1
|
Muhmood A, Tang J, Li J, Liu S, Hou L, Le G, Liu D, Huang K. No-observed adverse effect levels of deoxynivalenol and aflatoxin B1 in combination induced immune inhibition and apoptosis in vivo and in vitro. Food Chem Toxicol 2024; 189:114745. [PMID: 38763499 DOI: 10.1016/j.fct.2024.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mycotoxins are toxic metabolites produced by fungal species, commonly exist in animal feeds, and pose a serious risk to human as well as animal health. But limited studies have focused on combined effects of no-observed adverse effect levels. In vivo study, 6 weeks old twenty-four mice were individually exposed to Deoxynivalenol (DON) at 0.1 mg/kg BW, Aflatoxin B1 (AFB1) at 0.01 mg/kg BW, and mixture of DON and AFB1 (0.1 mg/kg BW and 0.01 mg/kg BW, respectively) for 28 days. Then, DON at 0.5 μg/mL, AFB1 at 0.04 μg/mL, and mixtures of DON and AFB1 (0.5 μg/mL, 0.04 μg/mL, respectively) were applied to porcine alveolar macrophages (PAMs) in vitro study. Our in vivo results revealed that the combined no-observed adverse effect levels of DON and AFB1 administration decreased IgA and IgG levels in the serum, the splenic TNF-α, IFN-γ, IL-2 and IL-6 mRNA expression and T-lymphocyte subset levels (CD4+ and CD8+) in the spleen. Additionally, the combined administration increased caspase-3, caspase-9, Bax, Cyt-c, and decreased Bcl-2 protein expression. Taken together, the combined no-observed adverse effect levels of DON and AFB1 could induce immunosuppression, which may be related to apoptosis. This study provides new insights into the combined immune toxicity (DON and AFB1).
Collapse
Affiliation(s)
- Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
2
|
Wang X, Xiao G. Recent chemical synthesis of plant polysaccharides. Curr Opin Chem Biol 2023; 77:102387. [PMID: 37716049 DOI: 10.1016/j.cbpa.2023.102387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Here, chemical syntheses of long, branched and complex glycans over 10-mer from plants are summarized, which highlights amylopectin 20-mer from starch, 17-mer from carthamus tinctorius, α-glucan 30-mer from Longan, 19-mer from psidium guajava and 11-mer from dendrobium huoshanense. The glycans assembly strategies, protecting groups utilization and glycosylation methods discussed here will inspire the efficient synthesis of diverse complex glycans with many 1,2-cis glycosidic linkages.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| |
Collapse
|
3
|
Wu L, Meng F, Su X, Chen N, Peng D, Xing S. Transcriptomic responses to cold stress in Dendrobium huoshanense C.Z. Tang et S.J. Cheng. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1633-1646. [PMID: 38162923 PMCID: PMC10754796 DOI: 10.1007/s12298-023-01385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Dendrobium huoshanense C.Z. Tang et S.J. Cheng is a perennial epiphytic herb of the family Orchidaceae. The main metabolites of D. huoshanense include polysaccharides and flavonoids. Low temperature is the main environmental factor that limits the growth and development of plants. However, changes that occur at the molecular level in response to low temperatures in D. huoshanense are poorly understood. We performed a transcriptome analysis at two time points of 0 d (control group) and 7 d (cold stress group) under culture of D. huoshanense at 4 °C. A total of 37.63 Gb transcriptomic data were generated using the MGI 2000 platform. These reads were assembled into 170,754 transcripts and 23,724 differentially expressed genes (DEGs) were obtained. Pathway analysis indicated that "flavonoid biosynthesis," "anthocyanin biosynthesis," "flavone and flavonol biosynthesis," and "plant hormone signal transduction" might play a vital role in the response of D. huoshanense to cold stress. Several important pathway genes were identified to be altered under cold stress, such as genes encoding polysaccharides, flavonoids, and plant hormone-signaling transduction kinase. In addition, the content of mannose and total flavonoids increased under cold stress. Twelve DEGs related to polysaccharides, flavonoid, and hormone pathways were selected from the transcriptome data for validation with real-time quantitative PCR (RT-qPCR). Our results provide a transcriptome database and candidate genes for further study of the response of D. huoshanense to cold stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01385-7.
Collapse
Affiliation(s)
- Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, 244000 China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Na Chen
- Institute of Health and Medicine, Joint Research Center for Chinese Herbal Medicine of Anhui, Hefei Comprehensive National Science Center, Bozhou, 236800 China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038 China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
4
|
Xie H, Hu M, Yu J, Yang X, Li J, Yu N, Han L, Peng D. Mass spectrometry-based metabolomics reveal Dendrobium huoshanense polysaccharide effects and potential mechanism of N-methyl-N'-nitro-N-nitrosoguanidine -induced damage in GES-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116342. [PMID: 36889419 DOI: 10.1016/j.jep.2023.116342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium huoshanense C. Z. Tang et S. J. Cheng is an important edible medicinal plant that thickens the stomach and intestines, and its active ingredient, polysaccharide, can have anti-inflammatory, immunoregulatory, and antitumor effects. However, the gastroprotective effects and potential mechanisms of Dendrobium huoshanense polysaccharides (DHP) remain unclear. AIM OF THE STUDY An N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced human gastric mucosal epithelial cells (GES-1) damage model was used in this research, aiming to investigate whether DHP has a protective effect on MNNG-induced GES-1 cell injury and its underlying mechanism based on the combination of multiple methods. MATERIALS AND METHODS DHP was extracted using water extraction and alcohol precipitation methods, and the proteins were removed using the Sevag method. The morphology was observed using scanning electron microscopy. A MNNG-induced GES-1 cell damage model was developed. Cell viability and proliferation of the experimental cells were investigated using a cell counting kit-8 (CCK-8). Cell nuclear morphology was detected using the fluorescent dye Hoechst 33342. Cell scratch wounds and migration were detected using a Transwell chamber. The expression levels of apoptosis proteins (Bcl-2, Bax, Caspase-3) in the experimental cells were detected by Western blotting. Ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was performed to investigate the potential mechanism of action of DHP. RESULTS The CCK-8 kit analysis showed that DHP increased GES-1 cell viability and ameliorated GES-1 cell injury by MNNG. In addition, scratch assay and Transwell chambers results suggested that DHP improved the MNNG-induced motility and migration ability of GES-1 cells. Likewise, the results of the apoptotic protein assay indicated that DHP had a protective effect against gastric mucosal epithelial cell injury. To further investigate the potential mechanism of action of DHP, we analyzed the metabolite differences between GES-1 cells, GES-1 cells with MNNG-induced injury, and DHP + MMNG-treated cells using UHPLC-HRMS. The results indicated that DHP upregulated 1-methylnicotinamide, famotidine, N4-acetylsulfamethoxazole, acetyl-L-carnitine, choline and cer (d18:1/19:0) metabolites and significantly down-regulated 6-O-desmethyldonepezil, valet hamate, L-cystine, propoxur, and oleic acid. CONCLUSIONS DHP may protect against gastric mucosal cell injury through nicotinamide and energy metabolism-related pathways. This research may provide a useful reference for further in-depth studies on the treatment of gastric cancer, precancerous lesions, and other gastric diseases.
