1
|
Chen S, Zhao T, Li M, Zhao X, Li Z, Zheng G, Cao W, Qiao C. Efficient production of pullulan by Aureobasidium pullulans using a multi-objective optimization strategy with orthogonal experimental design coupling artificial neural network and genetic algorithm. Int J Biol Macromol 2024; 280:135588. [PMID: 39288865 DOI: 10.1016/j.ijbiomac.2024.135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Efficient pullulan production has long been a central research focus. This study used maltodextrin as the carbon source for pullulan production by Aureobasidium pullulans fermentation. A hybrid optimization approach, integrating orthogonal experimental design (OED), backpropagation artificial neural network (BP-ANN), and elite strategy non-dominated sequential genetic algorithm-II (NSGA-II), was developed. Range analysis based on OED revealed that MgSO4·7H2O significantly affects production but less impacts molecular weight, while pH notably influences molecular weight with a lesser effect on production, underscoring the need for multi-objective optimization. The BP-ANN model showed strong predictive capabilities, with goodness-of-fit values of 0.984 and 0.980 for production and molecular weight, respectively. Using this model as the fitness function for the optimization algorithm enhanced efficiency. Taking cost factors into account, the BP-ANN-NSGA-II algorithm identified the optimal fermentation medium conditions, resulting in a 6.89 % increase in production, a 368.97 % increase in molecular weight, and a 42.49 % reduction in cost. The maximum comprehensive optimization efficiency is 63.73 %, and the multi-objective optimization is better than the single objective optimization. This method significantly guides the improvement of pullulan fermentation optimization efficiency.
Collapse
Affiliation(s)
- Shiwei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tingbin Zhao
- Tianjin Huizhi Baichuan Bioengineering Co., Ltd., Tianjin 300457, China
| | - Miaoxin Li
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowen Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenjiang Li
- Sichuan Baichuan Jinkai Biological Engineering Co., Ltd., Chengdu 611130, China
| | - Guobao Zheng
- Institute of Forestry Sciences Agricultural Biotechnology Research Center, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750002, China
| | - Weifeng Cao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Changsheng Qiao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, China; Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, School of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Huizhi Baichuan Bioengineering Co., Ltd., Tianjin 300457, China.
| |
Collapse
|
2
|
Sustainable Exopolysaccharide Production by Rhizobium viscosum CECT908 Using Corn Steep Liquor and Sugarcane Molasses as Sole Substrates. Polymers (Basel) 2022; 15:polym15010020. [PMID: 36616373 PMCID: PMC9823382 DOI: 10.3390/polym15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial exopolysaccharides (EPS) are promising alternatives to synthetic polymers in a variety of applications. Their high production costs, however, limit their use despite their outstanding properties. The use of low-cost substrates such as agro-industrial wastes in their production, can help to boost their market competitiveness. In this work, an alternative low-cost culture medium (CSLM) was developed for EPS production by Rhizobium viscosum CECT908, containing sugarcane molasses (60 g/L) and corn steep liquor (10 mL/L) as sole ingredients. This medium allowed the production of 6.1 ± 0.2 g EPS/L, twice the amount produced in the standard medium (Syn), whose main ingredients were glucose and yeast extract. This is the first report of EPS production by R. viscosum using agro-industrial residues as sole substrates. EPSCSLM and EPSSyn exhibited a similar carbohydrate composition, mainly 4-linked galactose, glucose and mannuronic acid. Although both EPS showed a good fit to the Herschel-Bulkley model, EPSCSLM displayed a higher yield stress and flow consistency index when compared with EPSSyn, due to its higher apparent viscosity. EPSCSLM demonstrated its potential use in Microbial Enhanced Oil Recovery by enabling the recovery of nearly 50% of the trapped oil in sand-pack column experiments using a heavy crude oil.
