1
|
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. Int J Biol Macromol 2024; 278:134695. [PMID: 39151861 DOI: 10.1016/j.ijbiomac.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Single Stage Extraction of Sulfonated Cellulose from Rice Husk for Packaging Application. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
4
|
Shukla SK. Century Impact of Macromolecules for Advances of Sensing Sciences. CHEMISTRY AFRICA 2022. [PMCID: PMC8995417 DOI: 10.1007/s42250-022-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impact of macro molecular theory on the progress of sensing sciences and technology has been presented in the light of materials developments, advances in physical and chemical properties. The chronological advances in the properties of macromolecules have significantly improved the sensing performances towards gases, heavy metals, biomolecules, hydrocarbon, and energetic compounds in terms of unexplored sensing parameters, durability, and working lifetime. In this review article, efforts have been made to correlate the advances in structure and interactivity of macro-molecules with their sensing behavior and working performances. The significant findings on the macromolecules towards advancing the sensing sciences are highlighted with the suitable illustration and schemes to establish it as a potential “microanalytical technique” along with existing challenges.
Collapse
|
5
|
Fungal keratitis infected eye treatment with antibiotic-loaded zinc ions tagged polyvinyl acetate phthalate-g-polypyrrole drug carrier. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Li Z, Wang J, Xu Y, Shen M, Duan C, Dai L, Ni Y. Green and sustainable cellulose-derived humidity sensors: A review. Carbohydr Polym 2021; 270:118385. [PMID: 34364627 DOI: 10.1016/j.carbpol.2021.118385] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
Cellulose, as the most abundant natural polysaccharide, is an excellent material for developing green humidity sensors, especially due to its humidity responsiveness as a result of its rich hydrophilic groups. In combination with other components including carbon materials and polymers, cellulose and its derivatives can be used to design high-performance humidity sensors that meet various application requirements. This review summarizes the recent advances in the field of various cellulose-derived humidity sensors, with particular attention paid to different sensing mechanisms including resistance, capacitance, colorimetry and gravity, and so on. Furthermore, the roles of cellulose and its derivatives are highlighted. This work may promote the development of cellulose-derived humidity sensors, as well as other cellulose-based intelligent materials.
Collapse
Affiliation(s)
- Zixiu Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jian Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
7
|
PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Gu Y, Qiao Y, Meng Y, Yu M, Zhang B, Li J. One-step synthesis of well-dispersed polypyrrole copolymers under gamma-ray irradiation. Polym Chem 2021. [DOI: 10.1039/d0py01566k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report for the first time the synthesis of polypyrrole copolymers with good solvent-dispersibility under gamma-ray irradiation at room temperature in air.
Collapse
Affiliation(s)
- Yu Gu
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
- The Education Ministry Key Lab of Resource Chemistry
| | - Yuqing Qiao
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Lab of Rare Earth Functional Materials
- College of Chemistry and Materials Science
- Shanghai Normal University
- Shanghai
| | - Yusen Meng
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Lab of Rare Earth Functional Materials
- College of Chemistry and Materials Science
- Shanghai Normal University
- Shanghai
| | - Ming Yu
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Lab of Rare Earth Functional Materials
- College of Chemistry and Materials Science
- Shanghai Normal University
- Shanghai
| | - Bowu Zhang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Lab of Rare Earth Functional Materials
- College of Chemistry and Materials Science
- Shanghai Normal University
- Shanghai
| | - Jingye Li
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
- The Education Ministry Key Lab of Resource Chemistry
| |
Collapse
|
9
|
De Wever P, de Oliveira-Silva R, Marreiros J, Ameloot R, Sakellariou D, Fardim P. Topochemical Engineering of Cellulose-Carboxymethyl Cellulose Beads: A Low-Field NMR Relaxometry Study. Molecules 2020; 26:E14. [PMID: 33375128 PMCID: PMC7792948 DOI: 10.3390/molecules26010014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The demand for more ecological, highly engineered hydrogel beads is driven by a multitude of applications such as enzyme immobilization, tissue engineering and superabsorbent materials. Despite great interest in hydrogel fabrication and utilization, the interaction of hydrogels with water is not fully understood. In this work, NMR relaxometry experiments were performed to study bead-water interactions, by probing the changes in bead morphology and surface energy resulting from the incorporation of carboxymethyl cellulose (CMC) into a cellulose matrix. The results show that CMC improves the swelling capacity of the beads, from 1.99 to 17.49, for pure cellulose beads and beads prepared with 30% CMC, respectively. Changes in water mobility and interaction energy were evaluated by NMR relaxometry. Our findings indicate a 2-fold effect arising from the CMC incorporation: bead/water interactions were enhanced by the addition of CMC, with minor additions having a greater effect on the surface energy parameter. At the same time, bead swelling was recorded, leading to a reduction in surface-bound water, enhancing water mobility inside the hydrogels. These findings suggest that topochemical engineering by adjusting the carboxymethyl cellulose content allows the tuning of water mobility and porosity in hybrid beads and potentially opens up new areas of application for this biomaterial.
Collapse
Affiliation(s)
- Pieter De Wever
- Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001 Leuven, Belgium;
| | - Rodrigo de Oliveira-Silva
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, Celestijnenlaan 200f, P.O. Box 2454, 3001 Leuven, Belgium; (R.d.O.-S.); (J.M.); (R.A.); (D.S.)
| | - João Marreiros
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, Celestijnenlaan 200f, P.O. Box 2454, 3001 Leuven, Belgium; (R.d.O.-S.); (J.M.); (R.A.); (D.S.)