Collapse
Affiliation(s)
- Huiqun Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengqing Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiao Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xinyu Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinmiao Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China.
| |
Collapse
|
5
|
Gao L, Wang F, Hou T, Geng C, Xu T, Han B, Liu D. Dendrobium huoshanense C.Z.Tang et S.J.Cheng: A Review of Its Traditional Uses, Phytochemistry, and Pharmacology. Front Pharmacol 2022; 13:920823. [PMID: 35903345 PMCID: PMC9315951 DOI: 10.3389/fphar.2022.920823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 01/29/2023] Open
Abstract
Dendrobium huoshanense, a traditional medicinal and food homologous plant, belongs to the family Orchidaceae and has a long history of medicinal use. It is reported that the stem of D. huoshanense has a variety of bioactive ingredients such as polysaccharides, flavonoids, sesquiterpenes, phenols, etc. These bioactive ingredients make D. huoshanense remarkable for its pharmacological effects on anti-tumor, immunomodulation, hepatoprotective, antioxidant, and anticataract activities. In recent years, its rich pharmacological activities have attracted extensive attention. However, there is no systematic review focusing on the chemical compositions and pharmacological effects of D. huoshanense. Therefore, the present review aims to summarize current research on the chemical compositions and pharmacological activities of D. huoshanense. This study provides valuable references and promising ideas for further investigations of D. huoshanense.
Collapse
Affiliation(s)
- Leilei Gao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
- *Correspondence: Leilei Gao, ; Bangxing Han, ; Dong Liu,
| | - Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
| | - Tingting Hou
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chunye Geng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tao Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
- *Correspondence: Leilei Gao, ; Bangxing Han, ; Dong Liu,
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu’an, China
- *Correspondence: Leilei Gao, ; Bangxing Han, ; Dong Liu,
| |
Collapse
|
6
|
Zhang W, You YT, Guo JY, Wang SM, Liu CQ, Zhao DQ, Wang JW, Bai XY. Identification of Dendrobiums in situ by Raman spectroscopy and micro-computed tomography imaging. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Dendrobium candidum/officinale (Dendrobium candidum Wall.ex Lindl.; Dendrobium officinale Kimura et Migo) is an expensive medicinal plant used mainly as a tonic in China. Tie-pi-feng-dou is the common name of the processed medicinal Dendrobium candidum/officinale. The market prices of Dendrobium sources vary significantly and it is difficult to identify different types of Dendrobiums due to their similar appearances. The use of counterfeit Dendrobium candidum/officinale is ubiquitous and problematic. Therefore, it is important to be able to discriminate between the wide range of available Dendrobium.
Methods
In an effort to better distinguish between the varieties of Dendrobium, Raman spectroscopy was used to detect specific Dendrobiums relative to their source. Transport channel imaging of the microstructural sites by micro-computed tomography (micro-CT) was used to identify the unique constitution and enrichment status of dendrobines, which was determined mainly by the geographical source of the Dendrobium. This implies that exclusive spectral traits may be unique to different regions. The presence or absence of these traits differ among the geographical origins.
Results
We can identify several spectral traits for various Dendrobiums. An intense peak at 1,525 cm−1 was only found in Dendrobium candidum/officinale (Zhe-jiang/Yun-nan/An-hui), while the characteristic Dendrobium candidum/officinale bands were near 742 cm−1, 1,326 cm−1 and 1,330 cm−1. A systematic method for distinguishing between four geographical locations of Dendrobium (Zhe-jiang/Yun-nan/An-hui/Gui-zhou) were established. This reveals that the origin of an unknown Dendrobium may be identified by Raman spectroscopy and micro-CT imaging. This method was shown to be efficacious, fast, and non-destructive.
Collapse
Affiliation(s)
- Wei Zhang
- Changchun University of Chinese Medicine, Chang Chun, China
| | - Yu-Ting You
- Changchun University of Chinese Medicine, Chang Chun, China
| | - Jian-Ying Guo
- Changchun University of Chinese Medicine, Chang Chun, China
| | - Si-Ming Wang
- Changchun University of Chinese Medicine, Chang Chun, China
| | - Chang-Qing Liu
- Guangzhou Zeli Pharmaceutical Technology Co., Ltd, Guang Zhou, China
| | - Da-Qing Zhao
- Changchun University of Chinese Medicine, Chang Chun, China
| | - Jia-Wen Wang
- Changchun University of Chinese Medicine, Chang Chun, China
| | - Xue-Yuan Bai
- Changchun University of Chinese Medicine, Chang Chun, China
| |
Collapse
|
7
|
Structural characterization of a mannoglucan polysaccharide from Dendrobium huoshanense and evaluation of its osteogenesis promotion activities. Int J Biol Macromol 2022; 211:441-449. [PMID: 35577191 DOI: 10.1016/j.ijbiomac.2022.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/31/2022]
Abstract
Dendrobium huoshanense, a valuable traditional Chinese herb, is widely used to prolong life in China. Our study aims to characterize the structure and osteogenesis-promotion effects of a heteropolysaccharide component isolated from Dendrobium huoshanense (DHPW1). The structure of DHPW1 was characterized using gas chromatography-mass spectrometry and nuclear magnetic resonance, while its osteogenic activity was evaluated using MG-63 cells and zebrafish skulls. The results showed that the molecular weight of DHPW1 was 230 kDa and it was mainly composed of mannose and glucose. In addition, the DHPW1 backbone consisted of (1 → 4)-linked-β-D-Mannopyranosyl and (1 → 4)-linked-β-d-Glucopyranosyl. Furthermore, DHPW1 significantly increased ALP activity and mineralized nodule formation in MG-63 cells. DHPW1 in zebrafish skull models significantly enhanced the relative fluorescence intensity of bone mass and increased the degree of bone mineralization. These results suggested that the DHPW1 component in D. huoshanense has potential to promote osteogenesis.
