1
|
Zhou L, Li R, Li X, Zhang Y. One-step selective affinity purification and immobilization of His-tagged enzyme by recyclable magnetic nanoparticles. Eng Life Sci 2021; 21:364-373. [PMID: 34140847 PMCID: PMC8182278 DOI: 10.1002/elsc.202000093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 11/07/2022] Open
Abstract
The NiFe2O4 magnetic nanoparticles (NF-MNPs) were prepared for one-step selective affinity purification and immobilization of His-tagged recombinant glucose dehydrogenase (GluDH). The prepared nanoparticles were characterized by a Fourier-transform infrared spectrophotometer and microscopy. The immobilization and purification of His-tagged GluDH on NF-MNPs were investigated. The optimal immobilization conditions were obtained that mixed cell lysis and carriers in a ratio of 0.13 in pH 8.0 Tris-HCl buffer at 30℃ and incubated for 2 h. The highest activity recovery and protein bindings were 71.39% and 38.50 μg mg-1 support, respectively. The immobilized GluDH exhibited high thermostability, pH-stability and it can retain more than 65% of the initial enzyme after 10 cycles for the conversion of glucose to gluconolactone. Comparing with a commercial Ni-NTA resin, the NF-MNPs displayed a higher specific affinity with His-tagged recombinant GluDH.
Collapse
Affiliation(s)
- Li‐Jian Zhou
- The People's Hospital of DanyangAffiliated Danyang Hospital of Nantong UniversityDanyangJiangsu ProvinceP. R. China
| | - Rui‐Fang Li
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| | - Xue‐Yong Li
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| | - Ye‐Wang Zhang
- School of PharmacyJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
2
|
Xing S, Zhu R, Cheng K, Cai Y, Hu Y, Li C, Zeng X, Zhu Q, He L. Gene Expression, Biochemical Characterization of a sn-1, 3 Extracellular Lipase From Aspergillus niger GZUF36 and Its Model-Structure Analysis. Front Microbiol 2021; 12:633489. [PMID: 33776965 PMCID: PMC7994357 DOI: 10.3389/fmicb.2021.633489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a sn-1, 3 extracellular lipases from Aspergillus niger GZUF36 (PEXANL1) was expressed in Pichia pastoris, characterized, and the predicted structural model was analyzed. The optimized culture conditions of P. pastoris showed that the highest lipase activity of 66.5 ± 1.4 U/mL (P < 0.05) could be attained with 1% methanol and 96 h induction time. The purified PEXANL1 exhibited the highest activity at pH 4.0 and 40°C temperature, and its original activity remained unaltered in the majority of the organic solvents (20% v/v concentration). Triton X-100, Tween 20, Tween 80, and SDS at a concentration of 0.01% (w/v) enhanced, and all the metal ions tested inhibited activity of purified PEXANL. The results of ultrasound-assisted PEXANL1 catalyzed synthesis of 1,3-diaglycerides showed that the content of 1,3-diglycerides was rapidly increased to 36.90% with 25 min of ultrasound duration (P < 0.05) and later decreased to 19.93% with 35 min of ultrasound duration. The modeled structure of PEXANL1 by comparative modeling showed α/β hydrolase fold. Structural superposition and molecular docking results validated that Ser162, His274, and Asp217 residues of PEXANL1 were involved in the catalysis. Small-angle X-ray scattering analysis indicated the monomer properties of PEXANL1 in solution. The ab initio model of PEXANL1 overlapped with its modeling structure. This work presents a reliable structural model of A. niger lipase based on homology modeling and small-angle X-ray scattering. Besides, the data from this study will benefit the rational design of suitable crystalline lipase variants in the future.
