1
|
Alfatama M, Shahzad Y, Choukaife H. Recent advances of electrospray technique for multiparticulate preparation: Drug delivery applications. Adv Colloid Interface Sci 2024; 325:103098. [PMID: 38335660 DOI: 10.1016/j.cis.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The electrospray (ES) technique has proven to be an effective and a versatile approach for crafting drug delivery carriers with diverse dimensions, multiple layers, and varying morphologies. Achieving the desired particle properties necessitates careful optimization of various experimental parameters. This review delves into the most prevalent ES system configurations employed for this purpose, such as monoaxial, coaxial, triaxial, and multi-needle setups with solid or liquid collector. In addition, this work underscores the significance of ES in drug delivery carriers and its remarkable ability to encapsulate a wide spectrum of therapeutic agents, including drugs, nucleic acids, proteins, genes and cells. Depth examination of the critical parameters governing the ES process, including the choice of polymer, surface tension, voltage settings, needle size, flow rate, collector types, and the collector distance was conducted with highlighting on their implications on particle characteristics, encompassing morphology, size distribution, and drug encapsulation efficiency. These insights illuminate ES's adaptability in customizing drug delivery systems. To conclude, this review discusses ES process optimization strategies, advantages, limitations and future directions, providing valuable guidance for researchers and practitioners navigating the dynamic landscape of modern drug delivery systems.
Collapse
Affiliation(s)
- Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| | - Yasser Shahzad
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
2
|
An eco-friendly chitosan/cellulose acetate hybrid nanostructure containing Ziziphora clinopodioides essential oils for active food packaging applications. Int J Biol Macromol 2023; 235:123885. [PMID: 36871690 DOI: 10.1016/j.ijbiomac.2023.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
This work presents the fabrication and characterization of a hybrid nanostructure, Ziziphora clinopodioides essential oils (ZEO)-loaded chitosan nanoparticles (CSNPs-ZEO) embedded into cellulose acetate (CA) nanofibers (CA-CSNPs-ZEO). The CSNPs-ZEO were first synthesized through the ionic gelation method. Then, through simultaneous electrospraying and electrospinning processes, the nanoparticles were embedded in the CA nanofibers. The morphological and physicochemical characteristics of the prepared nanostructures were evaluated using different methods, including scanning electron microscopy (SEM), water vapor permeability (WVP), moisture content (MC), mechanical testing, differential scanning calorimetry (DSC), and release profile studies. The antibacterial activity of the nanostructures was explored on raw beef as a food model during 12 days of storage at 4 °C. The obtained results indicated the successful synthesis of CSNPs-ZEO nanoparticles with an average size of 267 ± 6 nm and their incorporation into the nanofibers matrix. Moreover, the CA-CSNPs-ZEO nanostructure showed a lower water vapor barrier and higher tensile strength compared with ZEO-loaded CA (CA-ZEO) nanofiber. The CA-CSNPs-ZEO nanostructure also exhibited strong antibacterial activity, which effectively extended the shelf-life of raw beef. The results demonstrated a strong potential for innovative hybrid nanostructures in active packaging to maintain the quality of perishable food products.
Collapse
|
3
|
Lakalayeh GA, Rahvar M, Nazeri N, Ghanbari H. Evaluation of drug-eluting nanoparticle coating on magnesium alloy for development of next generation bioabsorbable cardiovascular stents. Med Eng Phys 2022; 108:103878. [DOI: 10.1016/j.medengphy.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
|
4
|
|
5
|
Design and development of novel formulation of Aloe Vera nanoemulsion gel contained erythromycin for topical antibacterial therapy: In vitro and in vivo assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
8
|
Puri V, Chaudhary KR, Singh A, Singh C. Inhalation potential of N-Acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: In vitro lung deposition and efficacy studies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100084. [PMID: 35112077 PMCID: PMC8790477 DOI: 10.1016/j.crphar.2022.100084] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
Several studies have stated that mucus is a critical hurdle for drug delivery to the mucosal tissues. As a result, Polymeric nanoparticles that can overcome mucus barriers are gaining popularity for controlled drug delivery into intra-macrophages to attain high intracellular drug concentration. The present study was aimed to fabricate inhalable N-acetylcysteine (NAC) modified PLGA mucus penetrating particles using the double emulsion method (w/o/w) for target delivery to alveolar macrophages and minimize the dose-related adverse effects, efficiently encapsulate hydrophilic drug, sustain the release profile and prolong the retention time for the management of tuberculosis. Among the numerous formulations, the drug/polymer ratio of 1:10 with 0.50% PVA concentration and sonication time for 2 min s was chosen for further research. The formulated nanoparticles had a mean particle size of 307.50 ± 9.54 nm, PDI was 0.136 ± 0.02, zeta potential about -11.3 ± 0.4 mV, decent entrapment efficiency (55.46 ± 2.40%), drug loading (9.05 ± 0.22%), and excellent flowability. FTIR confirmed that NAC and PLGA were compatible with each other. SEM graphs elucidated that the nanoparticles were spherically shaped with a slightly rough surface whereas TEM analysis ensured the nanometer size nanoparticles and coating of lipid over NPs surface. PXRD spectrum concluded the transformation of the drug from crystalline to amorphous state in the formulation. In vitro release pattern was biphasic started with burst release (64.67 ± 1.53% within 12hrs) followed by sustained release over 48hrs thus enabling the prolonged replenishing of NAC. In vitro lung deposition study pronounced that coated NAC-PLGA-MPPs showed favorable results in terms of emitted dose (86.67 ± 2.52%), MMAD value (2.57 ± 0.12 μm), GSD value (1.55 ± 0.11 μm), and FPF of 62.67 ± 2.08% for the deposition and targeting the lungs. Finally, in vitro efficacy studies demonstrated that NAC-PLGA-MPPs presented more prominent antibacterial activity against MTB H37Rv strain as compared to NAC. Hence, PLGA based particles could be a better strategy to deliver the NAC for lung targeting.
