1
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Kobus Z, Krzywicka M, Blicharz-Kania A, Bosacka A, Pecyna A, Ivanišová E, Kozłowicz K, Kovačiková E. Impact of Incorporating Dried Chaga Mushroom ( Inonotus obliquus) into Gluten-Free Bread on Its Antioxidant and Sensory Characteristics. Molecules 2024; 29:3801. [PMID: 39202879 PMCID: PMC11357129 DOI: 10.3390/molecules29163801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Gluten-free bread is increasingly popular among individuals with celiac disease, and The incorporation of mushroom flour offers a novel method to enhance its nutritional profile, antioxidant content, and sensory properties. This study aimed to evaluate the antioxidant and sensory characteristics of gluten-free bread with varying amounts of chaga mushroom flour (5%, 10%, 15%, 20%). The total contents of polyphenols and flavonoids were measured using a spectrophotometric method. Antioxidant activity was assessed through DPPH and FRAP methods, while textural properties were evaluated using the TPA test. Bread colour was analysed using the CIELab system, and sensory evaluation was performed by a panel of trained consumers. The results showed that gluten-free bread enriched with chaga flour had increased polyphenol and flavonoid content and enhanced antioxidant activity. The highest levels of polyphenols, flavonoids, DPPH, and FRAP activity were found in bread with 20% chaga. The addition of chaga mushroom significantly affected the bread's hardness, cohesiveness, and chewiness. Specifically, 20% chaga flour had the most pronounced effect on hardness and elasticity, while 15% chaga flour had the greatest impact on chewiness and cohesiveness. The bread's colour darkened with higher chaga concentrations. The results of sensory evaluation showed a negative correlation between consumer preferences and bread fortified with chaga mushroom flour. The overall consumer acceptability score indicates that only a small addition of mushroom flour (up to 10%) can be used to bake gluten-free bread.
Collapse
Affiliation(s)
- Zbigniew Kobus
- Department of Technology Fundamentals, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland; (Z.K.); (A.B.); (A.P.)
| | - Monika Krzywicka
- Department of Technology Fundamentals, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland; (Z.K.); (A.B.); (A.P.)
| | - Agata Blicharz-Kania
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland; (A.B.-K.); (K.K.)
| | - Alicja Bosacka
- Department of Technology Fundamentals, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland; (Z.K.); (A.B.); (A.P.)
| | - Anna Pecyna
- Department of Technology Fundamentals, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland; (Z.K.); (A.B.); (A.P.)
| | - Eva Ivanišová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
- Food Incubator, AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarzyna Kozłowicz
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głeboka 28, 20-612 Lublin, Poland; (A.B.-K.); (K.K.)
| | - Eva Kovačiková
- AgroBioTech Research Centre, Slovak University of Agriculture, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
3
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Wold CW, Christopoulos PF, Arias MA, Dzovor DE, Øynebråten I, Corthay A, Inngjerdingen KT. Fungal polysaccharides from Inonotus obliquus are agonists for Toll-like receptors and induce macrophage anti-cancer activity. Commun Biol 2024; 7:222. [PMID: 38396285 PMCID: PMC10891174 DOI: 10.1038/s42003-024-05853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Fungal polysaccharides can exert immunomodulating activity by triggering pattern recognition receptors (PRRs) on innate immune cells such as macrophages. Here, we evaluate six polysaccharides isolated from the medicinal fungus Inonotus obliquus for their ability to activate mouse and human macrophages. We identify two water-soluble polysaccharides, AcF1 and AcF3, being able to trigger several critical antitumor functions of macrophages. AcF1 and AcF3 activate macrophages to secrete nitric oxide and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Combined with interferon-γ, the fungal polysaccharides trigger high production of IL-12p70, a central cytokine for antitumor immunity, and induce macrophage-mediated inhibition of cancer cell growth in vitro and in vivo. AcF1 and AcF3 are strong agonists of the PRRs Toll-like receptor 2 (TLR2) and TLR4, and weak agonists of Dectin-1. In comparison, two prototypical particulate β-glucans, one isolated from I. obliquus and one from Saccharomyces cerevisiae (zymosan), are agonists for Dectin-1 but not TLR2 or TLR4, and are unable to trigger anti-cancer functions of macrophages. We conclude that the water-soluble polysaccharides AcF1 and AcF3 from I. obliquus have a strong potential for cancer immunotherapy by triggering multiple PRRs and by inducing potent anti-cancer activity of macrophages.