Collapse
|
8
|
Liu Y, Huang W, Dai K, Liu N, Wang J, Lu X, Ma J, Zhang M, Xu M, Long X, Liu J, Kou Y. Inflammatory response of gut, spleen, and liver in mice induced by orally administered Porphyromonas gingivalis. J Oral Microbiol 2022; 14:2088936. [PMID: 35756539 PMCID: PMC9225697 DOI: 10.1080/20002297.2022.2088936] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Periodontitis is a chronic multifactorial inflammatory disease. Porphyromonas gingivalis is a primary periopathogen in the initiation and development of periodontal disease. Evidence has shown that P. gingivalis is associated with systemic diseases, including IBD and fatty liver disease. Inflammatory response is a key feature of diseases related to this species. Methods C57BL/6 mice were administered either PBS, or P. gingivalis. After 9 weeks, the inflammatory response in gut, spleen, and liver was analyzed. Results The findings revealed significant disturbance of the intestinal microbiota and increased inflammatory factors in the gut of P. gingivalis-administered mice. Administrated P. gingivalis remarkably promoted the secretion of IRF-1 and activated the inflammatory pathway IFN-γ/STAT1 in the spleen. Histologically, mice treated with P. gingivalis exhibited hepatocyte damage and lipid deposition. The inflammatory factors IL-17a, IL-6, and ROR-γt were also upregulated in the liver of mice fed with P. gingivalis. Lee’s index, spleen index, and liver index were also increased. Conclusion These results suggest that administrated P. gingivalis evokes inflammation in gut, spleen, and liver, which might promote the progression of various systemic diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Wenkai Huang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Ke Dai
- Department of Stomatology, Lishui University School of Medicine, Lishui, Zhejing, China
| | - Ni Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Mengqi Xu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Xu Long
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jie Liu
- Department of Stomatology, Science Experiment Center, China Medical University, Shenyang, Liaoning, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China.,Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Li X, Wang X, Wang Y, Liu X, Ren X, Dong Y, Ma J, Song R, Wei J, Yu A, Fan Q, Yao J, Shan D, Zhang Y, Wei S, She G. A Systematic Review on Polysaccharides from Dendrobium Genus: Recent Advances in the Preparation, Structural Characterization, Bioactive Molecular Mechanisms, and Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:471-509. [PMID: 35168475 DOI: 10.1142/s0192415x22500185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendrobium polysaccharides (DPSs) have aroused people's increasing attention in recent years as a result of their outstanding edible and medicinal values and non-toxic property. This review systematically summarized recent progress in the different preparation techniques, structural characteristics, modification, various pharmacological activities and molecular mechanisms, structure-activity relationships, and current industrial applications in the medicinal, food, and cosmetics fields of DPSs. Additionally, some recommendations for future investigations were provided. A variety of methods were applied for the extraction and purification of DPSs. They possessed primary structures (e.g., glucomannan, rhamnogalacturonan I type pectin, heteroxylan, and galactoglucan) and conformational structures (e.g., random coil, rod, globular, and a slight triple-helical). And different molecular weights, monosaccharide compositions, linkage types, and modifications could largely affect DPSs' bioactivities (e.g., immunomodulatory, anti-diabetic, hepatoprotective, gastrointestinal protective, antitumor, anti-inflammatory, and anti-oxidant activities). It was worth mentioning that DPSs were significant pharmaceutical remedies and therapeutic supplements especially due to their strong immunity enhancement abilities. We hope that this review will lay a solid foundation for further development and applications of Dendrobium polysaccharides.