Collapse
Affiliation(s)
- Vishal Puri
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| | - Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| |
Collapse
|
9
|
Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int J Pharm 2021; 605:120807. [PMID: 34144133 DOI: 10.1016/j.ijpharm.2021.120807] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Nanomedicines based on poly(lactic-co-glycolic acid) (PLGA) carriers offer tremendous opportunities for biomedical research. Although several PLGA-based systems have already been approved by both the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), and are widely used in the clinics for the treatment or diagnosis of diseases, no PLGA nanomedicine formulation is currently available on the global market. One of the most impeding barriers is the development of a manufacturing technique that allows for the transfer of nanomedicine production from the laboratory to an industrial scale with proper characterization and quality control methods. This review provides a comprehensive overview of the technologies currently available for the manufacturing and analysis of polymeric nanomedicines based on PLGA nanoparticles, the scale-up challenges that hinder their industrial applicability, and the issues associated with their successful translation into clinical practice.
Collapse
Affiliation(s)
- Maria Camilla Operti
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Alexander Bernhardt
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Silko Grimm
- Evonik Operations GmbH, Research Development & Innovation, 64293 Darmstadt, Germany.
| | - Andrea Engel
- Evonik Corporation, Birmingham Laboratories, Birmingham, AL 35211, United States.
| | - Carl Gustav Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - Oya Tagit
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 2021; 290:102384. [PMID: 33706198 DOI: 10.1016/j.cis.2021.102384] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
11
|
The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8857486. [PMID: 33815664 PMCID: PMC7990543 DOI: 10.1155/2021/8857486] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Stroke has a high rate of morbidity and disability, which seriously endangers human health. In stroke, oxidative stress leads to further damage to the brain tissue. Therefore, treatment for oxidative stress is urgently needed. However, antioxidative drugs have demonstrated obvious protective effects in preclinical studies, but the clinical studies have not seen breakthroughs. Nanomaterials, with their characteristically small size, can be used to deliver drugs and have demonstrated excellent performance in treating various diseases. Additionally, some nanomaterials have shown potential in scavenging reactive oxygen species (ROS) in stroke according to the nature of nanomaterials. The drugs' delivery ability of nanomaterials has great significance for the clinical translation and application of antioxidants. It increases drug blood concentration and half-life and targets the ischemic brain to protect cells from oxidative stress-induced death. This review summarizes the characteristics and progress of nanomaterials in the application of antioxidant therapy in stroke, including ischemic stroke, hemorrhagic stroke, and neural regeneration. We also discuss the prospect of nanomaterials for the treatment of oxidative stress in stroke and the challenges in their application, such as the toxicity and the off-target effects of nanomaterials.
Collapse
|
12
|
Khosravi A, Baharifar H, Darvishi MH, Karimi Zarchi AA. Investigation of chitosan-g-PEG grafted nanoparticles as a half-life enhancer carrier for tissue plasminogen activator delivery. IET Nanobiotechnol 2021; 14:899-907. [PMID: 33399124 DOI: 10.1049/iet-nbt.2019.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue plasminogen activator (tPA) a thrombolytic agent is commonly used for digesting the blood clot. tPA half-life is low (4-6 min) and its administration needs a prolonged continuous infusion. Improving tPA half-life could reduce enzyme dosage and enhance patient compliance. Nano-carries could be used as delivery systems for the protection of enzymes physically, enhancing half-life and increasing the stability of them. In this study, chitosan (CS) and polyethylene glycol (PEG) were used for the preparation of CS-g-PEG/tPA nanoparticles (NPs) via the ion gelation method. Particles' size and loading capacity were optimised by central composite design. Then, NPs cytotoxicity, release profile, enzyme activity and in vivo half-life and coagulation time were investigated. The results showed that NPs does not have significant cytotoxicity. Release study revealed that a burst effect happened in the first 5 min and resulted in releasing 30% of tPA. Loading tPA in NPs could decrease 25% of its activity but the half-life of it increases in comparison to free tPA in vivo. Also, blood coagulation time has significantly affected (p-value = 0.041) by encapsulated tPA in comparison to free tPA. So, CS-g-PEG/tPA could increase enzyme half-life during the time and could be used as a non-toxic candidate delivery system for tPA.