Collapse
Affiliation(s)
- Christian Winther Wold
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | | | - Maykel A Arias
- Centro de Investigación Biomédica de Aragón (CIBA), University of Zaragoza, Zaragoza, Spain
| | - Deborah Elikplim Dzovor
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
5
|
Panya M, Kaewraemruaen C, Saenwang P, Pimboon P. Evaluation of Prebiotic Potential of Crude Polysaccharides Extracted from Wild Lentinus polychrous and Lentinus squarrosulus and Their Application for a Formulation of a Novel Lyophilized Synbiotic. Foods 2024; 13:287. [PMID: 38254588 PMCID: PMC10815080 DOI: 10.3390/foods13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Edible mushrooms, including wild mushrooms, are currently being investigated as natural sources to evaluate their prebiotic potential. This study aimed to evaluate the prebiotic potential of crude polysaccharides (CPSs) extracted from wild Lentinus squarrosulus UBU_LS1 and Lentinus polychrous UBU_LP2 and their application as cryoprotectants in the freeze-drying process to formulate a novel synbiotic product. Based on fruiting body morphology and molecular identification, two wild edible mushrooms named UBU_LS1 and UBU_LP2 were identified as Lentinus squarrosulus and Lentinus polychrous, respectively. L. squarrosulus UBU_LS1 and L. polychrous UBU_LP2 contained high amounts of CPS after hot water extraction. Monosaccharide component analysis showed that CPS_UBU_LS1 and CPS_UBU_LP2 were typical heteropolysaccharides. CPS_UBU_LS1 and CPS_UBU_LP2 showed hydrolysis tolerance to the simulated human gastric acidic pH solution, indicating that these CPSs are capable of reaching the lower gastrointestinal tract. Antioxidant activity determined using the 1,1-diphenyl-2-picrylhydrazyl assay revealed that the CPS_UBU_LS1 and CPS_UBU_LP2 displayed greater antioxidant activity comparable with that of ascorbic acid. It was found that CPS_UBU_LS1 and CPS_UBU_LP2 have a high potential for stimulating growth in all probiotic strains. Moreover, both CPS compounds could possibly be used as cryoprotectants in freeze drying, since the viability of the selected probiotic L. fermentum 47-7 exhibited cell survival of greater than 70% after 90 days of storage at 4 °C. These results highlight that wild edible mushrooms L. squarrosulus UBU_LS1 and L. polychrous UBU_LP2 are potential natural sources of prebiotics and can be applied as cryoprotectants in the freeze-drying process. The crude polysaccharide derived from this study could also be considered as a potent antioxidative compound. Therefore, our study provides evidence to support the application of CPSs from wild edible mushrooms in synbiotic product development and in various functional foods. Finally, further evaluation of these prebiotics, including the determination of the potential rehabilitation of beneficial gut microbes in diseased individuals, is currently being conducted by our research group.
Collapse
Affiliation(s)
- Marutpong Panya
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| | - Chamraj Kaewraemruaen
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Phairo Saenwang
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| | - Patcharin Pimboon
- College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| |
Collapse
|
6
|
Makarevich EV, Teplyakova TV, Mazurkov OY, Filippova EI, Mazurkova NA. Antiviral Activity of Some Compounds of Gasteroid Mushrooms from Western Siberia. Int J Med Mushrooms 2024; 26:45-53. [PMID: 38305261 DOI: 10.1615/intjmedmushrooms.2023051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The antiviral activity of aqueous and ethanol extracts from the fruiting bodies of gasteroid Basidiomy-cetes of Western Siberia: Lycoperdon pyriforme, Lycoperdon perlatum, and Phallus impudicus, as well as an aqueous extract from cultivated mycelium of P. impudicus and total polysaccharides from it, on MDCK cell culture against influenza A virus, was studied. Aqueous and ethanol extracts from the fruiting bodies of all studied gasteroid fungi showed antiviral activity against human influenza virus A/Aichi/2/68 (H3N2) and bird A/chicken/Kurgan/05/2005 virus (H5N1). At the same time, extracts from P. impudicus and L. pyriforme showed more pronouncing antiviral activity compared to the activity of the reference drug Tamiflu against the A/H5N1 avian influenza virus. A high antiviral efficacy of an aqueous extract from cultivated mycelium of the P. impudicus and a sample of total polysaccharides from this extract against the A/H5N1 avian influenza virus was revealed.