Collapse
|
3
|
The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohydr Polym 2022; 291:119550. [DOI: 10.1016/j.carbpol.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
|
4
|
Singh RS, Kaur N, Singh D, Bajaj BK, Kennedy JF. Downstream processing and structural confirmation of pullulan - A comprehensive review. Int J Biol Macromol 2022; 208:553-564. [PMID: 35354070 DOI: 10.1016/j.ijbiomac.2022.03.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Pullulan is a microbial polymer, commercially produced from Aureobasidium pullulans. Downstream processing of pullulan involves a multi-stage process which should be efficient, safe and reproducible. In liquid-liquid separations, firstly cell free extract is separated. Cell biomass can be separated after fermentation either by centrifugation or filtration. Due to practically insolubility of pullulan in organic solvents, ethanol and isopropanol are the most commonly used organic solvents for its recovery. Pullulan can also be purified by chromatographic techniques, but these are not cost effective for the purification of pullulan. Efficient aqueous two-phase system can be used for the purification of pullulan. The current review describes the methods and perspectives used for solid-liquid separation, liquid-liquid separations and finishing steps for the recovery of pullulan. Techniques used to determine the structural attributes of pullulan have also been highlighted.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrates and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences, Punjabi University, Patiala 147 002, Punjab, India
| | - Bijender K Bajaj
- School of Biotechnology, University of Jammu, Jammu 180 006, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
5
|
Akdeniz Oktay B, Bozdemir MT, Özbaş ZY. Evaluation of Some Agro-Industrial Wastes as Fermentation Medium for Pullulan Production by Aureobasidium pullulans AZ-6. Curr Microbiol 2022; 79:93. [PMID: 35138484 DOI: 10.1007/s00284-022-02776-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
Agro-industrial wastes are rich sources of some nutrients. Thus, utilization of wastes seems to be ecologically sound and economically advantageous. The aim of this work was to investigate the potential usage of various agro-industrial wastes as fermentation medium for pullulan production by a domestic strain; Aureobasidium pullulans AZ-6. In this study, different agro-industrial wastes; various citrus peels, grape pomace, the hydrolysates of hazelnut and chestnut shells, sugarcane molasses residue, dried and fresh hazelnut husks and pumpkin peel, were used as fermentation media without adding any extra nutritional component for pullulan production by A. pullulans AZ-6. As a result, among the tested media, the maximum pullulan concentration was obtained as 33.59 gL-1 using the sugarcane molasses residue, and followed by the corresponding value of 30.02 gL-1 obtained in the dried hazelnut husk hydrolysate medium. Therefore, the usage of agro-industrial wastes as fermentation media is considered to make pullulan production cost effective. In addition, waste treatment from this aspect solves a relevant environmental problem. In this study, sugarcane molasses residue and dried hazelnut husk hydrolysate were used directly as fermentation media for pullulan production for the first time. Pullulan production from sugarcane molasses residue and dried hazelnut husk hydrolysate media might be a promising substrate for economical point of view.
Collapse
Affiliation(s)
- Büşra Akdeniz Oktay
- Faculty of Engineering, Department of Food Engineering, Hacettepe University, Beytepe , 06800, Ankara, Turkey
| | - M Tijen Bozdemir
- Faculty of Engineering, Department of Chemical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Z Yeşim Özbaş
- Faculty of Engineering, Department of Food Engineering, Hacettepe University, Beytepe , 06800, Ankara, Turkey.
| |
Collapse
|
6
|
Singh RS, Saini GK, Kennedy JF. Pullulan production in stirred tank reactor by a colour-variant strain of Aureobasidium pullulans FB-1. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
7
|
Ganie SA, Rather LJ, Li Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Advances in pullulan production from agro-based wastes by Aureobasidium pullulans and its applications. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
He C, Zhang Z, Zhang Y, Wang G, Wang C, Wang D, Wei G. Efficient pullulan production by Aureobasidium pullulans using cost-effective substrates. Int J Biol Macromol 2021; 186:544-553. [PMID: 34273338 DOI: 10.1016/j.ijbiomac.2021.07.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
In this study, cost-effective substrates such as cassava starch, corn steep liquor (CSL) and soybean meal hydrolysate (SMH) were used for pullulan production by Aureobasidium pullulans CCTCC M 2012259. The medium was optimized using response surface methodology (RSM) and artificial neural network (ANN) approaches, and analysis of variance indicated that the ANN model achieved higher prediction accuracy. The optimal medium predicted by ANN was used to produce high molecular weight pullulan in high yield. SMH substrates increased both biomass and pullulan titer, while CSL substrates maintained higher pullulan molecular weight. Results of kinetic parameters, key enzyme activities and intracellular uridine diphosphate glucose contents revealed the physiological mechanism of changes in pullulan titer and molecular weight using different substrates. Economic analysis of batch pullulan production using different substrates was performed, and the cost of nutrimental materials for CSL and SMH substrates was decreased by 46.1% and 49.9%, respectively, compared to the control using glucose and yeast extract as substrates, which could improve the competitiveness of pullulan against other polysaccharides in industrial applications.
