1
|
Doharey PK, Verma P, Dubey A, Singh SK, Kumar M, Tripathi T, Alonazi M, Siddiqi NJ, Sharma B. Biophysical and in-silico studies on the structure-function relationship of Brugia malayi protein disulfide isomerase. J Biomol Struct Dyn 2024; 42:1533-1543. [PMID: 37079006 DOI: 10.1080/07391102.2023.2201849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
Human Lymphatic filariasis is caused by parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Protein disulfide isomerase (PDI), a redox-active enzyme, helps to form and isomerize the disulfide bonds, thereby acting as a chaperone. Such activity is essential for activating many essential enzymes and functional proteins. Brugia malayi protein disulfide isomerase (BmPDI) is crucial for parasite survival and an important drug target. Here, we used a combination of spectroscopic and computational analysis to study the structural and functional changes in the BmPDI during unfolding. Tryptophan fluorescence data revealed two well-separated transitions during the unfolding process, suggesting that the unfolding of the BmPDI is non-cooperative. The binding of the fluorescence probe 8-anilino-1-naphthalene sulfonic acid dye (ANS) validated the results obtained by the pH unfolding. The dynamics of molecular simulation performed at different pH conditions revealed the structural basis of BmPDI unfolding. Detailed analysis suggested that under different pH, both the global structure and the conformational dynamics of the active site residues were differentially altered. Our multiparametric study reveals the differential dynamics and collective motions of BmPDI unfolding, providing insights into its structure-function relationship.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Pravesh Verma
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Dubey
- Computational Chemistry and Drug discovery Division, Quanta calculus Pvt. Ltd, Kushinagar, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Manish Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Timir Tripathi
- Department of Biochemistry, North-Eastern Hill University, Umshing, India
| | - Mona Alonazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad, India
| |
Collapse
|
2
|
Irukuvajjula SS, Reddy JG, Vadrevu R. Crowding by Poly(ethylene glycol) Destabilizes Chemotaxis Protein Y (CheY). Biochemistry 2022; 61:1431-1443. [PMID: 35796609 DOI: 10.1021/acs.biochem.2c00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prevailing understanding of various aspects of biochemical processes, including folding, stability, intermolecular interactions, and the binding of metals, substrates, and inhibitors, is derived from studies carried out under dilute and homogeneous conditions devoid of a crowding-related environment. The effect of crowding-induced modulation on the structure and stability of native and magnesium-dependent Chemotaxis Y (CheY), a bacterial signaling protein, was probed in the presence and absence of poly(ethylene glycol) (PEG). A combined analysis from circular dichroism, intrinsic and extrinsic fluorescence, and tryptophan fluorescence lifetime changes indicates that PEG perturbs the structure but leaves the thermal stability largely unchanged. Intriguingly, while the stability of the protein is enhanced in the presence of magnesium under dilute buffer conditions, PEG-induced crowding leads to reduced thermal stability in the presence of magnesium. Nuclear magnetic resonance (NMR) chemical shift perturbations and resonance broadening for a subset of residues indicate that PEG interacts specifically with a subset of hydrophilic and hydrophobic residues found predominantly in α helices, β strands, and in the vicinity of the metal-binding region. Thus, PEG prompted conformational perturbation, presumably provides a different situation for magnesium interaction, thereby perturbing the magnesium-prompted stability. In summary, our results highlight the dominance of enthalpic contributions between PEG and CheY via both hydrophilic and hydrophobic interactions, which can subtly affect the conformation, modulating the metal-protein interaction and stability, implying that in the context of cellular situation, structure, stability, and magnesium binding thermodynamics of CheY may be different from those measured in dilute solution.