Collapse
Affiliation(s)
- Elena V Makarevich
- Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, 630559, Koltsovo, Novosibirsk Region, Russia
| | - Tamara V Teplyakova
- Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, 630559, Koltsovo, Novosibirsk Region, Russia
| | - Oleg Yu Mazurkov
- Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, 630559, Koltsovo, Novosibirsk Region, Russia
| | - Ekaterina I Filippova
- Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, 630559, Koltsovo, Novosibirsk Region, Russia
| | - Natalia A Mazurkova
- Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, 630559, Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
7
|
Dai Y, Ma S, Zhu Y, Gontcharov AA, Liu Y, Wang Q. Immunomodulatory Effect of Flammulina rossica Fermentation Extract on Healthy and Immunosuppressed Mice. Molecules 2023; 28:5825. [PMID: 37570797 PMCID: PMC10421243 DOI: 10.3390/molecules28155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Flammulina rossica fermentation extract (FREP) was obtained by ethanol precipitation of the fermentation broth. The molecular weight of FREP is 28.52 kDa, and it mainly contains active ingredients such as polysaccharides, proteins, reducing sugars, and 16 amino acids. Among them, the polysaccharides were mannose, glucose, galactose, arabinose, and fucose and possessed β-glycosidic bonds. Furthermore, the immunoregulatory activities of FREP were investigated in vivo. The results demonstrated that FREP could increase the counts of CD4+ T lymphocytes and the ratio of CD4+/CD8+ in a dose-dependent manner in healthy mice. In addition, FREP significantly increased serum cytokines, including IL-2, IL-8, IL-10, IL-12, IL-6, IL-1β, INF-γ, C-rection protein, and TNF-α, and promoted splenocyte proliferation in healthy mice. Finally, FREP could restore the counts of white blood cells, red blood cells, secretory immunoglobulin A, and antibody-forming cells and significantly promote the serum haemolysin level in mice treated with cyclophosphamide. The findings indicated that FREP possessed immunoregulatory activity in healthy mice and could improve the immune functions in immunosuppressive mice. Therefore, FREP could be exploited as an immunomodulatory agent and potential immunotherapeutic medicine for patients with inadequate immune function.
Collapse
Affiliation(s)
- Yingdi Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Sijia Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Yanyan Zhu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
| | - Andrey A. Gontcharov
- Institute of Biology and Soil Science, FEB RAS, 100-Letia Vladivostoka Prospect, 159, Vladivostok 690022, Russia;
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.D.); (S.M.); (Y.Z.)
| |
Collapse
|
8
|
New Inonotus Polysaccharides: Characterization and Anticomplementary Activity of Inonotus rheades Mycelium Polymers. Polymers (Basel) 2023; 15:polym15051257. [PMID: 36904498 PMCID: PMC10007321 DOI: 10.3390/polym15051257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inonotus is a small genus of xylotrophic basidiomycetes and a source of bioactive fungochemicals among which a special place is occupied by polymeric compounds. In this study, polysaccharides that are widespread in Europe, Asia, and North America and a poorly understood fungal species, I. rheades (Pers.) Karst. (fox polypore), were investigated. Water-soluble polysaccharides of I. rheades mycelium were extracted, purified, and studied using chemical reactions, elemental and monosaccharide analysis, UV-Vis and FTIR spectroscopy, gel permeation chromatography, and linkage analysis. Five homogenic polymers (IRP-1-IRP-5) with molecular weights of 110-1520 kDa were heteropolysaccharides that consist mainly of galactose, glucose, and mannose. The dominant component, IRP-4, was preliminary concluded to be a branched (1→3,6)-linked galactan. Polysaccharides of I. rheades inhibited the hemolysis of sensitized sheep erythrocytes by complement from human serum, signifying anticomplementary activity with the greatest effects for the IRP-4 polymer. These findings suggest that I. rheades mycelium is a new source of fungal polysaccharides with potential immunomodulatory and anti-inflammatory properties.