Collapse
Affiliation(s)
- Arezoo Khosravi
- Atherosclerosis Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Karimi Zarchi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Seyedian R, Shabankareh Fard E, Najafiasl M, Assadi M, Zaeri S. N-acetylcysteine-loaded electrospun mats improve wound healing in mice and human fibroblast proliferation in vitro: a potential application of nanotechnology in wound care. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1590-1602. [PMID: 33489034 PMCID: PMC7811817 DOI: 10.22038/ijbms.2020.41550.11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES N-acetylcysteine (NAC) has gained attention recently in dermatology as a unique anti-oxidant. In light of progress in nanotechnological methods, it was hypothesized that loading NAC onto nanofibers would positively affect skin wound healing. The objective of this study was to fabricate NAC-loaded electrospun mats and test their effect on wound healing in vivo and in vitro. MATERIALS AND METHODS Polyvinyl alcohol (PVA)-based mats loaded with NAC at three concentrations were electrospun and characterized in terms of physicochemical properties and drug release profile. Human fibroblast cells (in vitro) and mouse full-thickness skin wounds (in vivo) were treated with mats for 5 and 14 days, respectively. Wound area, tissue histopathology, fibroblast proliferation and cellular oxidative state were evaluated. RESULTS Mats containing 5% PVA/NAC showed thinner fibers with suitable physicochemical properties and a sustained drug release profile. PVA/NAC (5%) mats enhanced fibroblast proliferation and attachment in vitro. The mats resulted in significant wound closure with high levels of re-epithelialization and collagen fiber synthesis on day 14 post-surgery in vivo. The mats also reduced granulation tissue and edematous stroma to a higher extent. These findings were accompanied by a significant decrease in tissue lipid peroxidation and higher superoxide dismutase activity, which may explain how NAC improved wound healing. CONCLUSION We propose an NAC-loaded nanofibrous mat that takes the advantage of a porous nanoscaffold structure to release NAC in a sustained manner. This mat may be a promising candidate for further clinical evaluation.
Collapse
Affiliation(s)
- Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elham Shabankareh Fard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Najafiasl
- Department of Chemical Engineering, School of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
14
|
Xue Y, Lee J, Kim HJ, Cho HJ, Zhou X, Liu Y, Tebon P, Hoffman T, Qu M, Ling H, Jiang X, Li Z, Zhang S, Sun W, Ahadian S, Dokmeci MR, Lee K, Khademhosseini A. Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS APPLIED BIO MATERIALS 2020; 3:6908-6918. [PMID: 35019352 DOI: 10.1021/acsabm.0c00802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescent nanomaterials have been widely used in biological imaging due to their selectivity, sensitivity, and noninvasive nature. These characteristics make the materials suitable for real-time and in situ imaging. However, further development of highly biocompatible nanosystems with long-lasting fluorescent intensity and photostability is needed for advanced bioimaging. We have used electrospraying to generate gelatin methacryloyl (GelMA)-based fluorescent nanoparticles (NPs) with chemically conjugated rhodamine B (RB). The extent of conjugation can be controlled by varying the mass ratio of RB and GelMA precursors to obtain RB-conjugated GelMA (RB-GelMA) NPs with optimal fluorescent properties and particle size. These NPs exhibited superior biocompatibility when compared with pure RB in in vitro cell viability and proliferation assays using multiple cell types. Moreover, RB-GelMA NPs showed enhanced cell internalization and improved brightness compared with unconjugated RB. Our experiments demonstrate that engineered RB-GelMA NPs can be used as a biocompatible fluorescent label for bioimaging.
Collapse
Affiliation(s)
- Yumeng Xue
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Hyun-Jong Cho
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Xingwu Zhou
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Yaowen Liu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Peyton Tebon
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Tyler Hoffman
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Moyuan Qu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Haonan Ling
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Xing Jiang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhikang Li
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Mehmet R Dokmeci
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| |
Collapse
|
15
|
Use of mPEG-PLGA nanoparticles to improve bioactivity and hemocompatibility of streptokinase: In-vitro and in-vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111427. [PMID: 33255024 DOI: 10.1016/j.msec.2020.111427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 01/11/2023]
Abstract
Streptokinase, a clot-dissolving agent, is widely used in treatment of cardiovascular diseases such as blood clots and deep thrombosis. Streptokinase is a cost-effective drug with a short biological half-life (i.e. 15 to 30 min). In addition, due to its prokaryotic source, the immune response quickly reacts to the drug. Despite these limitations, streptokinase is still the first choice for diseases associated with thrombosis. In this work, streptokinase was encapsulated in mPEG-PLGA nanoparticles to improve its pharmacokinetic properties. The nanoparticles containing the enzyme were prepared by coaxial electrospray and their physicochemical properties, blood compatibility, circulation time and cell toxicity were evaluated. The results showed that the use of mPEG-PLGA nanoparticles to encapsulate the enzyme resulted in prolonged circulation time (up to 120 min) with a slight decrease in its activity. In vivo studies also showed that the nanoparticles containing streptokinase did not have adverse effect on blood biochemistry parameters as well as liver and kidney tissues. As a result, the mPEG-PLGA nanoparticles showed the potential for increasing the biological activity of streptokinase with no important adverse effect.