Collapse
Affiliation(s)
- Shivkumar Sharma Irukuvajjula
- Department of Biological Sciences, Birla Institute of Technology & Science─Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| | - Jithender G Reddy
- NMR Division, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Ministry of Science and Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology & Science─Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
3
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
4
|
Davis CM, Deutsch J, Gruebele M. An in vitro mimic of in-cell solvation for protein folding studies. Protein Sci 2020; 29:1060-1068. [PMID: 31994240 DOI: 10.1002/pro.3833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
Ficoll, an inert macromolecule, is a common in vitro crowder, but by itself it does not reproduce in-cell stability or kinetic trends for protein folding. Lysis buffer, which contains ions, glycerol as a simple kosmotrope, and mimics small crowders with hydrophilic/hydrophobic patches, can reproduce sticking trends observed in cells but not the crowding. We previously suggested that the proper combination of Ficoll and lysis buffer could reproduce the opposite in-cell folding stability trend of two proteins: variable major protein-like sequence expressed (VlsE) is destabilized in eukaryotic cells and phosphoglycerate kinase (PGK) is stabilized. Here, to discover a well-characterized solvation environment that mimics in-cell stabilities for these two very differently behaved proteins, we conduct a two-dimensional scan of Ficoll (0-250 mg/ml) and lysis buffer (0-75%) mixtures. Contrary to our previous expectation, we show that mixtures of Ficoll and lysis buffer have a significant nonadditive effect on the folding stability. Lysis buffer enhances the stabilizing effect of Ficoll on PGK and inhibits the stabilizing effect of Ficoll on VlsE. We demonstrate that a combination of 150 mg/ml Ficoll and 60% lysis buffer can be used as an in vitro mimic to account for both crowding and non-steric effects on PGK and VlsE stability and folding kinetics in the cell. Our results also suggest that this mixture is close to the point where phase separation will occur. The simple mixture proposed here, based on commercially available reagents, could be a useful tool to study a variety of cytoplasmic protein interactions, such as folding, binding and assembly, and enzymatic reactions. SIGNIFICANCE STATEMENT: The complexity of the in-cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jonathan Deutsch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Martin Gruebele
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
5
|
Kumar R, Sharma D, Kumar V, Kumar R. Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro. Arch Biochem Biophys 2018; 654:146-162. [DOI: 10.1016/j.abb.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|
6
|
Acosta LC, Perez Goncalves GM, Pielak GJ, Gorensek-Benitez AH. Large cosolutes, small cosolutes, and dihydrofolate reductase activity. Protein Sci 2017; 26:2417-2425. [PMID: 28971539 DOI: 10.1002/pro.3316] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/06/2022]
Abstract
Protein enzymes are the main catalysts in the crowded and complex cellular interior, but their activity is almost always studied in dilute buffered solutions. Studies that attempt to recreate the cellular interior in vitro often utilize synthetic polymers as crowding agents. Here, we report the effects of the synthetic polymer cosolutes Ficoll, dextran, and polyvinylpyrrolidone, and their respective monomers, sucrose, glucose, and 1-ethyl-2-pyrrolidone, on the activity of the 18-kDa monomeric enzyme, Escherichia coli dihydrofolate reductase. At low concentrations, reductase activity increases relative to buffer and monomers, suggesting a macromolecular effect. However, the effect decreases at higher concentrations, approaching, and, in some cases, falling below buffer values. We also assessed activity in terms of volume occupancy, viscosity, and the overlap concentration (where polymers form an interwoven mesh). The trends vary with polymer family, but changes in activity are within threefold of buffer values. We also compiled and analyzed results from previous studies and conclude that alterations of steady-state enzyme kinetics in solutions crowded with synthetic polymers are idiosyncratic with respect to the crowding agent and enzyme.
