ-induced diabetic models. As XP's key component, Andro activates the Nrf2/HO-1 signaling pathway, enhancing cell proliferation, tubule formation, and inflammation reduction.
Collapse
Affiliation(s)
- Ming-Wei Du
- Institute of Cardiovascular Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xin-Lin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Dong-Xing Zhang
- Department of Dermatology, Dongshan Hospital, Meizhou 514000, Guangdong Province, China
| | - Xian-Zhen Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Li-Hua Yang
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan 316000, Zhejiang Province, China
| | - Jin-Zhou Xiao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wen-Jie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xiao-Chun Xue
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Pharmacy, 905th Hospital of People’s Liberation Army of China (PLA) Navy, Shanghai 200052, China
| | - Wei-Hua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wan-Qing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Tao Yang
- Institute of Cardiovascular Disease, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
2
|
Suemanotham N, Phochantachinda S, Chatchaisak D, Sakcamduang W, Chansawhang A, Pitchakarn P, Chantong B. Antidiabetic effects of Andrographis paniculata supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Front Pharmacol 2023; 14:1077228. [PMID: 36865924 PMCID: PMC9971231 DOI: 10.3389/fphar.2023.1077228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Diabetes mellitus is a common endocrine disorder that causes hyperglycemia in dogs. Persistent hyperglycemia can induce inflammation and oxidative stress. This study aimed to investigate the effects of A. paniculata (Burm.f.) Nees (Acanthaceae) (A. paniculata) on blood glucose, inflammation, and oxidative stress in canine diabetes. A total of 41 client-owned dogs (23 diabetic and 18 clinically healthy) were included in this double-blind, placebo-controlled trial. Methods: The diabetic dogs were further divided into two treatments protocols: group 1 received A. paniculata extract capsules (50 mg/kg/day; n = 6) or received placebo for 90 days (n = 7); and group 2 received A. paniculata extract capsules (100 mg/kg/day; n = 6) or received a placebo for 180 days (n = 4). Blood and urine samples were collected every month. No significant differences in fasting blood glucose, fructosamine, interleukin-6, tumor necrosis factor-alpha, superoxide dismutase, and malondialdehyde levels were observed between the treatment and placebo groups (p > 0.05). Results and Discussion: The levels of alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, and creatinine were stable in the treatment groups. The blood glucose levels and concentrations of inflammatory and oxidative stress markers in the client-owned diabetic dogs were not altered by A. paniculata supplementation. Furthermore, treatment with this extract did not have any adverse effects on the animals. Non-etheless, the effects of A. paniculata on canine diabetes must be appropriately evaluated using a proteomic approach and involving a wider variety of protein markers.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Boonrat Chantong,
| |
Collapse
|
3
|
Qi X, Sun X, Wang M, Wang M, Qi Z, Cui C. Ginseng polysaccharides ameliorate abnormal lipid metabolism caused by acute alcoholic liver injury by promoting autophagy. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
| | - Xihan Sun
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
| | - Muyao Wang
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| | - Mei Wang
- Dalian Academy of Agricultural Sciences Dalian China
| | - Zhanwen Qi
- Yanbian Han Gongfang Health Products Co., Ltd. Yanji China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education Yanbian University Yanji China
- Food Science and Engineering, Agricultural College Yanbian University Yanji China
- Food Processing and Safety, Agricultural College Yanbian University Yanji China
| |
Collapse
|
4
|
XIONG C, HUANG CH, WU L, XU R, XUE JP, LIU ZG, SUN W. Identification of Andrographis Herba and its common products using mini-barcode. Chin J Nat Med 2022; 20:393-400. [DOI: 10.1016/s1875-5364(22)60157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 11/03/2022]
|
5
|
Liu S, Jia QJ, Peng YQ, Feng TH, Hu ST, Dong JE, Liang ZS. Advances in Mechanism Research on Polygonatum in Prevention and Treatment of Diabetes. Front Pharmacol 2022; 13:758501. [PMID: 35211009 PMCID: PMC8861320 DOI: 10.3389/fphar.2022.758501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus is a fast-growing disease with a major influence on people’s quality of life. Oral hypoglycemic drugs and insulin are currently the main effective drugs in the treatment of diabetes, but chronic consumption of these drugs has certain side effects. Polysaccharides, saponins, flavonoids, and phenolics are the primary secondary metabolites isolated from the rhizomes of Polygonatum sibiricum Redouté [Asparagaceae], Polygonatum kingianum Collett & Hemsl [Asparagaceae], or Polygonatum cyrtonema Hua [Asparagaceae], which have attracted much more attention owing to their unique therapeutic role in the treatment and prevention of diabetes. However, the research on the mechanism of these three Polygonatum spp. in diabetes has not been reviewed. This review provides a summary of the research progress of three Polygonatum spp. on diabetes and its complications, reveals the potential antidiabetic mechanism of three Polygonatum spp., and discusses the effect of different processed products of three Polygonatum spp. in treating diabetes, for the sake of a thorough understanding of its effects on the prevention and treatment of diabetes and diabetes complications.