Collapse
|
16
|
Poonaki E, Esfandyar M, Hejazinia H, Sadat Ebrahimi SE, Pirali Hamedani M, Farzaneh J, Shafiee Ardestani M. N-acetylcysteine-PLGA nano-conjugate: effects on cellular toxicity and uptake of gadopentate dimeglumine. IET Nanobiotechnol 2020; 14:470-478. [PMID: 32755956 DOI: 10.1049/iet-nbt.2019.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gadolinium as a contrast agent in MRI technique combined with DTPA causes contrast induced nephropathy (CIN) and nephrogenic systemic fibrosis (NSF) which can reduce by usage of antioxidants such as N-acetyl cysteine by increasing the membrane's permeability leads to lower cytotoxicity. In this study, N-acetyl cysteine-PLGA Nano-conjugate was synthesized according to stoichiometric rules of molar ratios andafter assessment by FTIR, NMR spectroscopy and Atomic Force Microscopy (AFM) imaging was combined with Magnevist® (gadopentetate dimeglumine) and its effects on the renal cells were evaluated. MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] and cellular uptake assays have indicated relatively significant toxicity of magnevist (P < 0.05) on three cell lines including HEK293, MCF7 and L929 compared to other synthesized ligands that shown no toxicity. Moreover, systemic evaluation has shown no notable changes of blood urea nitrogen (BUN) and creatinine in kidney of mice. In consequence, antioxidant effect was increased as well as the renal toxicity of the contrast agent reduced at the cell level. As a result, PLGA-NAC nano-conjugate can be a promising choice for decreasing the magnevist toxicity for treatment and prevention of CIN and will be able to open a new horizon to research on reduction of toxicity of contrast agents by using nanoparticles.
Collapse
Affiliation(s)
- Elham Poonaki
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Esfandyar
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadi Hejazinia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Jafar Farzaneh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Ghaffarzadegan R, Khoee S, Rezazadeh S. Fabrication, characterization and optimization of berberine-loaded PLA nanoparticles using coaxial electrospray for sustained drug release. ACTA ACUST UNITED AC 2020; 28:237-252. [PMID: 32307652 DOI: 10.1007/s40199-020-00335-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Berberine (BBR) broadly found in medicinal plants has a major application in pharmacological therapy as an anticancer drug. Clinical applications of this promising natural drug are limited due to its poor water solubility and low bioavailability. OBJECTIVE In this study, for the first time, we synthesized core-shell BBR-loaded PLA nanoparticles (NPBs) by using coaxial electrospray (CES) to solve the poor bioavailability of BBR. METHODS Three-factor (feeding rate, polymeric solution concentration and applied voltage), three-level, Box-Behnken design was used for optimization of the size and particle size distribution of the prepared NPBs. RESULTS Based on the results of response surface methodology, the NPBs with the mean size of 265 nm and particle size distribution of 43 nm were synthesized. A TEM image was used to well illustrate the core-shell structure of the NPBs. Encapsulation efficiency and BBR loading capacity for the optimized NPBs were determined at about 81% and 7.5%, respectively. Release of NPBs was examined at pH 7.4 and 5.8. NPBs had a slower release profile than free BBR in both pH values, and the rate of BBR release was more and faster in acidic pH than in physiological one. Effects of the NPBs on the drug release were confirmed by data fitting with six kinetic models. NPBs showed an increased cytotoxic efficacy against HCT116 cells (IC50 = 56 μM), while NIH3T3 cells, non-neoplastic fibroblast cells, (IC50 > 150 μM) were less affected by NPBs. Flow cytometry demonstrated that the cellular uptake of NPBs were higher than BBR at different concentrations. CONCLUSIONS A new approach was developed in this study to prepare NPBs using the CES process for improving the efficiency and controlled BBR release. It is concluded that nano-scaled NPBs prepared by CES can improve toxicity and chemotherapeutic properties of BBR against cancerous cells. We believe that these NPBs can exhibit further potential in cancer drug delivery systems. Graphical abstract.
Collapse
Affiliation(s)
- Reza Ghaffarzadegan
- School of Chemistry, Alborz Campus, University of Tehran, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran.
| | - Shamsali Rezazadeh
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| |
Collapse
|
18
|
Firouzian F, Pourshoja P, Nili-Ahmadabadi A, Ranjbar A. Hepatoprotective effect of N-acetylcystein loaded niosomes on liver function in paraquat-induced acute poisoning. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:146-153. [PMID: 31519249 DOI: 10.1016/j.pestbp.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Paraquat (PQ) is widely used as a herbicide around the world. PQ intoxication causes liver disease mainly in mammals. N-acetyl cysteine (NAC) is a medication that has positive effects in reducing the liver intoxication caused by PQ. Here, after formulating a NAC noisome nanoparticle (NACNP), we compared the niosomes and NAC on liver toxicity caused by PQ. Thirty male rats were divided into 5 groups and were treated intraperitoneally with PQ and NAC and NACNP for 24 h. PQ group received 35 mg/kg/day of PQ, while NAC and NACNP groups were administered with 25 mg/kg/day of NAC and NACNP, respectively. In addition, 6 rats receiving saline solution were considered as control group. Serum and liver tissue samples were collected from all rats. Alanine (AST) and aspartate (ALT) aminotransferase levels, and oxidative stress biomarkers including total antioxidant capacity (TAC), lipid peroxidation (LPO), and total thiol groups (TTG) levels were determined. Histological samples were also analyzed using hematoxylin and eosin staining slides. PQ administration resulted in hepatic injury as evidenced by increases in serum AST and ALT levels (p < .001). NACNP decreased LPO, TAC, and TTG levels compered to PQ group in liver tissue. Treatment of animals with NACNP was significantly more effective than free NAC in reducing PQ-induced hepatotoxicity (p < .05). Histological evaluation showed that PQ caused tissue inflammation, which was reduced by NAC treatment. This reduction was stronger for NACNP. Given these results, the use of NACNP, compared to NAC, was more protective against the development of the PQ-induced liver toxicity.
