1
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Ahmad A, Rahamtullah, Mishra R. Structural and functional adaptation in extremophilic microbial α-amylases. Biophys Rev 2022; 14:499-515. [PMID: 35528036 PMCID: PMC9043155 DOI: 10.1007/s12551-022-00931-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Maintaining stable native conformation of a protein under a given ecological condition is the prerequisite for survival of organisms. Extremophilic bacteria and archaea have evolved to adapt under extreme conditions of temperature, pH, salt, and pressure. Molecular adaptations of proteins under these conditions are essential for their survival. These organisms have the capability to maintain stable, native conformations of proteins under extreme conditions. The enzymes produced by the extremophiles are also known as extremozyme, which are used in several industries. Stability and functionality of extremozymes under varying temperature, pH, and solvent conditions are the most desirable requirement of industry. α-Amylase is one of the most important enzymes used in food, pharmaceutical, textile, and detergent industries. This enzyme is produced by diverse microorganisms including various extremophiles. Therefore, understanding its stability is important from fundamental as well as an applied point of view. Each class of extremophiles has a distinctive set of dominant non-covalent interactions which are important for their stability. Static information obtained by comparative analysis of amino acid sequence and atomic resolution structure provides information on the prevalence of particular amino acids or a group of non-covalent interactions. Protein folding studies give the information about thermodynamic and kinetic stability in order to understand dynamic aspect of molecular adaptations. In this review, we have summarized information on amino acid sequence, structure, stability, and adaptability of α-amylases from different classes of extremophiles.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| |
Collapse
|
3
|
Lee J, Xiang L, Byambabaatar S, Kim H, Jin KS, Ree M. Bacillus licheniformis α-amylase: Structural feature in a biomimetic solution and structural changes in extrinsic conditions. Int J Biol Macromol 2019; 127:286-296. [DOI: 10.1016/j.ijbiomac.2019.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
4
|
Parashar D, Satyanarayana T. An Insight Into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases From Acidophiles. Front Bioeng Biotechnol 2018; 6:125. [PMID: 30324103 PMCID: PMC6172347 DOI: 10.3389/fbioe.2018.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
Most of the extracellular enzymes of acidophilic bacteria and archaea are stable at acidic pH with a relatively high thermostability. There is, however, a dearth of information on their acid stability. Although several theories have been postulated, the adaptation of acidophilic proteins to low pH has not been explained convincingly. This review highlights recent developments in understanding the structure and biochemical characteristics, and production of acid-stable and calcium-independent α-amylases by acidophilic bacteria with special reference to that of Bacillus acidicola.
Collapse
Affiliation(s)
- Deepak Parashar
- Functional Genomic Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Tulasi Satyanarayana
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
5
|
Li S, Yang Q, Tang B, Chen A. Improvement of enzymatic properties of Rhizopus oryzae α-amylase by site-saturation mutagenesis of histidine 286. Enzyme Microb Technol 2018; 117:96-102. [PMID: 30037559 DOI: 10.1016/j.enzmictec.2018.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022]
Abstract
Optimal pH and ideal functioning temperature for fungal α-amylase can greatly contribute to improving enzyme efficiency in maltose-forming ability. This work aimed to improve the enzymatic properties of Rhizopus oryzae α-amylase by site-saturation mutagenesis of histidine 286. The biochemical properties of selected mutant enzymes were modified to increase their enzymatic efficiencies compared to their wild-type counterparts. For instance, the optimum temperature of mutants H286 L, H286I, H286S and H286 T was increased from 50 °C to 55 °C, while a similar increase was observed for H286 P from 50 °C to 60 °C. The optimum pH of mutants H286 L, H286I and H286D shifted from 5.5 to 5.0, and the optimum pH of mutant H286E shifted from 5.5 to 4.5. The results obtained showed that the mutant H286I showed a 1.5-fold increase in half-life at 55 °C and the mutant H286E showed a 6.43-fold increase in half-life at a pH of 4.5. Furthermore, the ability to form maltose from soluble starch for mutants H286 L and H286 M was significantly improved under the optimum conditions determined in the study. The catalytic mechanism responsible for improved maltose-forming ability was confirmed through molecular docking simulations with maltotriose among wild-type and mutant enzymes. The mutants with improved enzymatic properties that were attained in this work may help in future computer-aided directed evolution of fungal α-amylase.