Collapse
Affiliation(s)
- Shuang Liu
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Qiao-Jun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi-Qing Peng
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Ting-Hui Feng
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Shu-Ting Hu
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Juan-E Dong
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Zong-Suo Liang
- College of Life Sciences, Northwest A & F University, Xi'an, China.,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
6
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
7
|
Jian SF, Huang XJ, Yang XN, Zhong C, Miao JH. Sulfur Regulates the Trade-Off Between Growth and Andrographolide Accumulation via Nitrogen Metabolism in Andrographis paniculata. FRONTIERS IN PLANT SCIENCE 2021; 12:687954. [PMID: 34335655 PMCID: PMC8317024 DOI: 10.3389/fpls.2021.687954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) and sulfur (S) are essential mineral nutrients for plant growth and metabolism. Here, we investigated their interaction in plant growth and andrographolide accumulation in medicinal plant Andrographis paniculata grown at different N (4 and 8 mmol·L-1) and S concentration levels (0.1 and 2.4 mmol L-1). We found that increasing the S application rate enhanced the accumulation of andrographolide compounds (AGCs) in A. paniculata. Simultaneously, salicylic acid (SA) and gibberellic acid 4 (GA4) concentrations were increased but trehalose/trehalose 6-phosphate (Tre/Tre6P) concentrations were decreased by high S, suggesting that they were involved in the S-mediated accumulation of AGCs. However, S affected plant growth differentially at different N levels. Metabolite analysis revealed that high S induced increases in the tricarboxylic acid (TCA) cycle and photorespiration under low N conditions, which promoted N assimilation and S metabolism, and simultaneously increased carbohydrate consumption and inhibited plant growth. In contrast, high S reduced N and S concentrations in plants and promoted plant growth under high N conditions. Taken together, the results indicated that increasing the S application rate is an effective strategy to improve AGC accumulation in A. paniculata. Nevertheless, the interaction of N and S affected the trade-off between plant growth and AGC accumulation, in which N metabolism plays a key role.
Collapse
Affiliation(s)
- Shao-Fen Jian
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xue-Jing Huang
- College of Pharmacology, Guangxi Medical University, Nanning, China
| | - Xiao-Nan Yang
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chu Zhong
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jian-Hua Miao
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
8
|
Zhong C, Jian SF, Chen DL, Huang XJ, Miao JH. Organic nitrogen sources promote andrographolide biosynthesis by reducing nitrogen metabolism and increasing carbon accumulation in Andrographis paniculata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:82-91. [PMID: 33975147 DOI: 10.1016/j.plaphy.2021.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) form affects secondary metabolites of medicinal plants, but the physiological and molecular mechanisms remain largely unknown. To fully understand the response of andrographolide biosynthesis to different N forms in Andrographis paniculata, the plants were fed with nutritional solution containing sole N source of nitrate (NO3-), ammonium (NH4+), urea or glycine (Gly), and the growth, carbon (C) and N metabolisms and andrographolide biosynthesis were analyzed. We found that plants grown in urea and Gly performed greater photosynthetic rate and photosynthetic N use efficiency (PNUE) than those grown in NO3- and NH4+. Organic N sources reduced the activities of enzymes involving in C and N metabolisms such as glutamine synthase (GS), glutamate synthase (GOGAT) and NADH-dependent glutamate dehydrogenase (NADH-GDH), invertase (INV), isocitrate dehydrogenase (ICDH) and glycolate oxidase (GO), resulting in reduced depletion of carbohydrates and increased starch accumulation. However, they enhanced andrographolide content by up-regulating the key genes in its biosynthetic pathway including HMGR, DXS, GGPS and ApCPS. Besides, NH4+ decreased leaf SPAD value, contents of soluble protein and amino acids and GO activity, but increased photosynthetic rate and contents of soluble sugar and starch in comparison to NO3-. Andrographolide biosynthesis was also up-regulated. The results revealed that increasing accumulation of carbohydrates, especially starch, was beneficial to the biosynthesis of andrographolide; organic N sources decreased carbohydrate depletion by reducing N metabolism, and promoted plant growth and andrographolide biosynthesis synergistically.