Collapse
Affiliation(s)
- Farzin Firouzian
- Department of Pharmaceutics, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Pourshoja
- Department of Pharmaceutics, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Toxicology & Pharmacology, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Nili-Ahmadabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran; Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
19
|
Dehqan Niri A, Karimi Zarchi AA, Ghadiri Harati P, Salimi A, Mujokoro B. Tissue engineering scaffolds in the treatment of brain disorders in geriatric patients. Artif Organs 2019; 43:947-960. [DOI: 10.1111/aor.13485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alireza Dehqan Niri
- Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | | | - Parisa Ghadiri Harati
- Department of Physiotherapy, School of Rehabilitation Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Salimi
- Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Basil Mujokoro
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
20
|
Mehta P, Zaman A, Smith A, Rasekh M, Haj‐Ahmad R, Arshad MS, der Merwe S, Chang M, Ahmad Z. Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prina Mehta
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Aliyah Zaman
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Ashleigh Smith
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - Manoochehr Rasekh
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Rita Haj‐Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | | | - Susanna der Merwe
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - M.‐W. Chang
- College of Biomedical Engineering and Instrument ScienceZhejiang University Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 China
| | - Z. Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| |
Collapse
|
21
|
Poellmann MJ, Bu J, Hong S. Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke? Nanomedicine (Lond) 2018; 13:2327-2340. [DOI: 10.2217/nnm-2018-0084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide and is in urgent need of new treatment options. The only approved treatment for stroke restores blood flow to the brain, but much of the tissue damage occurs during the subsequent reperfusion. Antioxidant therapies that directly address ischemia-reperfusion injury have shown promise in preclinical results. In this review, we discuss that reformulating antioxidant therapies as nanomedicine can potentially overcome the barriers that have kept these therapies from succeeding in the clinic. We begin by reviewing the pathophysiology of ischemic stroke with a focus on the effects of reperfusion injury. Next, we review nanotherapeutic systems designed to treat the disease with a focus on those addressing reperfusion injury. Mechanisms of passive and active transport required to traverse a blood–brain barrier are discussed. Finally, we conclude by outlining design parameters for potentially successful nanomedicines as front-line therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53792, USA
- Yonsei Frontier Lab & Department of Pharmacy, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
22
|
Pawar A, Thakkar S, Misra M. A bird's eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. J Control Release 2018; 286:179-200. [DOI: 10.1016/j.jconrel.2018.07.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
|
23
|
Aragón J, Salerno S, De Bartolo L, Irusta S, Mendoza G. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. J Colloid Interface Sci 2018; 531:126-137. [PMID: 30029031 DOI: 10.1016/j.jcis.2018.07.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/05/2023]
Abstract
HYPOTHESIS The development of novel scaffolds based on biocompatible polymers is of great interest in the field of bone repair for fabrication of biodegradable scaffolds that mimic the extracellular matrix and have osteoconductive and osteoinductive properties for enhanced bone regeneration. EXPERIMENTS Polycaprolactone (PCL) and polycaprolactone/polyvinyl acetate (PCL/PVAc) core-shell fibers were synthesised and decorated with poly(lactic-co-glycolic acid) [PLGA] particles loaded with bone morphogenetic protein 2 (BMP2) by simultaneous electrospinning and electrospraying. Hydroxyapatite nanorods (HAn) were loaded into the core of fibers. The obtained scaffolds were characterised by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The in vitro potential of these materials for bone regeneration was assessed in biodegradation assays, osteoblast viability assays, and analyses of expression of specific bone markers, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). FINDINGS PLGA particles were homogeneously distributed in the entire fibre mat. The growth factor load was 1.2-1.7 μg/g of the scaffold whereas the HAn load was in the 8.8-12.6 wt% range. These scaffolds were able to support and enhance cell growth and proliferation facilitating the expression of osteogenic and osteoconductive markers (OCN and OPN). These observations underline the great importance of the presence of BMP2 in scaffolds for bone remodelling as well as the good potential of the newly developed scaffolds for clinical use in tissue engineering.
Collapse
Affiliation(s)
- Javier Aragón
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| | - Simona Salerno
- Institute for Membrane Technology, National Research Council of Italy, ITM-CNR c/o University of Calabria, Via P. Bucci cubo 17/C, I-87036 Rende, Italy.
| | - Loredana De Bartolo
- Institute for Membrane Technology, National Research Council of Italy, ITM-CNR c/o University of Calabria, Via P. Bucci cubo 17/C, I-87036 Rende, Italy.