Collapse
Affiliation(s)
- Xiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| | - Yanfei Zhang
- Shuangjiang Xingyun Biological Technology Co., Ltd, Shenzhen, Guangdong 518000, P. R. China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China.,Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing 102488, P. R. China
| |
Collapse
|
10
|
Wu J, Meng X, Jiang W, Wang Z, Zhang J, Meng F, Yao X, Ye M, Yao L, Wang L, Yu N, Peng D, Xing S. Qualitative Proteome-Wide Analysis Reveals the Diverse Functions of Lysine Crotonylation in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:822374. [PMID: 35251091 PMCID: PMC8888884 DOI: 10.3389/fpls.2022.822374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The lysine crotonylation of histone proteins is a newly identified posttranslational modification with diversified cellular functions. However, there are few reports on lysine crotonylation of non-histone proteins in medicinal plant cells. By using high-resolution liquid chromatography-mass spectrometry (LC-MS) coupled with highly sensitive-specific immune-affinity antibody analysis, a whole crotonylation proteome analysis of Dendrobium huoshanense was performed. In total, 1,591 proteins with 4,726 lysine crotonylation sites were identified; among them, 11 conserved motifs were identified. Bioinformatic analyses linked crotonylated proteins to the drought stress response and multiple metabolic pathways, including secondary metabolite biosynthesis, transport and catabolism, energy production and conversion, carbohydrate transport and metabolism, translation, and ribosomal structure and biogenesis. This study contributes toward understanding the regulatory mechanism of polysaccharide biosynthesis at the crotonylation level even under abiotic stress.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, United States
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyan Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengjuan Ye
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liang Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Gu FL, Huang RS, He XM, Chen NF, Han BX, Deng H. Dendrobium huoshanense Polysaccharides Prevent Inflammatory Response of Ulcerative Colitis Rat through Inhibiting the NF-κB Signaling Pathway. Chem Biodivers 2021; 18:e2100130. [PMID: 34080308 DOI: 10.1002/cbdv.202100130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
The polysaccharides of the Chinese herbal medicine Dendrobium huoshanense exhibit anti-inflammatory effects in multiple organs through regulating the immune responses. In the present study, we constructed ulcerative colitis (UC) model rats using dextran sulfate sodium to investigate the anti-inflammatory effects of D. huoshanense polysaccharides (DHP). After oral administration of DHP for two weeks, the indices of UC symptoms, including the ratio of colon weight to length, Disease Activity Index (DAI), and Colon Mucosal Damage Index (CMDI), all decreased significantly compared with the UC model group. The histological sections also revealed better cell orders in DHP treatments than in the UC model rats. Moreover, in treatment with high dose of DHP (200 mg/kg), the treatment efficacy arrived the similar levels to those in the treatment with 300 mg/kg sulfasalazine, which is a typical medicine to treat UC. These results indicated that DHP has a high efficacy to treat UC in model rats. Furthermore, serum levels of interleukin-1β, tumor necrosis factor-α, interleukin-17, and transforming growth factor-β were assessed using the enzyme linked immunosorbent assay (ELISA) method, and the levels of nuclear factor-κB in colon tissue sections were determined using the immunohistochemical method. The results showed that all these indices decreased significantly after administration of DHP in UC model rats, which might be the mechanisms underlying the DHP-suppressed UC inflammation. Overall, this study indicated that DHP might be directly used to treat UC and is a promising source to develop novel drugs against UC.
Collapse
Affiliation(s)
- Fang-Li Gu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, P. R. China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, 237012, P. R. China
| | - Ren-Shu Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, P. R. China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, 237012, P. R. China
| | - Xiao-Mei He
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, P. R. China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, 237012, P. R. China
| | - Nai-Fu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, P. R. China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, 237012, P. R. China
| | - Bang-Xing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, P. R. China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, 237012, P. R. China
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, P. R. China.,Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, Lu'an, 237012, P. R. China
| |
Collapse
|
12
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α‐Glycans up to a 30‐mer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
13
|
Shang ZZ, Xu TT, Wang CQ, Li QM, Zha XQ, Pan LH, Luo JP. Bioactivity-guided investigation for isolation and immunoregulatory potential of polysaccharides from Dendrobium chrysotoxum stems. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α-Glycans up to a 30-mer. Angew Chem Int Ed Engl 2021; 60:12597-12606. [PMID: 33763930 DOI: 10.1002/anie.202103826] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
15
|
Han B, Jing Y, Dai J, Zheng T, Gu F, Zhao Q, Zhu F, Song X, Deng H, Wei P, Song C, Liu D, Jiang X, Wang F, Chen Y, Sun C, Yao H, Zhang L, Chen N, Chen S, Li X, Wei Y, Ouyang Z, Yan H, Lu J, Wang H, Guo L, Kong L, Zhao J, Li S, Luo L, Kristiansen K, Feng Z, Sun S, Chen C, Yue Z, Chen N. A Chromosome-Level Genome Assembly of Dendrobium Huoshanense Using Long Reads and Hi-C Data. Genome Biol Evol 2020; 12:2486-2490. [PMID: 33045048 PMCID: PMC7846097 DOI: 10.1093/gbe/evaa215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/03/2023] Open
Abstract
Dendrobium huoshanense is used to treat various diseases in traditional Chinese medicine. Recent studies have identified active components. However, the lack of genomic data limits research on the biosynthesis and application of these therapeutic ingredients. To address this issue, we generated the first chromosome-level genome assembly and annotation of D. huoshanense. We integrated PacBio sequencing data, Illumina paired-end sequencing data, and Hi-C sequencing data to assemble a 1.285 Gb genome, with contig and scaffold N50 lengths of 598 kb and 71.79 Mb, respectively. We annotated 21,070 protein-coding genes and 0.96 Gb transposable elements, constituting 74.92% of the whole assembly. In addition, we identified 252 genes responsible for polysaccharide biosynthesis by Kyoto Encyclopedia of Genes and Genomes functional annotation. Our data provide a basis for further functional studies, particularly those focused on genes related to glycan biosynthesis and metabolism, and have implications for both conservation and medicine.
Collapse
Affiliation(s)
- Bangxing Han
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Yi Jing
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jun Dai
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Tao Zheng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Department of Biology, University of Copenhagen
| | - Fangli Gu
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Qun Zhao
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Fucheng Zhu
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Xiangwen Song
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Hui Deng
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Peipei Wei
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Cheng Song
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Dong Liu
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Xueping Jiang
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Fang Wang
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Yanjun Chen
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Chuanbo Sun
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Houjun Yao
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Li Zhang
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Naidong Chen
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Shaotong Chen
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Xiaoli Li
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212032, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingdong Kong
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 440499, Macao
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 440499, Macao
| | - Lifen Luo
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen
| | | | - Zhan Feng
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Cunwu Chen
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Naifu Chen
- Anhui Province Traditional Chinese Medicine Resource Protection and Sustainable Utilization Engineering Laboratory, West Anhui University, Liu'an, 230036, China
| |
Collapse
|
16
|
Yue H, Zeng H, Ding K. A review of isolation methods, structure features and bioactivities of polysaccharides from Dendrobium species. Chin J Nat Med 2020; 18:1-27. [PMID: 31955820 DOI: 10.1016/s1875-5364(20)30001-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 02/08/2023]
Abstract
Dendrobium, orchid, is a traditional Chinese herb medicine applied extensively as tonic and precious food for thou-sands of years recorded in ancient Chinese medical book "Shen Nong's Materia Medica". It's well known that bioactivities are usually related to the ingredients' basis. Based on the previous research, Dendrobium species contain amino acid, sesquiterpenoids, alkaloids and polysaccharides. As the bioactive substances, carbohydrate shows extensive activities in antitumor, antiglycation, immune-enhancing, antivirus, antioxidant, antitumor and etc. Therefore, as the main biologically active substance, the exact structures and latent activities of polysaccharides from Dendrobium species are widely focused on. In this review, we focus on the advancements of extraction methods and diversity of structures and bioactivities of polysaccharides obtained from Dendrobium species.