Collapse
Affiliation(s)
- Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Ruonan Zhu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Kai Cheng
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yangyang Cai
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yuedan Hu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Qiujin Zhu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Tetralysine modified H-chain apoferritin mediated nucleus delivery of chemotherapy drugs synchronized with passive diffusion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
High-throughput screening of enzyme mutants by comparison of their activity ratios to an enzyme tag. Anal Biochem 2020; 588:113474. [PMID: 31614116 DOI: 10.1016/j.ab.2019.113474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
With Escherichia coli alkaline phosphatase (ECAP) as the tag fused to the N-terminus of Pseudomonas Aeruginosa arylsulfatase (PAAS) and its mutants via a flexible linker, the comparison of the activity ratios of an applicable enzyme and its mutants to a suitable enzyme tag in cell lysates of their fused forms was tested for high-throughput (HTP) screening of mutants. After both the induced expression of a fused form and alkaline lysis of the transformed cells in microplate wells, HTP assay of the activities of ECAP and PAAS/mutant was realized via spectrophotometric-dual-enzyme-simultaneous-assay to derive their activity ratio. The successful induced expression of fused forms required ECAP activities higher than 5.3 U/L in cell lysates. Of three representative fused PAAS/mutants in cell lysates, there were similar proteolytic fragments and the comparison of their activity ratios greatly enhanced the recognition of weakly positive mutants. After saturation mutagenesis at M72 of the fused PAAS, the activity ratios of PAAS/mutants to ECAP in cell lysates of their fused forms were proportional to specific activities of their non-fused counterparts in cell lysates by an immunoturbidimetric assay. Therefore, the proposed strategy was absorbing for both HTP screening of mutants and HTP elucidation of sequence-activity relationship of applicable enzymes.
Collapse
|
5
|
Zhang X, He S, Hu X, Wu J, Li X, Liao F, Yang X. Comparison of the Full-Length and 152~528 Truncate of Human Cyclic Nucleotide Phosphodiesterase 4B2 for the Characterization of Inhibitors. Comb Chem High Throughput Screen 2019; 22:49-58. [PMID: 30843483 DOI: 10.2174/1386207322666190306142810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Human full-length cyclic nucleotide phosphodiesterase isozyme 4B2 (hPDE4B2) as the target for screening and characterizing inhibitors suffers from low activity yield and the coexistence of two conformational states bearing different affinities for (R)-rolipram. Hence, the 152~528 truncate of hPDE4B2 existing only in the low-affinity conformation state for (R)-rolipram was compared against the full-length hPDE4B2 to characterize inhibitors. MATERIALS AND METHODS With 6His-SUMO tag at the N-terminus, both the full-length hPDE 4B2 (SF-hPDE4B2) and the 152~528 truncate (ST-hPDE4B2) were expressed in Escherichia coli cells, purified through Ni-NTA column and compared for the characterization of inhibitors. The inhibition constants (Ki) of some synthesized rolipram analogues against both targets were determined with 96-well microplate through the coupled action of monophosphatase on AMP and spectrophotometric assay of phosphate with malachite green. RESULTS After affinity purification with Ni2+-NTA column, ST-hPDE4B2 showed about 30-fold higher specific activity and 100-fold higher activity yield than SF-hPDE4B2; Ki of (R)-rolipram on ST-hPDE4B2 was consistent with that on the low-affinity state of the untagged full-length hPDE4B2 expressed in insect cells. Of some representative rolipram analogues as inhibitors, a dual-logarithm model quantitatively described their monotonic association, and Ki from 0.010 mM to 8.5 mM against SF-hPDE4B2 was predicted from Ki against ST-hPDE4B2, supporting the discovery of consistent hits by the use of both targets with a pair of properly-set cutoffs. CONCLUSION ST-hPDE4B2 with much higher activity yield may be a favorable alternative target to characterize/screen rolipram analogues as hPDE4B inhibitors in high-throughput mode.