Collapse
Affiliation(s)
- Chaoyong He
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Youdan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Guoliang Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
10
|
Shoaib MH, Sikandar M, Ahmed FR, Ali FR, Qazi F, Yousuf RI, Irshad A, Jabeen S, Ahmed K. Applications of Polysaccharides in Controlled Release Drug Delivery System. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
Raychaudhuri R, Naik S, Shreya AB, Kandpal N, Pandey A, Kalthur G, Mutalik S. Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: Synthesis, nanoformulations and toxicological perspective. Int J Biol Macromol 2020; 161:1189-1205. [PMID: 32504712 DOI: 10.1016/j.ijbiomac.2020.05.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/27/2023]
Abstract
With growing interest in polymers of natural origin, innumerable polysaccharides have gained attention for their biomedical application. Pullulan, one of the FDA approved nutraceuticals, possesses multiple unique properties which make them highly advantageous for biomedical applications. This present review encompasses the sources, production, properties and applications of pullulan. It highlights various pullulan based stimuli-responsive systems (temperature, pH, ultrasound, magnetic), subcellular targeted systems (mitochondria, Golgi apparatus/endoplasmic reticulum, lysosome, endosome), lipid-vesicular systems (solid-lipid nanoparticles, liposomes), polymeric nanofibres, micelles, inorganic (SPIONs, gold and silver nanoparticles), carbon-based nanoplatforms (carbon nanotubes, fullerenes, nanodiamonds) and quantum dots. This article also gives insight into different biomedical, therapeutic and diagnostic applications of pullulan viz., imaging, tumor targeting, stem cell therapy, gene therapy, vaccine delivery, cosmetic applications, protein delivery, tissue engineering, photodynamic therapy and chaperone-like activities. The review also includes the toxicological profile of pullulan which is helpful for the development of suitable delivery systems for clinical applications.
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Neha Kandpal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
12
|
Haghighatpanah N, Mirzaee H, Khodaiyan F, Kennedy JF, Aghakhani A, Hosseini SS, Jahanbin K. Optimization and characterization of pullulan produced by a newly identified strain of Aureobasidium pullulans. Int J Biol Macromol 2020; 152:305-313. [DOI: 10.1016/j.ijbiomac.2020.02.226] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/10/2023]
|
13
|
Improvement of the production of an Arctic bacterial exopolysaccharide with protective effect on human skin cells against UV-induced oxidative stress. Appl Microbiol Biotechnol 2020; 104:4863-4875. [PMID: 32285173 DOI: 10.1007/s00253-020-10524-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 01/24/2023]
Abstract
Although microbial exopolysaccharides (EPSs) are applied in different fields, no EPS has been used to protect human skin cells against UV-induced oxidative stress. The EPS produced by the Arctic bacterium Polaribacter sp. SM1127 has high moisture-retention ability and antioxidant activity, suggesting its good industrial potentials. In this study, we improved the EPS production of SM1127 and evaluated its protective effect on human dermal fibroblasts (HDFs) against UV-induced oxidative stress. With glucose as carbon source, the EPS yield was increased from 2.11 to 6.12 g/L by optimizing the fermentation conditions using response surface methodology. To lower the fermentation cost and decrease corrosive speed in stainless steel tanks, whole sugar, whose price is only 8% of that of glucose, was used to replace glucose and NaCl concentration was reduced to 4 g/L in the medium. With the optimized conditions, fed-batch fermentation in a 5-L bioreactor was conducted, and the EPS production reached 19.25 g/L, which represents the highest one reported for a polar microorganism. Moreover, SM1127 EPS could maintain the cell viability and integrity of HDFs under UV-B radiation, probably via decreasing intracellular reactive oxygen species level and increasing intracellular glutathione content and superoxide dismutase activity. Therefore, SM1127 EPS has significant protective effect on HDFs against UV-induced oxidative stress, suggesting its potential to be used in preventing photoaging and photocarcinogenesis. Altogether, this study lays a good foundation for the industrialization of SM1127 EPS, which has promising potential to be used in cosmetics and medical fields.