Collapse
Affiliation(s)
- Chu Zhong
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shao-Fen Jian
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Dong-Liang Chen
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Xue-Jing Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jian-Hua Miao
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| |
Collapse
|
9
|
Ye Z, Zhang X, Huang Q, Zhang W, Ye M. Synergistic hepatoprotective effect of combined administration of Lachnum polysaccharide with silymarin. Bioorg Med Chem Lett 2021; 46:128159. [PMID: 34077772 DOI: 10.1016/j.bmcl.2021.128159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
In recent years, combination therapy has gradually become one of the hot spots. As a new therapy strategy, we investigated the combination treatment of polysaccharide from Lachnum sp. (LEP-2b) with silymarin and compared the effects with mono-therapy. In this study, combining high-dose LEP-2b with silymarin (CH) significantly reduced serum biochemistry indexes (ALT, AST, AKP, LDH), hepatic inflammation (TNF-α, IL-6 and IL-1β) and improved the antioxidant status (SOD, CAT, GSH-Px, GSH, MDA and T-AOC), in which its effect on TNF-α was very significant (P < 0.001). Therefore, the expressions of related proteins in the JNK/p38 signaling pathway associated with TNF-α were examined. The result showed that CH treatment markedly increased the expression of p-p38 and inhibited the JNK phosphorylation. TUNEL staining, immunohistochemical staining and western blot assays demonstrated that the hepatoprotective effect of CH treatment was probably related with inhibiting hepatocyte apoptosis. In summary, combination of high dose LEP-2b with silymarin would be a more effective method to protect liver injury than mono-therapy.
Collapse
Affiliation(s)
- Ziyang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qianli Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wenqing Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Ming Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
10
|
Tan Y, Cao H, Li Q, Sun J. The role of transcription factor Ap1 in the activation of the Nrf2/ARE pathway through TET1 in diabetic nephropathy. Cell Biol Int 2021; 45:1654-1665. [PMID: 33760331 DOI: 10.1002/cbin.11599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
TET1 mediates demethylation in tumors, but its role in diabetic nephropathy (DN), a prevalent diabetic complication, is unclear. We attempted to probe the possible mechanism of TET1 in DN. A DN rat model was established and verified by marker detection and histopathological observation. The in vitro model was established on human mesangial cells (HMCs) induced by high glucose (HG), and verified by evaluation of fibrosis and inflammation. The differentially expressed mRNA was screened out by microarray analysis. The most differentially expressed mRNA (TET1) was reduced in DN rats and HG-HMCs. The upstream and downstream factors of TET1 were verified, and their roles in DN were analyzed by gain- and loss-function assays. TET1 was decreased in DN rats and HG-HMCs. High expression of TET1 decreased biochemical indexes and renal injury of DN rats and hampered the activity, fibrosis, and inflammation of HG-HMCs. Ap1 lowered TET1 expression, and enhanced inflammation in HG-HMCs, and accentuated renal injury in DN rats. TET1 overexpression inhibited the effect of Ap1 on DN. TET1 promoted the transcription of Nrf2. The Ap1/TET1 axis mediated the Nrf2/ARE pathway activity. Overall, TET1 overexpression weakened the inhibitory effect of Ap1 on the Nrf2/ARE pathway, thus alleviating inflammation and renal injury in DN.