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Rio Ebro-Edificio I+D, C/Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain.
| |
Collapse
|
24
|
Improvement of N-Acetylcysteine Loaded in PLGA Nanoparticles by Nanoprecipitation Method. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/3620373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-Acetylcysteine (NAC) is a hydrophilic compound with a low bioavailability. It has been used as an effective antioxidant agent. This research seeks to enhance the entrapment of NAC in PLGA nanoparticles for drug delivery systems. The nanoparticles were made using the nanoprecipitation method and changing the following parameters: the solvent/nonsolvent nature, its viscosity, pH, NAC addition to the nonsolvent, the polymer concentration and molecular weight, and NAC concentration in the solvent. The results showed that an increase in the nonsolvent viscosity produces NAC concentration in the solvent, and the nonsolvent rises its entrapment in the nanoparticles. Nanoparticles with 235.5 ± 11.4 nm size with an entrapment efficiency of 0.4 ± 0.04% and a specific load of 3.14 ± 0.33% were obtained. The results suggest that besides efficiently entrapping hydrophobic compounds, the nanoprecipitation method also has a high potential as an alternative entrapment method for hydrophilic compounds as well. However, its use in the pharmaceutical industry, as a proper specific load vehicle, still depends on the improvement of the load capacity.
Collapse
|
25
|
Esnaashari SS, Amani A. Optimization of Noscapine-Loaded mPEG-PLGA Nanoparticles and Release Study: a Response Surface Methodology Approach. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9318-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Mangrio FA, Dwivedi P, Han S, Zhao G, Gao D, Si T, Xu RX. Characteristics of Artemether-Loaded Poly(lactic-co-glycolic) Acid Microparticles Fabricated by Coaxial Electrospray: Validation of Enhanced Encapsulation Efficiency and Bioavailability. Mol Pharm 2017; 14:4725-4733. [PMID: 29096443 DOI: 10.1021/acs.molpharmaceut.7b00862] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artemether is one of the most effective drugs for the treatment of chloroquine-resistant and Plasmodium falciparum strains of malaria. However, its therapeutic potency is hindered by its poor bioavailability. To overcome this limitation, we have encapsulated artemether in poly(lactic-co-glycolic) acid (PLGA) core-shell microparticles (MPs) using the coaxial electrospray method. With optimized process parameters including liquid flow rates and applied electric voltages, experiments are systematically carried out to generate a stable cone-jet mode to produce artemether-loaded PLGA-MPs with an average size of 2 μm, an encapsulation efficiency of 78 ± 5.6%, and a loading efficiency of 11.7%. The in vitro release study demonstrates the sustained release of artemether from the core-shell structure in comparison with that of plain artemether and that of MPs produced by single-axial electrospray without any relevant cytotoxicity. The in vivo studies are performed to evaluate the pharmacokinetic characteristics of the artemether-loaded PLGA-MPs. Our study implies that artemether can be effectively encapsulated in a protective shell of PLGA for controlled release kinetics and enhanced oral bioavailability.
Collapse
Affiliation(s)
- Farhana Akbar Mangrio
- Department of Electronic Science and Technology, University of Science and Technology of China , Hefei 230027, China.,School of Engineering Science, University of Science and Technology of China , Hefei 230027, China
| | - Pankaj Dwivedi
- School of Engineering Science, University of Science and Technology of China , Hefei 230027, China
| | - Shuya Han
- School of Engineering Science, University of Science and Technology of China , Hefei 230027, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China , Hefei 230027, China
| | - Dayong Gao
- Department of Electronic Science and Technology, University of Science and Technology of China , Hefei 230027, China.,Department of Mechanical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Ting Si
- School of Engineering Science, University of Science and Technology of China , Hefei 230027, China
| | - Ronald X Xu
- School of Engineering Science, University of Science and Technology of China , Hefei 230027, China.,Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Esmaili Z, Bayrami S, Dorkoosh FA, Akbari Javar H, Seyedjafari E, Zargarian SS, Haddadi-Asl V. Development and characterization of electrosprayed nanoparticles for encapsulation of Curcumin. J Biomed Mater Res A 2017; 106:285-292. [DOI: 10.1002/jbm.a.36233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/12/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Esmaili
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Samaneh Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science; University of Tehran; Tehran Iran
| | - Seyed Shahrooz Zargarian
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
28
|
Furtmann B, Tang J, Kramer S, Eickner T, Luderer F, Fricker G, Gomez A, Heemskerk B, Jähn PS. Electrospray Synthesis of Poly(lactide-co-glycolide) Nanoparticles Encapsulating Peptides to Enhance Proliferation of Antigen-Specific CD8+ T Cells. J Pharm Sci 2017; 106:3316-3327. [DOI: 10.1016/j.xphs.2017.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/31/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
|
29
|