Collapse
Affiliation(s)
| | | | - Gary J Pielak
- Department of Chemistry.,Department of Biochemistry and Biophysics.,Lineberger Comprehensive Cancer Center.,Integrative Program for Biological and Genome Sciences University of North Carolina, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
7
|
Verma P, Doharey PK, Yadav S, Omer A, Singh P, Saxena JK. Molecular cloning and characterization of protein disulfide isomerase of Brugia malayi, a human lymphatic filarial parasite. EXCLI JOURNAL 2017; 16:824-839. [PMID: 28827998 PMCID: PMC5547380 DOI: 10.17179/excli2017-214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
Lymphatic filariasis results in an altered lymphatic system and the abnormal enlargement of body parts, causing pain, serious disability and social stigma. Effective vaccines are still not available nowadays, drugs against the disease is required. Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum which is involved in folding and chaperone activities in different biological systems. Here, we report the enzymatic characterization of a Brugia malayi Protein disulfide isomerase (BmPDI), which was expressed and purified from Escherichia coli BL21 (DE3). Western blotting analysis showed the recombinant BmPDI could be recognized by anti-BmPDI Rabbit serum. The rBmPDI exhibited an optimum activity at pH 8 and 40 °C. The enzyme was inhibited by aurin and PDI inhibitor. Recombinant BmPDI showed interaction with recombinant Brugia malayi calreticulin (rBmCRT). The three-dimensional model for BmPDI and BmCRT was generated by homology modelling. A total of 25 hydrogen bonds were found to be formed between two interfaces. There are 259 non-bonded contacts present in the BmPDI-BmCRT complex and 12 salt bridges were formed in the interaction.
Collapse
Affiliation(s)
- Pravesh Verma
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Pawan Kumar Doharey
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sunita Yadav
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ankur Omer
- Division of Toxicology, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Poonam Singh
- Division of Toxicology, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Jitendra Kumar Saxena
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
8
|
Rotta M, Timmers LFSM, Sequeiros-Borja C, Bizarro CV, de Souza ON, Santos DS, Basso LA. Observed crowding effects on Mycobacterium tuberculosis 2-trans-enoyl-ACP (CoA) reductase enzyme activity are not due to excluded volume only. Sci Rep 2017; 7:6826. [PMID: 28754992 PMCID: PMC5533716 DOI: 10.1038/s41598-017-07266-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
The cellular milieu is a complex and crowded aqueous solution. Macromolecular crowding effects are commonly studied in vitro using crowding agents. The aim of the present study was to evaluate the effects, if any, of macromolecular synthetic crowding agents on the apparent steady-state kinetic parameters (K m , k cat , and k cat /K m ) of Mycobacterium tuberculosis 2-trans-enoyl-ACP (CoA) reductase (InhA). Negligible effects on InhA activity were observed for ficoll 70, ficoll 400 and dextran 70. A complex effect was observed for PEG 6000. Glucose and sucrose showed, respectively, no effect on InhA activity and decreased k cat /K m for NADH and k cat for 2-trans-dodecenoyl-CoA. Molecular dynamics results suggest that InhA adopts a more compact conformer in sucrose solution. The effects of the crowding agents on the energy (E a and E η ), enthalpy (∆H # ), entropy (∆S # ), and Gibbs free energy (∆G # ) of activation were determined. The ∆G # values for all crowding agents were similar to buffer, suggesting that excluded volume effects did not facilitate stable activated ES # complex formation. Nonlinear Arrhenius plot for PEG 6000 suggests that "soft" interactions play a role in crowding effects. The results on InhA do not unequivocally meet the criteria for crowding effect due to exclude volume only.