Collapse
Affiliation(s)
- Xiang Zhang
- Key Laboratory of Clinical Laboratory Diagnosis of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Shu He
- Key Laboratory of Clinical Laboratory Diagnosis of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Xiaolei Hu
- Key Laboratory of Clinical Laboratory Diagnosis of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Jing Wu
- Key Laboratory of Clinical Laboratory Diagnosis of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Xinpeng Li
- Key Laboratory of Clinical Laboratory Diagnosis of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Fei Liao
- Key Laboratory of Clinical Laboratory Diagnosis of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China.,School of Pharmacy and Bioengineering, Chongqing University of Technology, Lijiatuo, Chongqing 400054, China
| | - Xiaolan Yang
- Key Laboratory of Clinical Laboratory Diagnosis of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| |
Collapse
|
6
|
Rao J, Liao J, Bu Y, Wang Y, Hu X, Long G, Huang M, Zhong L, Yang X, Liao F. Ampholytic ion-exchange materials coated with small zwitterions for high-efficacy purification of ionizable soluble biomacromolecules. Int J Biol Macromol 2018; 120:2234-2241. [PMID: 30092309 DOI: 10.1016/j.ijbiomac.2018.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 01/17/2023]
Abstract
For the purification of soluble proteins and nucleic acids through ion-exchange, the ampholytic ion-exchange materials (AIEMs) were designed, which possessed both short aliphatic carboxyl and short aliphatic amines/imidazole at optimized ratios on solid supports coated with high density of small zwitterions; under optimized conditions, the soluble ionizable biomacromolecules were adsorbed on those AIEMs via electrostatic attractions and eluted effectively through electrostatic repulsions. As the proof-of-concept, magnetic submicron particles bearing short aliphatic carboxyl and the coats of small zwitterion served as the starting solid supports, which were conjugated with lysine alone, or with lysine plus glycine or N,N‑dimethylethylenediamine, to yield magnetic AIEMs whose surfaces possessed zero net charges at different pH. Such magnetic AIEMs exhibited ideal efficacy to release acid red 13 as an anion at the elution pH optimized for strong electrostatic repulsions; those magnetic AIEMs were proven absorbing under optimized conditions for the purification of soluble proteins stable at pH close to their isoelectric points and solid-phase extraction of nucleic acids in applicable biological mixtures. Therefore, the designed AIEMs are promising for the high-efficacy purification of ionizable soluble biomacromolecules.
Collapse
Affiliation(s)
- Jingjing Rao
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juan Liao
- Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Youquan Bu
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Hu
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Gaobo Long
- Chongqing Bolanying Biotechnology Co. Ltd., Xiyong, Shapingba, Chongqing 401332, China
| | - Mingtong Huang
- Chongqing Bolanying Biotechnology Co. Ltd., Xiyong, Shapingba, Chongqing 401332, China
| | - Luhui Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 401135, China
| | - Xiaolan Yang
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Fei Liao
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 401135, China.
| |
Collapse
|
7
|
Yang X, Feng Y, Chong H, Wang D, Hu X, Pu J, Zhan CG, Liao F. High-throughput estimation of specific activities of enzyme/mutants in cell lysates through immunoturbidimetric assay of proteins. Anal Biochem 2017; 534:91-98. [DOI: 10.1016/j.ab.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 01/02/2023]
|
8
|
Data for high-throughput estimation of specific activities of enzyme/mutants in cell lysates through immunoturbidimetric assay of proteins. Data Brief 2017; 14:220-245. [PMID: 28795101 PMCID: PMC5536827 DOI: 10.1016/j.dib.2017.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/01/2022] Open
Abstract
Data in this article are associated with the research article “Highthroughput estimation of specific activities of enzyme/mutants in cell lysates through immunoturbidimetric assay of proteins” (Yang et al., 2017) [1]. This article provided data on how to develop an immunoturbidimetric assay (ITA) of enzyme/mutants as proteins in cell lysates in high-throughput (HTP) mode together with HTP assay of their activities to derive their specific activities in cell lysates for comparison, with Pseudomonas aeruginosa arylsulfatase (PAAS) and Bacillus fastidious uricase (BFU) plus their mutants as models. Data were made publicly available for further analyses.
Collapse
|
9
|
Feng Y, Yang X, Wang D, Hu X, Chong H, Liao J, Zhan CG, Liao F. Polyclonal Antibodies in Microplates to Predict the Maximum Adsorption Activities of Enzyme/Mutants from Cell Lysates. Protein J 2017; 36:212-219. [DOI: 10.1007/s10930-017-9716-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Facial synthesis of nickel(II)-immobilized carboxyl cotton chelator for purification of histidine-tagged proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1043:122-127. [DOI: 10.1016/j.jchromb.2016.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/08/2016] [Accepted: 06/17/2016] [Indexed: 11/21/2022]
|
11
|
Yuan M, Yang X, Li Y, Liu H, Pu J, Zhan CG, Liao F. Facile Alkaline Lysis of Escherichia coli Cells in High-Throughput Mode for Screening Enzyme Mutants: Arylsulfatase as an Example. Appl Biochem Biotechnol 2016; 179:545-57. [DOI: 10.1007/s12010-016-2012-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
|
12
|
Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions. Appl Microbiol Biotechnol 2015; 99:7973-86. [DOI: 10.1007/s00253-015-6520-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/22/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|