Murphy NP, Lampe KJ. Fabricating PLGA microparticles with high loads of the small molecule antioxidant N-acetylcysteine that rescue oligodendrocyte progenitor cells from oxidative stress. Biotechnol Bioeng 2017; 115:246-256. [PMID: 28872660 DOI: 10.1002/bit.26443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/12/2017] [Accepted: 08/28/2017] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS), encompassing all oxygen radical or non-radical oxidizing agents, play key roles in disease progression. Controlled delivery of antioxidants is therapeutically relevant in such oxidant-stressed environments. Encapsulating small hydrophilic molecules into hydrophobic polymer microparticles via traditional emulsion methods has long been a challenge due to rapid mass transport of small molecules out of particle pores. We have developed a simple alteration to the existing water-in-oil-in-water (W/O/W) drug encapsulation method that dramatically improves loading efficiency: doping external water phases with drug to mitigate drug diffusion out of the particle during fabrication. PLGA microparticles with diameters ranging from 0.6 to 0.9 micrometers were fabricated, encapsulating high loads of 0.6-0.9 µm diameter PLGA microparticles were fabricated, encapsulating high loads of the antioxidant N-acetylcysteine (NAC), and released active, ROS-scavenging NAC for up to 5 weeks. Encapsulation efficiencies, normalized to the theoretical load of traditional encapsulation without doping, ranged from 96% to 400%, indicating that NAC-loaded external water phases not only prevented drug loss due to diffusion, but also doped the particles with additional drug. Antioxidant-doped particles positively affected the metabolism of oligodendrocyte progenitor cells (OPCs) under H2 O2 -mediated oxidative stress when administered both before (protection) or after (rescue) injury. Antioxidant doped particles improved outcomes of OPCs experiencing multiple doses of H2 O2 by increasing the intracellular glutathione content and preserving cellular viability relative to the injury control. Furthermore, antioxidant-doped particles preserve cell number, number of process extensions, cytoskeletal morphology, and nuclear size of H2 O2 -stressed OPCs relative to the injury control. These NAC-doped particles have the potential to provide temporally-controlled antioxidant therapy in neurodegenerative disorders such as multiple sclerosis (MS) that are characterized by continuous oxidative stress.
Collapse
Affiliation(s)
- Nicholas P Murphy
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
30
|
Ahmaditabar P, Momtazi-Borojeni AA, Rezayan AH, Mahmoodi M, Sahebkar A, Mellat M. Enhanced Entrapment and Improved in Vitro Controlled Release of N-Acetyl Cysteine in Hybrid PLGA/Lecithin Nanoparticles Prepared Using a Nanoprecipitation/Self-Assembly Method. J Cell Biochem 2017; 118:4203-4209. [PMID: 28419535 DOI: 10.1002/jcb.26070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
To enhance the in vitro controlled release of N-acetyl cysteine (NAC), hybrid nanoparticles (NPs) consisting of a poly(lactide-co-glycolide) (PLGA) hydrophobic core and a soybean lecithin mono-layer coat were prepared. Hybrid NPs were synthesized using a nanoprecipitation combined with self-assembly method. To characterize prepared NPs, zeta potential, diameter size, surface morphology, disparity, and lipid coating of hybrid NPs were detrmined using dynamic light scattering, scanning electron microscope and Fourier transform infrared spectroscopy techniques. High-performance liquid chromatography was employed to evaluate drug loading yield and encapsulation efficiency and in vitro drug release of prepared NPs. The cytotoxicity of hybrid NPs was assayed on normal L929 alveolar epithelial cells using MTT method. Prepared NPs were found to disperse as individual NPs with a well-defined spherical shape. The hydrodynamic diameter and surface charge of NAC-loaded hybrid NPs were 81.8 ± 1.3 nm and -33.1 ± 2.1 mV, respectively. Drug loading yield and encapsulation efficiency of NAC-loaded hybrid NPs were found to be 38 ± 2.1% and 67 ± 5.7%, respectively. Prepared hybrid NPs showed no significant cytotoxicity against normal alveolar cells. Our data suggest that the hybrid PLGA-lecithin NPs may be An efficient controlled release drug delivery system for NAC. J. Cell. Biochem. 118: 4203-4209, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Parvin Ahmaditabar
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Rezayan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Mellat
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Ganoderma atrum polysaccharide ameliorates anoxia/reoxygenation-mediated oxidative stress and apoptosis in human umbilical vein endothelial cells. Int J Biol Macromol 2017; 98:398-406. [DOI: 10.1016/j.ijbiomac.2017.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 11/23/2022]
|
32
|
Yaghoobi N, Faridi Majidi R, Faramarzi MA, Baharifar H, Amani A. Preparation, Optimization and Activity Evaluation of PLGA/Streptokinase Nanoparticles Using Electrospray. Adv Pharm Bull 2017; 7:131-139. [PMID: 28507947 PMCID: PMC5426726 DOI: 10.15171/apb.2017.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: PLGA nanoparticles (NPs) have been extensively investigated as carriers of different drug molecules to enhance their therapeutic effects or preserve them from the aqueous environment. Streptokinase (SK) is an important medicine for thrombotic diseases. Methods: In this study, we used electrospray to encapsulate SK in PLGA NPs and evaluate its activity. This is the first paper which investigates activity of an electrosprayed enzyme. Effect of three input parameters, namely, voltage, internal diameter of needle (nozzle) and concentration ratio of polymer to protein on size and size distribution (SD) of NPs was evaluated using artificial neural networks (ANNs). Optimizing the SD has been rarely reported so far in electrospray. Results: From the results, to obtain lowest size of nanoparticles, ratio of polymer/enzyme and needle internal diameter (ID) should be low. Also, minimum SD was obtainable at high values of voltage. The optimum preparation had mean (SD) size, encapsulation efficiency and loading capacity of 37 (12) nm, 90% and 8.2%, respectively. Nearly, 20% of SK was released in the first 30 minutes, followed by cumulative release of 41% during 72 h. Activity of the enzyme was also checked 30 min after preparation and 19.2% activity was shown. Conclusion: Our study showed that electrospraying could be an interesting approach to encapsulate proteins/enzymes in polymeric nanoparticles. However, further works are required to assure maintaining the activity of the enzyme/protein after electrospray.