Collapse
Affiliation(s)
- Yongshun Tan
- Department of Nephrology, Jinan City People's Hospital, Jinan, Shandong, China
| | - Huaimin Cao
- Department of Endocrinology, Gaotang County People's Hospital, Liaocheng, Shandong, China
| | - Qingfei Li
- Department of Endocrinology, Linyi People's Hospital, Dezhou, Shandong, China
| | - Jianjun Sun
- Department 1 of Nephrology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
11
|
Synthesis of selenylated polysaccharides from Momordica charantia L. and its hypoglycemic activity in streptozotocin-induced diabetic mice. Int J Biol Macromol 2020; 152:295-304. [DOI: 10.1016/j.ijbiomac.2020.02.288] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
|
12
|
Balaji P, Madhanraj R, Rameshkumar K, Veeramanikandan V, Eyini M, Arun A, Thulasinathan B, Al Farraj D, Elshikh M, Alokda A, Mahmoud A, Tack JC, Kim HJ. Evaluation of antidiabetic activity of Pleurotus pulmonarius against streptozotocin-nicotinamide induced diabetic wistar albino rats. Saudi J Biol Sci 2020; 27:913-924. [PMID: 32127771 PMCID: PMC7042672 DOI: 10.1016/j.sjbs.2020.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The current research aims to evaluate the antidiabetic properties of Pleurotus pulmonarius, an edible basidiomycetes mushroom fungi in diabetic induced wistar albino rats. Mycelial Hot Water Extracts (HWE) and Acetone Extracts (AE) of Pleurotus pulmonarius was orally administrated to STZ-NA induced (55 mg/kilogram body weight) diabetic wistar albino rats at a concentration of 200 and 400 mg/kg for 4 weeks. The outcomes revealed that the HWE of Pleurotus pulmonarius resulted in a significant (p < 0.001) reduction in blood glucose level. A noteworthy (p < 0.001) reduction in serum lipid profile and elevation in High-Density Lipoprotein Cholesterol (HDL-C) after administration with HWE, also demonstrating the protective effects of HWE in diabetes-related complications. Besides all antidiabetic parameters, pathological morphology of the pancreas, liver and kidney are regularised. This observation indicated that HWE of Pleurotus pulmonarius possessed higher antidiabetic activity than AE. Besides, HWE also promoted a significant control of alpha amylase enzyme in a concentration-dependent manner with a maximum activity of 99.23% inhibition at 1000 µg/ml. The outcomes of the present study indicated that the HWE possesses a potential antidiabetic activity both in vitro and in vivo. Thus, it can be used as a nontoxic complementary drug in the controlling of diabetes and related complications, thus providing scientific authentication of its use as an antidiabetic agent.
Collapse
Affiliation(s)
- P. Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| | - R. Madhanraj
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| | - K. Rameshkumar
- PG and Research Department of Zoology, Vivekananda College, Madurai, Tamilnadu, India
| | - V. Veeramanikandan
- PG and Research Centre in Microbiology, MGR College, Hosur, Tamilnadu, India
| | - M. Eyini
- Centre for Research and PG Studies in Botany, Thiagarajar College, Madurai, Tamilnadu, India
| | - A. Arun
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Boobalan Thulasinathan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - D.A. Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M.S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - A.M. Alokda
- Department of Applied Medical Chemistry, Medical Research Institution, Alexandria university, Alexandria, Egypt
| | - A.H. Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J.-C. Tack
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - H.-J. Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
13
|
Li T, Hua Q, Li N, Cui Y, Zhao M. Protective effect of a polysaccharide from Dipsacus asper Wall on streptozotocin (STZ)-induced diabetic nephropathy in rat. Int J Biol Macromol 2019; 133:1194-1200. [DOI: 10.1016/j.ijbiomac.2019.04.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
|
14
|
Islam MT. Andrographolide, a New Hope in the Prevention and Treatment of Metabolic Syndrome. Front Pharmacol 2017; 8:571. [PMID: 28878680 PMCID: PMC5572404 DOI: 10.3389/fphar.2017.00571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/09/2017] [Indexed: 12/23/2022] Open
Abstract
Recently, the use of plant-derived medicines is increasing interest in the prevention and treatment of a variety of disorders including metabolic syndromes. Metabolic syndrome is one of the major risk factors for cardiovascular diseases (CVDs) and incidence of mortality worldwide. Scientific evidence suggests that Andrographis paniculata and its derived components, especially andrographolide (AGL) and its analogs/derivatives have a broad spectrum of biological activities. This review aims to sketch the activity of AGL and its analogs/derivatives against the components of metabolic syndromes such as diabetes, hyperlipidemia, hypertension, and obesity. Additionally, AGL activity against CVDs is also summarized. The finding suggests that AGL and its analogs/derivatives have a potential role in the management of metabolic syndrome; however, more studies should be conducted to evaluate their effectiveness.