Collapse
Affiliation(s)
- Song Li
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu 241000, China.
| | - Qian Yang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu 241000, China
| | - Bin Tang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu 241000, China
| | - Ana Chen
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, School of Biological and Chemical Engineering, Anhui Polytechnic University, Central Beijing Road, Wuhu 241000, China
| |
Collapse
|
6
|
Hu Y, Zhang G, Zhang F. Study of conformation and thermodynamics of α-amylase interaction with ethylene in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:110-4. [DOI: 10.1016/j.jphotobiol.2016.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022]
|
7
|
Maurya AK, Parashar D, Satyanarayana T. Bioprocess for the production of recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile and its structural and biochemical characteristics. Int J Biol Macromol 2016; 94:36-44. [PMID: 27697488 DOI: 10.1016/j.ijbiomac.2016.09.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Thermophilc mold Sporotrichum thermophile secretes an acidstable and thermostable phytase, which finds application as a food and feed additive because of its adequate thermostability, acid stability, protease insensitivity and broad substrate spectrum. Low extracellular phytase production by the mold is a major bottleneck for its application on a commercial scale. We have successfully overcome this problem by constitutive secretary expression of codon optimized rStPhy under glyceraldehyde phosphate dehydrogenase (GAP) promoter in Pichia pastoris. A ∼41-fold improvement in rStPhy production has been achieved. Circular Dichroism (CD) spectra revealed that rStPhy is composed of 26.65% α-helices, 5.26% β-sheets and 68.09% random coils at pH 5.0 and 60°C, the optima for the enzyme activity. The melting temperature (Tm) of the enzyme is ∼73°C. The 3D structure of rStPhy displayed characteristic signature sequences (RHGXRXP and HD) of HAP phytase. The catalytically important amino acids (Arg74, His75, Arg78, His368 and Asp369) were identified by docking and site directed mutagenesis. Fluorescence quenching by N-bromosuccinimide (NBS) and CsCl exposed tryptophan residues surrounded by negative charges, which play a key role in maintaining structural integrity of rStPhy.
Collapse
Affiliation(s)
- Anay Kumar Maurya
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Deepak Parashar
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
8
|
Song Q, Wang Y, Yin C, Zhang XH. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T). Enzyme Microb Technol 2016; 90:83-92. [PMID: 27241296 DOI: 10.1016/j.enzmictec.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry.
Collapse
Affiliation(s)
- Qinghao Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Chong Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
9
|
Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK. Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol 2015; 72:71-8. [DOI: 10.1016/j.ijbiomac.2014.07.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
10
|
Improved performance of α-amylase immobilized on poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads. Int J Biol Macromol 2014; 65:492-9. [DOI: 10.1016/j.ijbiomac.2014.01.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 11/17/2022]
|
11
|
Xu W, Huang Q, Wu X, Yu X, Wang X, Tao L. Property of midgut α-amylase from Mythimna separata (Lepidoptera: Noctuidae) larvae and its responses to potential inhibitors in vitro. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:ieu144. [PMID: 25527590 PMCID: PMC5657837 DOI: 10.1093/jisesa/ieu144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Midgut α-amylase is an important digestive enzyme involved in larval energy metabolism and carbohydrate assimilation. In this article, the properties of midgut α-amylase from the Oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae), larvae were characterized, and its in vitro responses to chemical inhibitors were also determined. The kinetic parameters Km and Vmax of midgut α-amylase were 0.064 M, 4.81 U mg pro(-1) in phosphate buffer, and 0.128 M, 1.96 U mg pro(-1) in barbiturate-acetate buffer; α-amylase activity linearly increased as starch concentration increased. α-Amylase activity was not influenced by amino acids such as Pro, Met, Try, His, Ala, and Phe but was strongly activated by antioxidants. Reduced glutathione, 1,4-dithiothreitol, β-mercaptoethanol, and ascorbic acid improved the activity of α-amylase about 2.06, 3.46, 3.37, and 6.38 times, respectively, relative to the control. Ethylenediaminetetraacetic acid, sodium dodecyl sulfonate, and N-bromosuccinimide (NBS) strongly inhibited α-amylase. α-, β-, and γ-cyclodextrin were not the preferred substrates for α-amylase. Kinetic analysis showed that IC50 value of NBS against α-amylase was 1.52 (±0.26) µM, and the mode of action of NBS with Ki as 2.53 (0.35) µM was a mixed-type inhibition that indicated a combination of partial competitive and pure noncompetitive inhibition. The midgut α-amylase of armyworm larvae may be a potential target for novel insecticide development and pest control.
Collapse
Affiliation(s)
- Wenping Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Xiwei Wu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Xiaoqin Yu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Xuexiao Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|