Collapse
Affiliation(s)
- Han Yue
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zeng
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Crepidtumines A and B, Two Novel Indolizidine Alkaloids from Dendrobium crepidatum. Sci Rep 2020; 10:9564. [PMID: 32533030 PMCID: PMC7293321 DOI: 10.1038/s41598-020-66552-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Abstract
Two new indolizidine alkaloids crepidatumines A (1) and B (2) together with the stereoisomer of dendrocrepidine B (3) and known analog dendrocrepine (4) were isolated from D. crepidatum. Their structures were determined by HR-ESI-MS, NMR, and Electronic Circular Dichroism (ECD) experiments together with comparison of analogues. Compound (1) possess a (5/6/6/5) tetra-hetero-cyclic ring, whereas compound (2) contains a tricyclic system with an unusual bridged ring, which are the first report in Nature. The biological evaluation revealed that dendrocrepine (4) displayed a potent hypoglycemic effect in vitro.
Collapse
|
18
|
Xu F, Wang P, Yao Q, Shao B, Yu H, Yu K, Li Y. Lycopene alleviates AFB 1-induced immunosuppression by inhibiting oxidative stress and apoptosis in the spleen of mice. Food Funct 2020; 10:3868-3879. [PMID: 31184641 DOI: 10.1039/c8fo02300j] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lycopene (LYC) has been reported to exhibit antioxidant and immunoprotective activities, and our previous studies confirmed that LYC can alleviate multiple tissue damage induced by aflatoxin B1 (AFB1). However, it is unclear whether LYC could relieve the AFB1-induced immunosuppression. Thus, forty-eight male mice were randomly allocated and treated with LYC (5 mg kg-1) and/or AFB1 (0.75 mg kg-1) by intragastric administration for 30 days. We found that LYC alleviated AFB1-induced immunosuppression by relieving splenic structure injury and increasing the spleen weight, spleen coefficient, T lymphocyte subsets, the contents of IL-2, IFN-γ and TNF-α in serum, as well as the mRNA expression of IL-2, IFN-γ and TNF-α in spleen. Furthermore, LYC inhibited oxidative stress induced by AFB1via decreasing the levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and malondialdehyde (MDA), while enhancing the total antioxidant capacity (T-AOC) and antioxidant enzyme activities. In addition, LYC also restrained splenic apoptosis through blocking mitochondria-mediated apoptosis in AFB1 intoxicated mice, presenting as the increase of mitochondrial membrane potential, and the decrease of cytoplasmic Cyt-c protein expression, cleaved Caspase-3 protein expression, Caspase-3/9 activities and mRNA expressions, as well as balancing the mitochondrial protein and mRNA expressions of Bax and Bcl-2. These results indicate that LYC can alleviate AFB1-induced immunosuppression by inhibiting oxidative stress and mitochondria-mediated apoptosis of mice spleen.
Collapse
Affiliation(s)
- Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Peiyan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Qiucheng Yao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524000, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Hongyan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Kaiyuan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. and Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Liu W, Yan R, Zhang L. Dendrobium sonia polysaccharide regulates immunity and restores the dysbiosis of the gut microbiota of the cyclophosphamide-induced immunosuppressed mice. Chin J Nat Med 2019; 17:600-607. [PMID: 31472897 DOI: 10.1016/s1875-5364(19)30062-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 01/12/2023]
Abstract
To recognize the potential medicinal value of the Dendrobium sonia, polysaccharide (DSP) was extracted, purified, and investigated for its immunomodulatory activity. In vitro, DSP was shown to enhance the viability (MTT assay) and phagocytosis of macrophages. In cyclophosphamide-induced immunosuppressed mice, DSP increased serum levels of TNF-α, IL-6 and IFN-γ (enzyme-linked immunosorbent assay, ELISA), and ameliorated the imbalance of the community of gut microbiota as detected by 16S ribosomal RNA gene sequencing. These results suggest that DSP might be beneficial for patients under immunosuppressed conditions.
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Ran Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211816, China
| | - Liang Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China.