Collapse
Affiliation(s)
- Muhammad T Islam
- Department of Pharmacy, Southern University BangladeshChittagong, Bangladesh.,Postgraduate Program in Pharmaceutical Sciences, Federal University of PiauíTeresina, Brazil
| |
Collapse
|
15
|
Pan Y, Wang C, Chen Z, Li W, Yuan G, Chen H. Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice. Carbohydr Polym 2017; 164:370-378. [DOI: 10.1016/j.carbpol.2017.01.092] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/25/2022]
|
16
|
Yeggoni DP, Kuehne C, Rachamallu A, Subramanyam R. Elucidating the binding interaction of andrographolide with the plasma proteins: biophysical and computational approach. RSC Adv 2017. [DOI: 10.1039/c6ra25671f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A phytochemical andrographolide is an anticancer agent with a stable conformation that strongly binds to the plasma proteins.
Collapse
Affiliation(s)
| | - Christian Kuehne
- Institute of Laboratory Medicine
- Clinical Chemistry and Pathobiochemistry
- Charite-Universitätsmedizin Berlin
- CVK
- Berlin
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences
- School of Life Sciences
- University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
17
|
Ji X, Li C, Ou Y, Li N, Yuan K, Yang G, Chen X, Yang Z, Liu B, Cheung WW, Wang L, Huang R, Lan T. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway. Mol Cell Endocrinol 2016; 437:268-279. [PMID: 27378149 DOI: 10.1016/j.mce.2016.06.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023]
Abstract
Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has reno-protective roles in DN has not been fully elucidated. Here, we studied the pharmacological effects of andrographolide against the progression of DN and high glucose-induced mesangial dysfunction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). After 1 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Diabetic mice were intraperitoneal injected with andrographolide (2 mg/kg, twice a week). After 8 weeks, functional and histological analyses were carried out. Parallel experiments uncovering the molecular mechanism by which andrographolide prevents from DN was performed in mesangial cells. Andrographolide inhibited the increases in fasting blood glucose, triglyceride, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. Andrographolide also prevented renal hypertrophy and ECM accumulation. Furthermore, andrographolide markedly attenuated NOX1 expression, ROS production and pro-inflammatory cytokines as well. Additionally, andrographolide inhibited Akt/NF-κB signaling pathway. These results demonstrate that andrographolide is protective against the progression of experimental DN by inhibiting renal oxidative stress, inflammation and fibrosis.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Changzheng Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yitao Ou
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ning Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kai Yuan
- Department of Endocrine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Guizhi Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyan Chen
- Department of Endocrine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhicheng Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wai W Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Lijing Wang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China.
| | - Tian Lan
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr Polym 2016; 148:86-97. [PMID: 27185119 DOI: 10.1016/j.carbpol.2016.02.060] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/13/2016] [Accepted: 02/20/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease attracted worldwide concerns, which severely impairs peoples' quality of life and is attributed to several life-threatening complications, including atherosclerosis, nephropathy and retinopathy. The current therapies for DM include mainly oral anti-diabetic drugs and insulin. However, continuous use of these causes insulin resistance and side-effects, and the demand of effective, nontoxic and affordable drugs for DM patients is eager. Several previous studies have shown that non-toxic biological macromolecules, mainly polysaccharides, possess prominent efficacies on DM. Based on these encouraging observations, a great deal of efforts have been focused on discovering anti-diabetic polysaccharides for the development of effective therapeutics for DM. This review focuses on the advancements in the anti-diabetic efficacy of various natural polysaccharides and polysaccharide complexes from 2010 to 2015.