Collapse
|
14
|
Carbamoylethyl locust bean gum: Synthesis, characterization and evaluation of its film forming potential. Int J Biol Macromol 2020; 149:348-358. [DOI: 10.1016/j.ijbiomac.2020.01.261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
|
15
|
Badhwar P, Kumar A, Yadav A, Kumar P, Siwach R, Chhabra D, Dubey KK. Improved Pullulan Production and Process Optimization Using Novel GA-ANN and GA-ANFIS Hybrid Statistical Tools. Biomolecules 2020; 10:E124. [PMID: 31936881 PMCID: PMC7022329 DOI: 10.3390/biom10010124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Pullulan production from Aureobasidiumpullulans was explored to increase yield. Non-linear hybrid mathematical tools for optimization of process variables as well as the pullulan yield were analyzed. The one variable at a time (OVAT) approach was used to optimize the maximum pullulan yield of 35.16 ± 0.29 g/L. The tools predicted maximum pullulan yields of 39.4918 g/L (genetic algorithm coupled with artificial neural network (GA-ANN)) and 36.0788 g/L (GA coupled with adaptive network based fuzzy inference system (GA-ANFIS)). The best regression value (0.94799) of the Levenberg-Marquardt (LM) algorithm for ANN and the epoch error (6.1055 × 10-5) for GA-ANFIS point towards prediction precision and potentiality of data training models. The process parameters provided by both the tools corresponding to their predicted yield were revalidated by experiments. Among the two of them GA-ANFIS results were replicated with 98.82% accuracy. Thus GA-ANFIS predicted an optimum pullulan yield of 36.0788 g/L with a substrate concentration of 49.94 g/L, incubation period of 182.39 h, temperature of 27.41 °C, pH of 6.99, and agitation speed of 190.08 rpm.
Collapse
Affiliation(s)
- Parul Badhwar
- Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharishi Dayanand University, Rohtak-124001, Haryana, India; (P.B.); (P.K.); (R.S.)
| | - Ashwani Kumar
- Optimization and Mechatronics Laboratory, Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharishi Dayanand University, Rohtak-124001, Haryana, India; (A.K.)
| | - Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh-123031, Haryana, India;
| | - Punit Kumar
- Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharishi Dayanand University, Rohtak-124001, Haryana, India; (P.B.); (P.K.); (R.S.)
| | - Ritu Siwach
- Microbial Process Development Laboratory, University Institute of Engineering and Technology, Maharishi Dayanand University, Rohtak-124001, Haryana, India; (P.B.); (P.K.); (R.S.)
| | - Deepak Chhabra
- Optimization and Mechatronics Laboratory, Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharishi Dayanand University, Rohtak-124001, Haryana, India; (A.K.)
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh-123031, Haryana, India;
| |
Collapse
|
16
|
Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydr Polym 2019; 217:46-57. [DOI: 10.1016/j.carbpol.2019.04.050] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023]
|
17
|
Nehal F, Sahnoun M, Smaoui S, Jaouadi B, Bejar S, Mohammed S. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microb Pathog 2019; 132:10-19. [DOI: 10.1016/j.micpath.2019.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/01/2022]
|
18
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Derivatization approaches and applications of pullulan. Adv Colloid Interface Sci 2019; 269:296-308. [PMID: 31128461 DOI: 10.1016/j.cis.2019.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Pullulan (PUL), a linear exo-polysaccharide, is useful in industries as diverse as food, cosmetics and pharmaceuticals. PUL presents many favorable characteristics, such as renewable origin, biocompatibility, stability, hydrophilic nature, and availability of reactive sites for chemical modification. With an inherent affinity to asialoglycoprotein receptors, PUL can be used for targeted drug delivery to the liver. Besides, these primary properties have been combined with modern synthetic approaches for developing multifunctional biomaterials. This is evident from numerous studies on approaches, such as hydrophobic modification, cross-linking, grafting and transformation as a polyelectrolyte. In this review, we have discussed up-to-date advances on chemical modifications and emerging applications of PUL in targeted theranostics and tissue engineering. Besides, we offer an overview of its applications in food, cosmetics and environment remediation.