Collapse
Affiliation(s)
- Nasrin Yaghoobi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Karimi Zarchi AA, Faramarzi MA, Gilani K, Ghazi-Khansari M, Ghamami G, Amani A. N-acetylcysteine-loaded PLGA nanoparticles outperform conventional N-acetylcysteine in acute lung injuries in vivo. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1236339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ali Akbar Karimi Zarchi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Guiti Ghamami
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Mehta P, Haj-Ahmad R, Rasekh M, Arshad MS, Smith A, van der Merwe SM, Li X, Chang MW, Ahmad Z. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov Today 2017; 22:157-165. [DOI: 10.1016/j.drudis.2016.09.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
35
|
Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery. Colloids Surf B Biointerfaces 2016; 145:267-274. [PMID: 27208440 DOI: 10.1016/j.colsurfb.2016.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Nanocomposite (NC) based on hyaluronic acid-ceramide (HACE) and Soluplus (SP) was fabricated by electrospraying for the tumor-targeted delivery of resveratrol (RSV). Amphiphilic property of both HACE and SP has been used to entrap RSV in the internal cavity of NC. Electrospraying with established experimental conditions produced HACE/SP/RSV NC with 230nm mean diameter, narrow size distribution, negative zeta potential, and >80% drug entrapment efficiency. Sustained and pH-dependent drug release profiles were observed in drug release test. Cellular uptake efficiency of HACE/SP NC was higher than that of SP NC, mainly based on HA-CD44 receptor interaction, in MDA-MB-231 (CD44 receptor-positive human breast cancer) cells. Selective tumor targetability of HACE/SP NC, compared to SP NC, was also confirmed in MDA-MB-231 tumor-xenograted mouse model using a near-infrared fluorescence (NIRF) imaging. According to the results of pharmacokinetic study in rats, decreased in vivo clearance and increased half-life of RSV in NC group, compared to drug solution group, were shown. Given that these experimental results, developed HACE/SP NC can be a promising theranostic nanosystem for CD44 receptor-expressed cancers.
Collapse
|
36
|
Imanparast F, Faramarzi MA, Paknejad M, Kobarfard F, Amani A, Doosti M. Preparation, optimization, and characterization of simvastatin nanoparticles by electrospraying: An artificial neural networks study. J Appl Polym Sci 2016. [DOI: 10.1002/app.43602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fatemeh Imanparast
- Department of Medical Biochemistry Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy and Biotechnology Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Maliheh Paknejad
- Department of Medical Biochemistry Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Amir Amani
- Department of Medical Nanotechnology School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Medical Biomaterials Research Center (MBRC); Tehran University of Medical Sciences; Tehran Iran
| | - Mohmood Doosti
- Department of Medical Biochemistry Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
37
|
Sanka K, Pragada RR, Veerareddy PR. A pH-triggered delayed-release chronotherapeutic drug delivery system of aceclofenac for effective management of early morning symptoms of rheumatoid arthritis. J Microencapsul 2015; 32:794-803. [PMID: 26362349 DOI: 10.3109/02652048.2015.1081417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Rheumatoid arthritis (RA) is differentiated as an early morning exacerbation of the core arthritis condition associated with increase in pain and stiffness in joints and necessitate for medication. OBJECTIVE The aim of the present work was to develop and optimise a pH-triggered delayed-release colon-specific aceclofenac microspheres and to accomplish chronotherapy of RA. METHODS A 3-factor, 3-level Box-Behnken design (BBD) was used to optimise selected variables. Developed formulation was evaluated for in vivo delayed response and anti-arthritis activity in rats. RESULTS The particle size and encapsulation efficacy of these microspheres were 117.36 ± 10.54 µm and 85.06 ± 5.85%, respectively. Optimised formulation was analysed by SEM, DSC, X-RPD and FTIR. The in vivo evaluation revealed delayed anti-inflammatory activity in carrageenan-induced rats and anti-arthritic activity in freund's adjuvant-induced arthritis rats. CONCLUSION The optimised aceclofenac microspheres formulation is potential for the chronotherapy of early morning symptoms of RA.
Collapse
Affiliation(s)
- Krishna Sanka
- a Department of Pharmaceutics , School of Pharmacy , AGI , Hyderabad , Telangana , India .,b School of Pharmaceutical Sciences and Technologies, JNTUK , Kakinada, Andhra Pradesh , India
| | - Rajeswara Rao Pragada
- c College of Pharmaceutical Sciences, Andhra University , Visakhapatnam, Andhra Pradesh , India , and
| | | |
Collapse
|