Collapse
Affiliation(s)
- Peng-Cheng Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shan Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qiu-Hong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
19
|
Picking D, Delgoda R, Younger N, Germosén-Robineau L, Boulogne I, Mitchell S. TRAMIL ethnomedicinal survey in Jamaica. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:314-27. [PMID: 25929450 DOI: 10.1016/j.jep.2015.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A survey was undertaken in Jamaica to document medicinal plants frequently used in the treatment or prophylaxis of illness and trends in their use, following the methodology established by the TRAMIL network. TRAMIL, a Caribbean-wide applied research programme, scientifically evaluates and documents the efficacy and safety of medicinal plant remedies used for primary health care. Initial results from this survey, on an aspect of safety, focusing on the concomitant use and prevalence of medicinal plant use in combination with pharmaceutical drugs in Jamaica, were published in an earlier paper in 2011. This paper now reports survey results on the ethnobotanical use of medicinal plants by Jamaicans. MATERIALS AND METHODS A survey using a structured and modified TRAMIL questionnaire was administered to 407 adults selected randomly from systematically selected households within randomly selected clusters. The clusters were selected from each of the three areas that were purposefully selected. KEY FINDINGS Respondents identified their use of 107 botanically identified medicinal plants distributed in 51 plant families to treat illnesses or maintain health in the previous twelve months. Fourteen plants, with significant use equal to or greater than 20% for a specified health issue were shortlisted, representing Jamaica׳s first submission to the TRAMIL database. Andrographis paniculata (Burm. f.) Nees (Rice Bitters) was reported as a plant remedy with significant use for the first time in a TRAMIL survey. Informant consensus factor (ICF) values were high for a number of health issues such as mental health (nerves, insomnia, etc.), respiratory system (cold/flu/cough etc.) and for health maintenance with tonics (washout and blood cleanse), indicating strong cultural coherence in medicinal plant selection for these categories. Forty two per cent (113/270) of medicinal plant users utilised mixtures, combining more than one plant. Leaf material was the most commonly used plant part (69%), with fresh material (98%) most commonly prepared as a tea for internal use by decoction (87%). The majority of medicinal plant respondents sourced plants from their backyards (75%) and cited grandmothers (33%) and mothers (32%) as their main sources of information. Jamaicans reported limited use of complementary and alternative medicine (CAM), supporting the assertion that a significant number of citizens in developing countries continue to rely on the use of medicinal plants for primary healthcare. CONCLUSIONS Medicinal plant use continues to play an important role in primary healthcare in Jamaica. Fourteen plant remedies with significant use are reported, five previously reported elsewhere and recommended (REC) for the same health condition. Eight plant remedies, including one Jamaican endemic, are reported for different health issues for the first time to TRAMIL and will be investigated (INV) for the new health conditions, together with one plant remedy reported for the first time. This latest survey will be followed by literature reviews, appropriate laboratory screens (TRIG) and community outreach activities (TRADIF) in Jamaica.