Collapse
|
9
|
Dawadi E, Magar PB, Bhandari S, Subedi S, Shrestha S, Shrestha J. Nutritional and post-harvest quality preservation of mushrooms: A review. Heliyon 2022; 8:e12093. [DOI: 10.1016/j.heliyon.2022.e12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
|
10
|
Alhallaf W, Bishop K, Perkins LB. Optimization of Accelerated Solvent Extraction of Phenolic Compounds from Chaga Using Response Surface Methodology. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02319-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
In Vitro Immunomodulatory Effects of Inonotus obliquus Extracts on Resting M0 Macrophages and LPS-Induced M1 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8251344. [PMID: 35497923 PMCID: PMC9050302 DOI: 10.1155/2022/8251344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
Abstract
Background Inonotus obliquus (Chaga) is a parasitic fungus that is distributed mainly in northeast China. Our literature research showed chaga polysaccharides have bilateral effects on tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels when they exert antitumor and antidiabetic activities. The current research tried to explore the influence of chaga extracts on inflammatory factors via macrophage polarization which has bilateral immune-regulation not only on healthy tissue homeostasis but also on pathologies. Methods Chaga was extracted with 100°C water and precipitated with 80% ethanol. The extracts were studied on RAW264.7 macrophage at resting condition (M0) and lipopolysaccharide (LPS)-activated subtype (classic activated macrophage, M1). The IL-1β, TNF-α, nitric oxide (NO) level, and the protein expressions of M1 and alternative activated macrophage (M2) markers including IL-1β, inducible NO synthase (iNOS), mannose receptor (CD206), and arginase (Arg)-1 were compared. Results The 100 g extracts contained 13.7 g polysaccharides and 1.9 g polyphenols. Compared with M0, the 50 μg/mL extracts increased NO level (P < 0.05) and decreased CD206 and Arg-1 expression significantly (P < 0.05). The extracts at 100–200 μg/mL increased NO and TNF-α level (P < 0.05), but increased iNOS and IL-1β expression significantly (P < 0.05). Compared with M1, the extracts decreased NO level at 25, 50, 100, and 200 μg/mL and decreased IL-1β and TNF-α level at 100–200 μg/mL significantly (P < 0.05). At 25–200 μg/mL, the extracts significantly increased CD206 and Arg-1 expression and decreased IL-1β and iNOS expression separately (P < 0.05). Conclusions Our research suggested that the bilateral effects of the chaga extracts on iNOS, IL-1β, and NO level on M0/M1 macrophages might be related with chaga polysaccharides and chaga polyphenols. Some in vivo anticancer and antidiabetic research of purified chaga polysaccharides related to macrophage differentiation should be conducted further.
Collapse
|
12
|
Zhu J, Zhou H, Zhang J, Li F, Wei K, Wei X, Wang Y. Valorization of Polysaccharides Obtained from Dark Tea: Preparation, Physicochemical, Antioxidant, and Hypoglycemic Properties. Foods 2021; 10:foods10102276. [PMID: 34681325 PMCID: PMC8535028 DOI: 10.3390/foods10102276] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
The structure and hypoglycemic activity of tea polysaccharides has been extensively studied, while there are few reports on the characterization and hypoglycemic activity of dark tea polysaccharides. The crude dark tea polysaccharide (CDTPS) was optimally extracted from Fuzhuan dark tea. Six polysaccharide fractions (namely DTPS-1, DTPS-2, DTPS-3, DTPS-4, DTPS-5, and DTPS-6) were isolated from CDTPS, and their physicochemical, structural, and biological properties were compared and analyzed. The results revealed that the compositions, structural characteristics, and biological properties of the six DTPSs were different. Therein, DTPS-4 and DTPS-6 had looser morphology, faster solubility, and a more stable structure. Additionally, DTPS-4 had the optimum in vitro antioxidant capabilities, and DTPS-6 had the strongest in vitro hypoglycemic capabilities. In addition, a correlation analysis revealed that the molecular weight and uronic acid content were significantly related to their antioxidant and hypoglycemic activities. Our results indicated that DTPS-4 and DTPS-6 could be further developed into functional foods or additives, respectively.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Hui Zhou
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Junyao Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Fanglan Li
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
| | - Kang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China;
| | - Xinlin Wei
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China;
- Correspondence: (X.W.); (Y.W.); Tel.: +86-021-34208533 (X.W.); +86-18616184495 (Y.W.)
| | - Yuanfeng Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China; (J.Z.); (H.Z.); (J.Z.); (F.L.)
