1
|
Sarkar S, Manna S, Das E, Jana P, Mukherjee S, Sahu R, Dua TK, Paul P, Kaity S, Nandi G. Fabrication and optimization of extended-release beads of diclofenac sodium based on Ca ++ cross-linked Taro (Colocasia esculenta) stolon polysaccharide and pectin by quality-by-design approach. Int J Biol Macromol 2024; 271:132606. [PMID: 38788875 DOI: 10.1016/j.ijbiomac.2024.132606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The present investigation was aimed to fabricate and optimize extended-release beads of diclofenac sodium based on an ion-cross-linked matrix of pectin (PTN) and taro (Colocasia esculenta) stolon polysaccharide (TSP) with 23 full factorial design. Total polysaccharide concentration (TPC), polysaccharide ratio (PR), and cross-linker concentration ([CaCl2]) were taken as independent factors with two levels of each. Initially, TSP was extracted, purified, and characterized. Fourier-transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) showed drug-polymer compatibility. The study also revealed the significant positive effect of TSP on drug entrapment efficiency (DEE) and sustaining drug release. The response variables (DEE, cumulative % drug-release at 1, 2, 4, 6, and 10 h, release-constant, time for 50 % and 90 % drug release (T50%, T90%), release-similarity factor (f2), and difference factor (f1) were analyzed, and subsequently, independent fabrication variables were numerically optimized by Design-Expert software (Version-13; Stat-Ease Inc., Minneapolis). The optimized batch exhibited appreciable DEE of 88.5 % (± 2.2) and an extended-release profile with significantly higher T50%, T90%, and release-similarity factor (f2) of 4.7 h, 11.4 h, and 71.6, respectively. Therefore, the study exhibited successful incorporation of the novel TSP as a potential alternative adjunct polysaccharide in the pectin-based ion-cross-linked inter-penetrating polymeric network for extended drug release.
Collapse
Affiliation(s)
- Saurav Sarkar
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Sreejan Manna
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India; Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Esha Das
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Piu Jana
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Saptarshi Mukherjee
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India
| | - Santanu Kaity
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist., Darjeeling, West Bengal 734013, India.
| |
Collapse
|
2
|
Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238265. [PMID: 36500357 PMCID: PMC9736161 DOI: 10.3390/molecules27238265] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Locust bean gum (LBG), a vegetable galactomannan extracted from carob tree seeds, is extensively used in the food industry as a thickening agent (E410). Its molecular conformation in aqueous solutions determines its solubility and rheological performance. LBG is an interesting polysaccharide also because of its synergistic behavior with other biopolymers (xanthan gum, carrageenan, etc.). In addition, this hydrocolloid is easily modified by derivatization or crosslinking. These LBG-related products, besides their applications in the food industry, can be used as encapsulation and drug delivery devices, packaging materials, batteries, and catalyst supports, among other biopharmaceutical and industrial uses. As the new derivatized or crosslinked polymers based on LBG are mainly biodegradable and non-toxic, the use of this polysaccharide (by itself or combined with other biopolymers) will contribute to generating greener products, considering the origin of raw materials used, the modification procedures selected and the final destination of the products.
Collapse
|
3
|
Jana S, Pramanik R, Nayak AK, Sen KK. Gellan gum (GG)-based IPN microbeads for sustained drug release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zou Z, Zhang B, Nie X, Cheng Y, Hu Z, Liao M, Li S. A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Adv 2020; 10:39722-39730. [PMID: 35515393 PMCID: PMC9057473 DOI: 10.1039/d0ra04316h] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Interpenetrating polymer network (IPN) hydrogels are crosslinked by two or more polymer networks, providing free volume space in the three-dimensional network structure, and providing conditions for the sustained and controlled release of drugs. The IPN hydrogels based on the natural polymer sodium alginate can form a stable porous network structure. Due to its excellent biocompatibility, the loaded drug can be sustained to the maximum extent without affecting its pharmacological effect. Sodium alginate-based IPN hydrogels have broad application prospects in the field of sustained and controlled drug release. This paper begins with an overview of the formation of alginate-based IPN hydrogels; summarizes the types of alginate-based IPN hydrogels; and discusses the pharmaceutical applications of alginate-based IPN hydrogels. We aim to give an overview of the research on IPN hydrogels based on sodium alginate in sustained and controlled drug release systems.
Collapse
Affiliation(s)
- Zuhao Zou
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Bijun Zhang
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Xiaoqin Nie
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Yu Cheng
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Zhang Hu
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Mingneng Liao
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Sidong Li
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| |
Collapse
|
6
|
Braz L, Grenha A, Corvo MC, Lourenço JP, Ferreira D, Sarmento B, Rosa da Costa AM. Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydr Polym 2018; 181:974-985. [DOI: 10.1016/j.carbpol.2017.11.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/26/2017] [Accepted: 11/15/2017] [Indexed: 01/23/2023]
|