Collapse
Affiliation(s)
- D Picking
- Natural Products Institute, University of the West Indies, Mona, Kingston 7, Jamaica.
| | - R Delgoda
- Natural Products Institute, University of the West Indies, Mona, Kingston 7, Jamaica.
| | - N Younger
- Tropical Metabolic Research Institute, University of the West Indies, Mona, Kingston 7, Jamaica.
| | - L Germosén-Robineau
- TRAMIL (Program of Applied Research for Traditional Popular Medicine in the Caribbean), Laboratoire de Biologie et de Physiologie Végétales, Campus de Fouillole, Université des Antilles et de la Guyane, 97157 Pointe-à-Pitre Cedex (Guadeloupe), France.
| | - I Boulogne
- TRAMIL (Program of Applied Research for Traditional Popular Medicine in the Caribbean), Laboratoire de Biologie et de Physiologie Végétales, Campus de Fouillole, Université des Antilles et de la Guyane, 97157 Pointe-à-Pitre Cedex (Guadeloupe), France.
| | - S Mitchell
- Medicinal Plant Research Group, The Biotechnology Centre, University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
20
|
Antidiabetic activity of Acacia tortilis (Forsk.) Hayne ssp. raddiana polysaccharide on streptozotocin-nicotinamide induced diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:572013. [PMID: 25121104 PMCID: PMC4119902 DOI: 10.1155/2014/572013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/06/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the antidiabetic activity of aqueous extract of Acacia tortilis polysaccharide (AEATP) from gum exudates and its role in comorbidities associated with diabetes in STZ-nicotinamide induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, glimepiride treated (10 mg/kg), and diabetic rats treated with 250, 500, and 1000 mg/kg dose of AEATP groups and fasting blood glucose, glycated hemoglobin, total cholesterol, triglyceride, LDL, VLDL, HDL, SGOT, and SGPT levels were measured. STZ significantly increased fasting blood glucose level, glycated hemoglobin, total cholesterol, triglyceride, LDL, VLDL, SGOT, and SGPT levels, whereas HDL level was reduced as compared to control group. After 7 days of administration, 500 and 1000 mg/kg dose of AEATP showed significant reduction (P < 0.05) in fasting blood glucose level compared to diabetic control. AEATP has also reduced total cholesterol, triglyceride, LDL, VLDL, SGOT, and SGPT levels and improved HDL level as compared to diabetic control group. Our study is the first to report the normalization of fasting blood glucose level, lipid profile, and liver enzyme in AEATP treated diabetic rats. Thus, it can be concluded that AEATP may have potentials for the treatment of T2DM and its comorbidities.
Collapse
|
21
|
The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy. Mar Drugs 2014; 12:3292-306. [PMID: 24886867 PMCID: PMC4071577 DOI: 10.3390/md12063292] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy (DN) has long been recognized as the leading cause of end-stage renal disease, but the efficacy of available strategies for the prevention of DN remains poor. The aim of this study was to investigate the possible beneficial effects of fucoidan (FPS) in streptozotocin (STZ)-induced diabetes in rats. Wistar rats were made diabetic by injection of STZ after removal of the right kidney. FPS was administered to these diabetic rats for 10 weeks. Body weight, physical activity, renal function, and renal morphometry were measured after 10 weeks of treatment. In the FPS-treated group, the levels of blood glucose, BUN, Ccr and Ucr decreased significantly, and microalbumin, serum insulin and the β2-MG content increased significantly. Moreover, the FPS-treated group showed improvements in renal morphometry. In summary, FPS can ameliorate the metabolic abnormalities of diabetic rats and delay the progression of diabetic renal complications.
Collapse
|
22
|
Thakur AK, Chatterjee SS, Kumar V. Therapeutic potential of traditionally used medicinal plant Andrographis paniculata (Burm. F.) against diabesity: An experimental study in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.5667/tang.2014.0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Valdiani A, Talei D, Tan SG, Abdul Kadir M, Maziah M, Rafii MY, Sagineedu SR. A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees. PLoS One 2014; 9:e87034. [PMID: 24586262 PMCID: PMC3934858 DOI: 10.1371/journal.pone.0087034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA) for all the andrographolides.