| |
Collapse
|
20
|
Li BX, Li WY, Tian YB, Guo SX, Huang YM, Xu DN, Cao N. Polysaccharide ofAtractylodes macrocephalaKoidz Enhances Cytokine Secretion by Stimulating theTLR4–MyD88–NF-κBSignaling Pathway in the Mouse Spleen. J Med Food 2019; 22:937-943. [DOI: 10.1089/jmf.2018.4393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bing-Xin Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- South China Agricultural University, Guangzhou, China
| | - Wan-Yan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Si-Xuan Guo
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Nan Cao
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| |
Collapse
|
21
|
Yu H, Zhang J, Ji Q, Yu K, Wang P, Song M, Cao Z, Zhang X, Li Y. Melatonin alleviates aluminium chloride-induced immunotoxicity by inhibiting oxidative stress and apoptosis associated with the activation of Nrf2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:131-141. [PMID: 30771656 DOI: 10.1016/j.ecoenv.2019.01.095] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
The present study aimed to investigate whether melatonin (MT) treatment can attenuate immunotoxicity induced by aluminum chloride (AlCl3) in rat spleen. Forty-eight healthy male Wistar rats were randomly allocated and treated with AlCl3 and/or MT. Rats were orally administered with AlCl3 for 90 days, from 61st days, rats were injected intraperitoneally with MT for 30 days. Firstly, we found that MT relieved the AlCl3-induced immunosuppression by improving spleen structural damage, CD3+ and CD4+ T lymphocyte subsets, IL-2 and TNF-α mRNA expressions and decreasing CD8+ T lymphocyte subsets. Secondly, MT attenuated the AlCl3-induced oxidative stress in rat spleen by decreasing the levels of ROS and MDA, while increasing the activities of SOD and CAT. Thirdly, MT relieved the AlCl3-induced apoptosis in rat spleen by increasing the MMP and Bcl-2 mRNA and protein expressions, while decreasing apoptosis rates, activity of Caspase-3 and pro-apoptotic gene expression. Finally, MT increased Nrf2 nuclear translocation, and Nrf2 target genes (HO-1, NQO1, SOD1 and CAT) mRNA expressions in the spleen of AlCl3-exposed rat. These results suggest that MT may alleviate AlCl3-induced immunotoxicity by inhibiting oxidative stress and apoptosis associated with the activation of Nrf2 signaling pathway, which could lay the foundation for the treatment of AlCl3 immunotoxicity.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Ji
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kaiyuan Yu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Peiyan Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyan Zhang
- Northeast Agricultural University Hospital, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Xie SZ, Liu B, Ye HY, Li QM, Pan LH, Zha XQ, Liu J, Duan J, Luo JP. Dendrobium huoshanense polysaccharide regionally regulates intestinal mucosal barrier function and intestinal microbiota in mice. Carbohydr Polym 2019; 206:149-162. [DOI: 10.1016/j.carbpol.2018.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
|
23
|
Wang HY, Li QM, Yu NJ, Chen WD, Zha XQ, Wu DL, Pan LH, Duan J, Luo JP. Dendrobium huoshanense polysaccharide regulates hepatic glucose homeostasis and pancreatic β-cell function in type 2 diabetic mice. Carbohydr Polym 2019; 211:39-48. [PMID: 30824102 DOI: 10.1016/j.carbpol.2019.01.101] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
In the present study, the hypoglycemic mechanism of a homogeneous Dendrobium huoshanense polysaccharide (GXG) was investigated using type 2 diabetic (T2D) mouse model. With a 5-week oral administration of GXG, the levels of fasting blood glucose, glycosylated serum protein and serum insulin in T2D mice were decreased, and the glucose tolerance and the insulin sensitivity were improved. The histological analysis, the periodic acid-schiff staining and the immunofluorescence staining of insulin, glucagon and apoptosis showed that the hypoglycemic effect of GXG was related to the improvement of pancreatic β-cell quantity and function and the regulation of hepatic glucose metabolism. Western blot analysis indicated that the up-regulated IRS1-PI3K-Akt phosphorylation followed by the down-regulated FoxO1/GSK 3β phosphorylation contributed to the enhanced glycogen synthesis and the decreased gluconeogenesis by GXG, suggesting that the response of insulin-mediated IRS1-PI3K-Akt-FoxO1/GSK 3β signaling to GXG might be the required mechanism for GXG-ameliorated development of type 2 diabetes.
Collapse
Affiliation(s)
- Hong-Yan Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Nian-Jun Yu
- Institute of Traditional Chinese Medical Resources Protection and Development, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei-Dong Chen
- Institute of Traditional Chinese Medical Resources Protection and Development, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - De-Ling Wu
- Institute of Traditional Chinese Medical Resources Protection and Development, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
24
|
Crude Polysaccharides from Okra Pods ( Abelmoschus esculentus) Grown in Indonesia Enhance the Immune Response due to Bacterial Infection. Adv Pharmacol Sci 2018; 2018:8505383. [PMID: 30402093 PMCID: PMC6198543 DOI: 10.1155/2018/8505383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/24/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
Okra pods were widely consumed by Indonesians to maintain health. The aim of this study was at investigating the potential of crude polysaccharides from okra pods on immune response in mice infected with Staphylococcus aureus. Thirty male Balb/C mice were divided into six groups: normal control, negative control, and treatment groups (administration of crude polysaccharides at doses of 25, 50, 75, and 100 mg/kg). Crude polysaccharides were administrated for fourteen days. Furthermore, mice were exposed to S. aureus at the fifteenth day. Two weeks after the end of treatment, the parameters were measured. This study showed that crude polysaccharides at a dose of 75 and 100 mg/kg improved phagocytic activity, spleen index, and splenocytes proliferation. Rising of TNF-α levels was shown in groups treated with crude polysaccharides at doses of 25, 50, and 100 mg/kg. All treatment groups showed a decreasing level of IL-17. Crude okra polysaccharides also showed a slight increase in NK cells activity and IFN-γ level. Thus, crude okra polysaccharides could act as an effective material to enhance immune response including phagocytic activity, spleen index, splenocytes proliferation, and control immune responses through cytokine production.
Collapse
|
25
|
Dendrobium polysaccharides attenuate cognitive impairment in senescence-accelerated mouse prone 8 mice via modulation of microglial activation. Brain Res 2018; 1704:1-10. [PMID: 30253123 DOI: 10.1016/j.brainres.2018.09.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Dendrobium is one of the most important traditional Chinese medicinal foods used to treat age-related disorders. However, it remains unclear whether Dendrobium affects the progression of Alzheimer's disease (AD). In the present study, we investigated the effects of Dendrobium officinale polysaccharides (DOP) on the BV2 microglial cell line and the senescence-accelerated mouse prone 8 (SAMP8) mouse strain. In vitro experiments showed that DOP pretreatment contributed to BV2 cells shifting from proinflammatory to anti-inflammatory phenotypes with enhanced Aβ clearance in response to Aβ insults. For the in vivo study, mice were chronically treated with DOP in drinking water from 4 to 7 months of age. The results showed that DOP remarkably attenuated cognitive decline in SAMP8 mice. DOP also inhibited the increased hippocampal microglial activation in SAMP8 mice with downregulation of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), while interleukin-10 (IL-10), neprilysin (NEP) and insulin-degrading enzyme (IDE) were upregulated. The accumulation of hippocampal Aβ42 and phosphated Tau proteins in SAMP8 mice was also reduced. Taken together, our data suggest that Dendrobium has the potential to provide neuroprotection against AD-related cognitive impairment via modulation of microglial activation.