Collapse
|
19
|
Singh RS, Kaur N. Understanding response surface optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans. Food Sci Biotechnol 2019; 28:1507-1520. [PMID: 31695950 DOI: 10.1007/s10068-019-00585-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Central composite rotatable design of RSM was used for the optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans in shake-flask fermentations. The sugars from de-oiled rice bran were extracted in distilled water under moist steam pressure and the obtained de-oiled rice bran extract (DRBE) was used for the optimization of medium composition. RSM optimized medium components (DRBE sugars, 3.88%; yeast extract, 0.24%; (NH4)2SO4, 0.06%; K2HPO4, 0.57% (w/v), and pH, 5.22) supported 5.48% (w/v) pullulan production and 0.88 (A600/100) biomass yield. Coefficient of determination for pullulan production (0.99) and biomass yield (0.99) was close to 1.0 which justifies significance of model. Lack of fit for both responses was non-significant, which shows fitness of quadratic model. FTIR and NMR spectral attributes confirmed the structure of pullulan. XRD patterns verified the amorphous nature of pullulan. De-oiled rice bran was found as a potential substrate for pullulan production.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Navpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
20
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
21
|
Yang J, Zhang Y, Zhao S, Zhou Q, Xin X, Chen L. Statistical Optimization of Medium for Pullulan Production by Aureobasidium pullulans NCPS2016 Using Fructose and Soybean Meal Hydrolysates. Molecules 2018; 23:E1334. [PMID: 29865206 PMCID: PMC6100430 DOI: 10.3390/molecules23061334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Pullulan, with its excellent characteristics of film-forming, water solubility, and biodegradability, is attracting more and more attention in agricultural products preservation. However, high pullulan production cost largely restricts its widely application due to its low production. In order to improve pullulan production by Aureobasidium pullulans NCPS2016, the medium was optimized using single factor experiment and response surface methodology. Based on the single factor experiments, the contents of soybean meal hydrolysates (SMHs), (NH₄)₂SO₄, and K₂HPO₄·3H₂O were considered to be main factors influencing the extracellular polysaccharide (EPS) production, and were further optimized by Box⁻Behnken design. The optimal content of SMHs of 7.71 g/L, (NH₄)₂SO₄ of 0.35 g/L, and K₂HPO₄·3H₂O of 8.83 g/L were defined. Finally, EPS production of 59.8 g/L was obtained, 39% higher in comparison with the production in the basal medium. The purified EPS produced by NCPS2016 was confirmed to be pullulan. This is the first time fructose is reported to be the optimal carbon source for pullulan production by Aureobasidium pullulans, which is of great significance for the further study of the mechanism of the synthesis of pullulan by NCPS2016. Also, the results here have laid a foundation for reducing the industrial production cost of pullulan.
Collapse
Affiliation(s)
- Jinyu Yang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Yanhao Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Shuangzhi Zhao
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Qingxin Zhou
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Xue Xin
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Leilei Chen
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
22
|
Freitas F, Torres CAV, Reis MAM. Engineering aspects of microbial exopolysaccharide production. BIORESOURCE TECHNOLOGY 2017; 245:1674-1683. [PMID: 28554522 DOI: 10.1016/j.biortech.2017.05.092] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Although the ability to secrete exopolysaccharides (EPS) is widespread among microorganisms, only a few bacterial (e.g. xanthan, levan, dextran) and fungal (e.g. pullulan) EPS have reached full commercialization. During the last years, other microbial EPS producers have been the subject of extensive research, including endophytes, extremophiles, microalgae and Cyanobacteria, as well as mixed microbial consortia. Those studies have demonstrated the great potential of such microbial systems to generate biopolymers with novel chemical structures and distinctive functional properties. In this work, an overview of the bioprocesses developed for EPS production by the wide diversity of reported microbial producers is presented, including their development and scale-up. Bottlenecks that currently hinder microbial EPS development are identified, along with future prospects for further advancement.
Collapse
Affiliation(s)
- Filomena Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiana A V Torres
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
23
|
K.R. S, V. P. Review on production, downstream processing and characterization of microbial pullulan. Carbohydr Polym 2017; 173:573-591. [DOI: 10.1016/j.carbpol.2017.06.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/20/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
24
|
Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: A novel molecule for biomedical applications. Carbohydr Polym 2017; 171:102-121. [DOI: 10.1016/j.carbpol.2017.04.089] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
|
25
|
Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(ʟ-Lysine): Experimental Study and Modeling Approach. Int J Mol Sci 2017. [PMID: 28629130 PMCID: PMC5486112 DOI: 10.3390/ijms18061291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(l-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4.