Collapse
Affiliation(s)
- Alireza Valdiani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
- * E-mail:
| | - Daryush Talei
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
- Medicinal Plant Research Centre, Shahed University, Tehran, Iran
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Mihdzar Abdul Kadir
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Mahmood Maziah
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Mohd Yusop Rafii
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Song MK, Davies NM, Roufogalis BD, Huang THW. Management of cardiorenal metabolic syndrome in diabetes mellitus: a phytotherapeutic perspective. J Diabetes Res 2014; 2014:313718. [PMID: 24818164 PMCID: PMC4003752 DOI: 10.1155/2014/313718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/15/2022] Open
Abstract
Cardiorenal syndrome (CRS) is a complex disease in which the heart and kidney are simultaneously affected and their deleterious declining functions are reinforced in a feedback cycle, with an accelerated progression. Although the coexistence of kidney and heart failure in the same individual carries an extremely bad prognosis, the exact cause of deterioration and the pathophysiological mechanisms underlying the initiation and maintenance of the interaction are complex, multifactorial in nature, and poorly understood. Current therapy includes diuretics, natriuretic hormones, aquaretics (arginine vasopressin antagonists), vasodilators, and inotropes. However, large numbers of patients still develop intractable disease. Moreover, the development of resistance to many standard therapies, such as diuretics and inotropes, has led to an increasing movement toward utilization and development of novel therapies. Herbal and traditional natural medicines may complement or provide an alternative to prevent or delay the progression of CRS. This review provides an analysis of the possible mechanisms and the therapeutic potential of phytotherapeutic medicines for the amelioration of the progression of CRS.
Collapse
Affiliation(s)
- Min Kyong Song
- The University of Sydney, Faculty of Pharmacy, Sydney, NSW 2006, Australia
| | - Neal M. Davies
- The University of Manitoba, Faculty of Pharmacy, Winnipeg, MB, Canada R3T 2N2
| | - Basil D. Roufogalis
- The University of Sydney, Faculty of Pharmacy, Sydney, NSW 2006, Australia
- The University of Sydney, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, Sydney, NSW 2006, Australia
| | - Tom Hsun-Wei Huang
- The University of Sydney, Faculty of Pharmacy, Sydney, NSW 2006, Australia
- *Tom Hsun-Wei Huang:
| |
Collapse
|
25
|
Xiao ZQ, Wang YL, Yue YD, Zhang YT, Chen CP, Wan LS, Deng B, Liu ZX, Chen JC. Preventive effects of polysaccharides from Liriope spicata var. prolifera on diabetic nephropathy in rats. Int J Biol Macromol 2013; 61:114-20. [DOI: 10.1016/j.ijbiomac.2013.06.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/03/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
|
26
|
Lan T, Wu T, Gou H, Zhang Q, Li J, Qi C, He X, Wu P, Wang L. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway. J Cell Biochem 2013; 114:2562-8. [DOI: 10.1002/jcb.24601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Tian Lan
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Teng Wu
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Hongju Gou
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou; 510515; China
| | - Qianqian Zhang
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Jiangchao Li
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Cuiling Qi
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Xiaodong He
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| | - Pingxiang Wu
- Department of Pathology, School of Basic Medical Sciences; Southern Medical University; Guangzhou; 510515; China
| | - Lijing Wang
- Vascular Biology Research Institute; Guangdong Pharmaceutical University; Guangzhou; 510006; China
| |
Collapse
|
27
|
Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:846740. [PMID: 23634174 PMCID: PMC3619690 DOI: 10.1155/2013/846740] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Andrographis paniculata (Burm. F) Nees, generally known as “king of bitters,” is an herbaceous plant in the family Acanthaceae. In China, India, Thailand, and Malaysia, this plant has been widely used for treating sore throat, flu, and upper respiratory tract infections. Andrographolide, a major bioactive chemical constituent of the plant, has shown anticancer potential in various investigations. Andrographolide and its derivatives have anti-inflammatory effects in experimental models asthma, stroke, and arthritis. In recent years, pharmaceutical chemists have synthesized numerous andrographolide derivatives, which exhibit essential pharmacological activities such as those that are anti-inflammatory, antibacterial, antitumor, antidiabetic, anti-HIV, antifeedant, and antiviral. However, what is noteworthy about this paper is summarizing the effects of andrographolide against cardiovascular disease, platelet activation, infertility, and NF-κB activation. Therefore, this paper is intended to provide evidence reported in relevant literature on qualitative research to assist scientists in isolating and characterizing bioactive compounds.
Collapse
|