Collapse
|
26
|
Wang C, Xu L, Huang L, Li X, Han W, Liu D, Cui X, Yang Y. Optimization of Maca polysaccharide extraction process and its chemo-protective effects on cyclophosphamide-induced mice. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chengxiao Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Lei Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Luqi Huang
- Chinese Medica Resources Center; China Academy of Chinese Medicinal Sciences; Beijing China
| | - XinRui Li
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
| | - Wei Han
- School of Pharmacy; East China University of Science and Technology; Shanghai China
| | - Diqiu Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Xiuming Cui
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| | - Ye Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization; Kunming China
| |
Collapse
|
27
|
Liu L, Han R, Yu N, Zhang W, Xing L, Xie D, Peng D. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PLoS One 2018; 13:e0196592. [PMID: 29715304 PMCID: PMC5929529 DOI: 10.1371/journal.pone.0196592] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Acquiring high quality RNA is the basis of plant molecular biology research, plant genetics and other physiological investigations. At present, a large number of nucleotide isolation methods have been exploited or modified, such as commercial kits, CTAB, SDS methods and so on. Due to the nature of different plants, extraction methods vary. Moreover, efficiency of certain approach cannot be guaranteed due to composition of different plants and extracting high quality RNA from plants rich in polysaccharides and polyphenols are often difficult. The physical and chemical properties of polysaccharides which are similar to nucleic acids and other secondary metabolites will be coprecipitated with RNA irreversibly. Therefore, how to remove polysaccharides and other secondary metabolites during RNA extraction is the primary challenge. Dendrobium huoshanense is an Orchidaceae perennial herb that is rich in polysaccharides and other secondary metabolites. By using D. huoshanense as the subject, we improved the method originated from CHAN and made it suitable for plants containing high amount of polysaccharides and polyphenols. The extracted total RNA was clear and non-dispersive, with good integrity and no obvious contamination with DNA and other impurities. And it was also evaluated by gel electrophoresis, nucleic acid quantitative detector and PCR assessment. Thus, as a simple approach, it is suitable and efficient in RNA isolation for plants rich in polysaccharides and polyphenols.
Collapse
Affiliation(s)
- Lulu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Innovative Team from Colleges for Scientific Research's Platform—The Innovative Team in Researching the Key Technologies Concerning the Integration of Processing Chinese Medicine Decoction Pieces in Producing Area, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongmei Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- * E-mail:
| |
Collapse
|
28
|
Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Wang C, Xu L, Guo X, Cui X, Yang Y. Optimization of the extraction process of polysaccharides from Dendrobium officinale
and evaluation of the in vivo immunmodulatory activity. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Chengxiao Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine; Kunming China
| | - Lei Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine; Kunming China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
| | - Xiuming Cui
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine; Kunming China
| | - Ye Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Yunnan Key Laboratory of Panax Notoginseng Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming China
- Key Laboratory of Panax Notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine; Kunming China
| |
Collapse
|
30
|
Cakova V, Bonte F, Lobstein A. Dendrobium: Sources of Active Ingredients to Treat Age-Related Pathologies. Aging Dis 2017; 8:827-849. [PMID: 29344419 PMCID: PMC5758354 DOI: 10.14336/ad.2017.0214] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/14/2017] [Indexed: 12/16/2022] Open
Abstract
Dendrobium represents one of the most important orchid genera, ornamentally and medicinally. Dendrobiums are sympodial epiphytic plants, which is a name they are worthy of, the name coming from Greek origin: "dendros", tree, and "bios", life. Dendrobium species have been used for a thousand years as first-rate herbs in traditional Chinese medicine (TCM). They are source of tonic, astringent, analgesic, antipyretic, and anti-inflammatory substances, and have been traditionally used as medicinal herbs in the treatment of a variety of disorders, such as, nourishing the stomach, enhancing production of body fluids or nourishing Yin. The Chinese consider Dendrobium as one of the fifty fundamental herbs used to treat all kinds of ailments and use Dendrobium tonic for longevity. This review is focused on main research conducted during the last decade (2006-2016) on Dendrobium plants and their constituents, which have been subjected to investigations of their pharmacological effects involving anticancer, anti-diabetic, neuroprotective and immunomodulating activities, to report their undeniable potential for treating age-related pathologies.
Collapse
Affiliation(s)
- Veronika Cakova
- 1Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | | | - Annelise Lobstein
- 1Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| |
Collapse
|
31
|
Si HY, Chen NF, Chen ND, Huang C, Li J, Wang H. Structural characterisation of a water-soluble polysaccharide from tissue-cultured Dendrobium huoshanense C.Z. Tang et S.J. Cheng. Nat Prod Res 2017; 32:252-260. [PMID: 28691858 DOI: 10.1080/14786419.2017.1350670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hua-Yang Si
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an City, China
- West Anhui Biotechnology Research Center of Natural Medicine and Traditional Chinese Medicine, West Anhui University, Lu’an City, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nai-Fu Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an City, China
- West Anhui Biotechnology Research Center of Natural Medicine and Traditional Chinese Medicine, West Anhui University, Lu’an City, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nai-Dong Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an City, China
- West Anhui Biotechnology Research Center of Natural Medicine and Traditional Chinese Medicine, West Anhui University, Lu’an City, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu City, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu City, China
| |
Collapse
|
32
|
Sheng X, Yan J, Meng Y, Kang Y, Han Z, Tai G, Zhou Y, Cheng H. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology. Food Funct 2017; 8:1020-1027. [PMID: 28266682 DOI: 10.1039/c7fo00071e] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.