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, Celestijnenlaan 200f, P.O. Box 2454, 3001 Leuven, Belgium; (R.d.O.-S.); (J.M.); (R.A.); (D.S.)
| | - Dimitrios Sakellariou
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, Celestijnenlaan 200f, P.O. Box 2454, 3001 Leuven, Belgium; (R.d.O.-S.); (J.M.); (R.A.); (D.S.)
| | - Pedro Fardim
- Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical engineering, KU Leuven, Celestijnenlaan 200f, P.O. Box 2424, 3001 Leuven, Belgium;
| |
Collapse
|
10
|
Shokri M, Moradi S, Amini S, Shahlaei M, Seidi F, Saedi S. A novel amino cellulose derivative using ATRP method: Preparation, characterization, and investigation of its antibacterial activity. Bioorg Chem 2020; 106:104355. [PMID: 33223200 DOI: 10.1016/j.bioorg.2020.104355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
In this study, we prepared a novel amino cellulose derivative (benzyl cellulose-g-poly [2-(N,N-Dimethylamino)ethyl methacrylate]) via a homogeneous ATRP method. The successful synthesis of the novel amino cellulose was confirmed by FT-IR and 1H NMR. This study addressed the different characteristics of the prepared polymer including the thermal stability, solubility, and X-ray diffraction pattern. The antibacterial activity of the synthesized cellulose derivative was investigated using the diffusion disk method against both gram-negative (Escherichia coli, Salmonella enterica) and gram-positive (Staphylococcus aureus, Bacillus subtilis) bacteria. Based on the inhibition zone, it was confirmed that the prepared benzyl cellulose-g-PDMAEMA possesses acceptable antibacterial activity against Escherichia coli, Salmonella enterica, and Staphylococcus aureus while Bacillus subtilis is resistant to the prepared polymer. Also according to the inhibition zone, it was shown that benzyl cellulose-g-PDMAEMA has more impact on E. coli and Salmonella enterica than Staphylococcus aureus. Molecular dynamics simulation was also used to study the interaction of the synthesized cellulose derivative with a model membrane which presented atomistic details of the polymer-lipid interactions. According to the results obtained from the molecular dynamics simulation, the polymer was able to destabilize the structure of the membrane and clearly express its signs of degradation.
Collapse
Affiliation(s)
- Mastaneh Shokri
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mohsen Shahlaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shahab Saedi
- Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| |
Collapse
|
11
|
Potentiometric detection of copper ion using chitin grafted polyaniline electrode. Int J Biol Macromol 2020; 147:250-257. [DOI: 10.1016/j.ijbiomac.2019.12.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
|
12
|
Micro-cellulose Sheet and Polyvinyl Alcohol Blended Film for Active Packaging. CHEMISTRY AFRICA 2019. [DOI: 10.1007/s42250-019-00088-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
|
14
|
Dubey N, Kushwaha CS, Shukla SK. A review on electrically conducting polymer bionanocomposites for biomedical and other applications. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1605513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Neelima Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Chandra Shekhar Kushwaha
- Department of Polymer Science, Bhaskaracharya College of Applied Science, University of Delhi, New Delhi, India
| | - S. K. Shukla
- Department of Polymer Science, Bhaskaracharya College of Applied Science, University of Delhi, New Delhi, India
| |
Collapse
|
15
|
The preparation of pH-sensitive hydrogel based on host-guest and electrostatic interactions and its drug release studies in vitro. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1608-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Integrated approach for efficient humidity sensing over zinc oxide and polypyrole composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:325-332. [DOI: 10.1016/j.msec.2018.04.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/02/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
|
17
|
Agate S, Joyce M, Lucia L, Pal L. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review. Carbohydr Polym 2018; 198:249-260. [PMID: 30092997 DOI: 10.1016/j.carbpol.2018.06.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 11/24/2022]
Abstract
Flexible-hybrid printed electronics (FHPE) is a rapidly growing discipline that may be described as the precise imprinting of electrically functional traces and components onto a substrate such as paper to create functional electronic devices. The mass production of low-cost devices and components such as environmental sensors, bio-sensors, actuators, lab on chip (LOCs), radio frequency identification (RFID) smart tags, light emitting diodes (LEDs), smart fabrics and labels, wallpaper, solar cells, fuel cells, and batteries are major driving factors for the industry. Using renewable and bio-friendly materials would be advantageous for both manufacturers and consumers with the increased use of (FHPE) electronics in our daily lives. This review article describes recent developments in cellulose and nanocellulose-based materials for FHPE, and the necessary developments required to propagate their use in commercial applications. The aim of these developments is to enable the creation of FHPE devices and components made almost entirely of cellulose materials.
Collapse
Affiliation(s)
- Sachin Agate
- Department of Forest Biomaterials, NC State University, Raleigh, NC 27695, USA
| | - Michael Joyce
- Department of Forest Biomaterials, NC State University, Raleigh, NC 27695, USA
| | - Lucian Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, NC 27695, USA; Key Laboratory of Pulp & Paper Science and Technology, Qilu University of Technology, Jinan, 250353, PR China
| | - Lokendra Pal
- Department of Forest Biomaterials, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
18
|
|
19
|
Shukla S, Kushwaha CS, Singh N. Recent developments in conducting polymer based composites for sensing devices. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Hanif Z, Lee S, Arsalani N, Geckeler KE, Hong S, Yoon MH. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zahid Hanif
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
| | - Seyeong Lee
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
| | - Nasir Arsalani
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
| | - Kurt E. Geckeler
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
| | - Sukwon Hong
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
- Research Institute for Solar and Sustainable Energies; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
- Department of Chemistry; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
- Research Institute for Solar and Sustainable Energies; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
| |
Collapse
|
21
|
A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1678-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Tang L, Han J, Jiang Z, Chen S, Wang H. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity. Carbohydr Polym 2015; 117:230-235. [DOI: 10.1016/j.carbpol.2014.09.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 12/01/2022]
|