Collapse
Affiliation(s)
- Mariane Rotta
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, RS, Brazil
| | - Luis F S M Timmers
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Faculdade de Informática, PUCRS, Porto Alegre, RS, Brazil
- Laboratório de FarmInformática (FarmInf), Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
| | - Carlos Sequeiros-Borja
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Faculdade de Informática, PUCRS, Porto Alegre, RS, Brazil
- Laboratório de FarmInformática (FarmInf), Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
| | - Cristiano V Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Osmar N de Souza
- Laboratório de Bioinformática, Modelagem e Simulação de Biossistemas (LABIO), Faculdade de Informática, PUCRS, Porto Alegre, RS, Brazil
- Laboratório de FarmInformática (FarmInf), Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
| | - Diogenes S Santos
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | - Luiz A Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Jia J, Peng X, Qi W, Su R, He Z. Effects of macromolecular crowding on alkaline phosphatase unfolding, conformation and stability. Int J Biol Macromol 2017; 101:373-382. [PMID: 28344089 DOI: 10.1016/j.ijbiomac.2017.03.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
The interior of the cell is tightly packed with various biological macromolecules, which affects physiological processes, especially protein folding process. To explore how macromolecular crowding may influence protein folding process, alkaline phosphatase (ALP) was chosen as a model protein, and the unfolding process of ALP induced by GdnHCl was studied in the presence of crowding agents such as PEG 4000, Dextran 70 and Ficoll 70. The effect of macromolecular crowding on the denatured state of ALP was directly probed by measuring enzyme activities, fluorescence spectroscopy and circular dichroism. From the results of circular dichroism, GdnHCl induced a biphasic change, suggesting that a three-state unfolding mechanism was involved in the denaturation process irrespective of the absence or presence of crowding agents. It was also found that crowding agents had a little impact on the unfolding process of ALP. The results of phase diagrams also demonstrated that the unfolding process of ALP induced by GdnHCl was three-state mechanism. Moreover, the results of fluorescence spectra demonstrated that with the increase of GdnHCl concentration, the structure of protein had changed, but existence of crowding agents can make protein structure more stable. Our results can provide valuable information for understanding the protein folding in vivo.
Collapse
Affiliation(s)
- Jiajia Jia
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemistry Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemistry Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, PR China
| | - Zhimin He
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
10
|
Shahid S, Hassan MI, Islam A, Ahmad F. Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: in vitro and in silico approaches. Biochim Biophys Acta Gen Subj 2017; 1861:178-197. [DOI: 10.1016/j.bbagen.2016.11.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 11/27/2022]
|
11
|
Pan W, Wen H, Liang D. Enzymatic activity inside a DNA/peptide complex. Phys Chem Chem Phys 2017; 19:22487-22493. [DOI: 10.1039/c7cp04066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dissociation of the DNA/peptide complex is controlled by the enzyme, while only 1/3 of the enzyme is active inside the complex.
Collapse
Affiliation(s)
- Wei Pan
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Bejing 100871
- China
| | - Hao Wen
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Bejing 100871
- China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Bejing 100871
- China
| |
Collapse
|
12
|
Insights into the structure-function relationship of Brugia malayi thymidylate kinase (BmTMK). Int J Biol Macromol 2016; 88:565-71. [PMID: 27044348 DOI: 10.1016/j.ijbiomac.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/23/2022]
Abstract
Lymphatic filariasis is a debilitating disease caused by lymph dwelling nematodal parasites like Wuchereria bancrofti, Brugia malayi and Brugia timori. Thymidylate kinase of B. malayi is a key enzyme in the de novo and salvage pathways for thymidine 5'-triphosphate (dTTP) synthesis. Therefore, B. malayi thymidylate kinase (BmTMK) is an essential enzyme for DNA biosynthesis and an important drug target to rein in filariasis. In the present study, the structural and functional changes associated with recombinant BmTMK, in the presence of protein denaturant GdnHCl, urea and pH were studied. GdnHCl and urea induced unfolding of BmTMK is non-cooperative and influence the functional property of the enzyme much lower than their Cm values. The study delineate that BmTMK is more prone to ionic perturbation. The dimeric assembly of BmTMK is an absolute requirement for enzymatic acitivity and any subtle change in dimeric conformation due to denaturation leads to loss of enzymatic activity. The pH induced changes on structure and activity suggests that selective modification of active site microenvironment pertains to difference in activity profile. This study also envisages that chemical moieties which acts by modulating oligomeric assembly, could be used for better designing of inhibitors against BmTMK enzyme.
Collapse
|
13
|
What macromolecular crowding can do to a protein. Int J Mol Sci 2014; 15:23090-140. [PMID: 25514413 PMCID: PMC4284756 DOI: 10.3390/ijms151223090] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
Collapse
|