Collapse
|
26
|
Sugumaran K, Ponnusami V. Statistical modeling of pullulan production and its application in pullulan acetate nanoparticles synthesis. Int J Biol Macromol 2015; 81:867-76. [DOI: 10.1016/j.ijbiomac.2015.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
|
27
|
Clima L, Ursu EL, Cojocaru C, Rotaru A, Barboiu M, Pinteala M. Experimental design, modeling and optimization of polyplex formation between DNA oligonucleotides and branched polyethylenimine. Org Biomol Chem 2015; 13:9445-56. [PMID: 26247491 DOI: 10.1039/c5ob01189b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complexes formed by DNA and polycations have received great attention owing to their potential application in gene therapy. In this study, the binding efficiency between double-stranded oligonucleotides (dsDNA) and branched polyethylenimine (B-PEI) has been quantified by processing of the images captured from the gel electrophoresis assays. The central composite experimental design has been employed to investigate the effects of controllable factors on the binding efficiency. On the basis of experimental data and the response surface methodology, a multivariate regression model has been constructed and statistically validated. The model has enabled us to predict the binding efficiency depending on experimental factors, such as concentrations of dsDNA and B-PEI as well as the initial pH of solution. The optimization of the binding process has been performed using simplex and gradient methods. The optimal conditions determined for polyplex formation have yielded a maximal binding efficiency close to 100%. In order to reveal the mechanism of complex formation at the atomic-scale, a molecular dynamic simulation has been carried out. According to the computation results, B-PEI amine hydrogen atoms have interacted with oxygen atoms from dsDNA phosphate groups. These interactions have led to the formation of hydrogen bonds between macromolecules, stabilizing the polyplex structure.
Collapse
Affiliation(s)
- Lilia Clima
- Advanced Research Center for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania.
| | | | | | | | | | | |
Collapse
|
28
|
Wang D, Chen F, Wei G, Jiang M, Dong M. The mechanism of improved pullulan production by nitrogen limitation in batch culture of Aureobasidium pullulans. Carbohydr Polym 2015; 127:325-31. [PMID: 25965490 DOI: 10.1016/j.carbpol.2015.03.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/17/2022]
Abstract
Batch culture of Aureobasidium pullulans CCTCC M 2012259 for pullulan production at different concentrations of ammonium sulfate and yeast extract was investigated. Increased pullulan production was obtained under nitrogen-limiting conditions, as compared to that without nitrogen limitation. The mechanism of nitrogen limitation favoring to pullulan overproduction was revealed by determining the activity as well as gene expression of key enzymes, and energy supply for pullulan biosynthesis. Results indicated that nitrogen limitation increased the activities of α-phosphoglucose mutase and glucosyltransferase, up-regulated the transcriptional levels of pgm1 and fks genes, and supplied more ATP intracellularly, which were propitious to further pullulan biosynthesis. The economic analysis of batch pullulan production indicated that nitrogen limitation could reduce more than one third of the cost of raw materials when glucose was supplemented to a total concentration of 70 g/L. This study also helps to understand the mechanism of other polysaccharide overproduction by nitrogen limitation.
Collapse
Affiliation(s)
- Dahui Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Feifei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
29
|
Dixit P, Mehta A, Gahlawat G, Prasad GS, Choudhury AR. Understanding the effect of interaction among aeration, agitation and impeller positions on mass transfer during pullulan fermentation by Aureobasidium pullulans. RSC Adv 2015. [DOI: 10.1039/c5ra03715h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pullulan is a non-ionic, water-soluble homopolysaccharide producedviafermentation usingAureobasidium pullulans, a black yeast.
Collapse
Affiliation(s)
- Pooja Dixit
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - Ananya Mehta
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - Geeta Gahlawat
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - G. S. Prasad
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - Anirban Roy Choudhury
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| |
Collapse
|
30
|
Production of Pullulan by Microbial Fermentation. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Wang D, Ju X, Zhou D, Wei G. Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. BIORESOURCE TECHNOLOGY 2014; 164:12-9. [PMID: 24835913 DOI: 10.1016/j.biortech.2014.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 05/09/2023]
Abstract
Pullulan production by Aureobasidium pullulans CCTCC M 2012259 using rice hull hydrolysate as the carbon source was conducted. The acetic acid in the hydrolysate was demonstrated to exert a negative effect on pullulan biosynthesis. Instead of employing expensive methods to remove acetic acid from the hydrolysate, a mutant A. pullulans ARH-1 was isolated following 20 cycles of adaptive laboratory evolution of the parental strain on medium containing acetic acid. The maximum pullulan production achieved by the adapted mutant at 48 h using the hydrolysate of untreated rice hull was 22.2 g L(-1), while that obtained by the parental strain at 60 h was 15.6 g L(-1). The assay of key enzymes associated with pullulan biosynthesis revealed that acetic acid inhibited enzyme activity rather than suppressing enzyme synthesis. These results demonstrated that adaptive evolution highly improved the efficiency of pullulan production by A. pullulans using the hydrolysate of untreated rice hull.
Collapse
Affiliation(s)
- Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Xiaomin Ju
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Donghai Zhou
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China.
| |
Collapse
|
32
|
Ponnusami V, Gunasekar V. Production of Pullulan by Microbial Fermentation. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_58-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|