Collapse
Affiliation(s)
- Xiaotong Sheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Jingmin Yan
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Yue Meng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Yuying Kang
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Zhen Han
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Guihua Tai
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Hairong Cheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
33
|
Li QM, Wang JF, Zha XQ, Pan LH, Zhang HL, Luo JP. Structural characterization and immunomodulatory activity of a new polysaccharide from jellyfish. Carbohydr Polym 2017; 159:188-194. [DOI: 10.1016/j.carbpol.2016.12.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
|
34
|
Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats. Int J Biol Macromol 2017; 94:1-9. [DOI: 10.1016/j.ijbiomac.2016.09.099] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
|
35
|
Huang F, Zhang R, Liu Y, Xiao J, Liu L, Wei Z, Yi Y, Zhang M, Liu D. Dietary litchi pulp polysaccharides could enhance immunomodulatory and antioxidant effects in mice. Int J Biol Macromol 2016; 92:1067-1073. [PMID: 27514443 DOI: 10.1016/j.ijbiomac.2016.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/16/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the immunomodulatory and antioxidant activities of litchi pulp polysaccharides (LP) in cyclophosphamide (Cy)-induced mice. The administration of LP (50, 100 and 200mg/kg/d) remarkably enhanced mesenteric lymph node cells proliferation and serum IgA. Moreover, IL-6, TNF-α, IgG and IgM levels in serum were significantly improved in a dose-dependent manner with LP treatment. Dietary LP induced systemic immune responses including stimulating the proliferation of splenocytes, balancing the ratio of spleen lymphocyte subsets, up-regulating the thymus and spleen indices. Thus, we speculate litchi polysaccharides would express their systemic immunomodulatory effects by triggering the intestinal mucosal immunity. Likewise, LP also significantly increased total antioxidant capacity, as well as superoxidase dismutase and glutathione peroxidase activity, while decreasing malondialdehyde levels in the serum and liver. The immunomodulatory activity of LP was accompanied with its antioxidant activity, which might be related with its structure and prebiotic effect. This is a novel study on the relationship between the immunomodulatory and antioxidant activities of litchi polysaccharides.
Collapse
Affiliation(s)
- Fei Huang
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yang Liu
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Juan Xiao
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lei Liu
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhencheng Wei
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingwei Zhang
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Dong Liu
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
36
|
Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways. Carbohydr Polym 2016; 146:292-300. [DOI: 10.1016/j.carbpol.2016.03.059] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/22/2022]
|
37
|
Deng Y, Chen LX, Han BX, Wu DT, Cheong KL, Chen NF, Zhao J, Li SP. Qualitative and quantitative analysis of specific polysaccharides in Dendrobium huoshanense by using saccharide mapping and chromatographic methods. J Pharm Biomed Anal 2016; 129:163-171. [PMID: 27424197 DOI: 10.1016/j.jpba.2016.06.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
Qualitative and quantitative analysis of specific polysaccharides from ten batches of Dendrobium huoshanense were performed using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector (HPSEC-MALLS-RID), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR) and saccharide mapping based on polysaccharides analysis by using carbohydrate gel electrophoresis (PACE) and high performance thin layer chromatography (HPTLC). Results showed that molecular weights, the radius of gyrations, and contents of specific polysaccharides in D. huoshanense were ranging from 1.16×10(5) to 2.17×10(5)Da, 38.8 to 52.1nm, and 9.9% to 19.9%, respectively. Furthermore, the main monosaccharide compositions were Man and Glc. Indeed, the main glycosidic linkages were β-1,4-Manp and β-1,4-Glcp, and substituted with acetyl groups at O-2 and O-3 of 1,4-linked Manp. Moreover, results showed that PACE and HPTLC fingerprints of partial acidic and enzymatic hydrolysates of specific polysaccharides were similar, which are helpful to better understand the specific polysaccharides in D. huoshanense and beneficial to improve their quality control. These approaches could also be routinely used for quality control of polysaccharides in other medicinal plants.
Collapse
Affiliation(s)
- Yong Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China
| | - Ling-Xiao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China
| | - Bang-Xing Han
- Anhui Collaborative Innovation Center of Dendrobium Industrialization, Lu'an, Anhui, PR China; College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, PR China
| | - Ding-Tao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China
| | - Kit-Leong Cheong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China
| | - Nai-Fu Chen
- Anhui Collaborative Innovation Center of Dendrobium Industrialization, Lu'an, Anhui, PR China; College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, PR China.
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China; Anhui Collaborative Innovation Center of Dendrobium Industrialization, Lu'an, Anhui, PR China; College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, PR China.
| |
Collapse
|
38
|
Tian CC, Zha XQ, Luo JP. A polysaccharide from Dendrobium huoshanense prevents hepatic inflammatory response caused by carbon tetrachloride. BIOTECHNOL BIOTEC EQ 2014; 29:132-138. [PMID: 26019626 PMCID: PMC4434038 DOI: 10.1080/13102818.2014.987514] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023] Open
Abstract
Dendrobium huoshanense is a precious herbal medicine in China, which exhibits a variety of restorative and therapeutic effects. This study aimed at investigating the hepatoprotective effects of a polysaccharide (DHP1A) isolated from D. huoshanense via water extraction, diethylaminoethyl (DEAE) cellulose anion exchange and size exclusion chromatography. The animal experiment indicated that the oral administration of DHP1A obviously reduced the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and 8-hydroxy-2'-deoxyguanosine in the serum of mice treated with carbon tetrachloride (CCl4), suggesting the hepatoprotective potential of this polysaccharide. Moreover, DHP1A decreased the expressions of tumor necrosis factor-α, interleukin-1β, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, CD68 and phosphorylated IκBα (p-IκBα) in the CCl4-treated mice. These results revealed that the hepatoprotective effect of DHP1A was partly attributed to its anti-inflammatory action.
Collapse
Affiliation(s)
- Chang-Cheng Tian
- Hefei University of Technology, School of Biotechnology and Food Engineering , Hefei , China ; Bengbu College, Department of Biotechnology and Food Engineering , Bengbu , China
| | - Xue-Qiang Zha
- Hefei University of Technology, School of Biotechnology and Food Engineering , Hefei , China
| | - Jian-Ping Luo
- Hefei University of Technology, School of Biotechnology and Food Engineering , Hefei , China
| |
Collapse
|