- Correspondence: (X.W.); (Y.W.); Tel.: +86-021-34208533 (X.W.); +86-18616184495 (Y.W.)
| |
Collapse
|
13
|
Yin Z, Liang Z, Li C, Wang J, Ma C, Kang W. Immunomodulatory effects of polysaccharides from edible fungus: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
14
|
Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol 2021; 183:1753-1773. [PMID: 34048833 PMCID: PMC8144117 DOI: 10.1016/j.ijbiomac.2021.05.139] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
The deficiency of chemical-synthesized antiviral drugs when applied in clinical therapy, such as drug resistance, and the lack of effective antiviral drugs to treat some newly emerging virus infections, such as COVID-19, promote the demand of novelty and safety anti-virus drug candidate from natural functional ingredient. Numerous studies have shown that some polysaccharides sourcing from edible and medicinal fungus (EMFs) exert direct or indirect anti-viral capacities. However, the internal connection of fungus type, polysaccharides structural characteristics, action mechanism was still unclear. Herein, our review focus on the two aspects, on the one hand, we discussed the type of anti-viral EMFs and the structural characteristics of polysaccharides to clarify the structure-activity relationship, on the other hand, the directly or indirectly antiviral mechanism of EMFs polysaccharides, including virus function suppression, immune-modulatory activity, anti-inflammatory activity, regulation of population balance of gut microbiota have been concluded to provide a comprehensive theory basis for better clinical utilization of EMFs polysaccharides as anti-viral agents.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Product Processing Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
15
|
Lu Y, Jia Y, Xue Z, Li N, Liu J, Chen H. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers (Basel) 2021; 13:1441. [PMID: 33947037 PMCID: PMC8124789 DOI: 10.3390/polym13091441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Y.L.); (Y.J.); (Z.X.); (N.L.); (J.L.)
| |
Collapse
|
16
|
Victor D, Peter S. Accumulation and distribution of 40K in the chaga mushroom. MYCOSCIENCE 2021; 62:81-86. [PMID: 37089251 PMCID: PMC9157780 DOI: 10.47371/mycosci.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 11/16/2022]
Abstract
This work is the first report on activity concentrations of 40K in Inonotus obliquus sampled in a virgin forest of Siberia. The results have shown that the chaga conk is characterized by high activity concentrations of 40K, averaging 1,641 Bq/kg dry weight (DW) and peaking at 3,502 Bq/kg DW. Activity concentrations of 40K in chaga conks have been defined to increase from the near-trunk stratum to the crust of the conk with increased exposure to the solar radiation. Our measurements have revealed the samples to be mildly contaminated with 137Cs. Intensive assimilation of 40K by chaga conks has been shown as a normal and innate feature of the wild chaga mushroom.
Collapse
Affiliation(s)
| | - Sobakin Peter
- Institute for Biological Problems of Cryolithozone, SB, RAS
| |
Collapse
|
17
|
Zhao Y, Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113321. [PMID: 32877719 DOI: 10.1016/j.jep.2020.113321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The crude extracts of the medicinal mushroom Inonotus obliquus have been used as an effective traditional medicine to treat malicious tumors, gastritis, gastric ulcers, and other inflammatory conditions in Russia and most Baltic countries. AIM OF THIS REVIEW Deciphering the antitumoral potential of the bioactive metabolites from I. obliquus and addressing its possibility to be used as effective agents for tumor treatment, restoration of compromised immunity and protection of gastrointestinal damage caused by chemotherapy. MATERIALS AND METHODS We analysed the current achievements and dilemma in tumor chemo- or immunotherapy. In this context, we searched the published literatures on I. obliquus covering from 1990 to 2020, and summarized the activities of antitumor, antioxidation, and immunomodulation by the polysaccharides, triterpenoids, small phenolic compounds, and hispidin polyphenols. By comparing the merits and shortcomings of current and traditional methodology for tumor treatment, we further addressed feasibility for the use of I. obliquus as an effective natural drug for tumor treatment and prevention. RESULTS The diverse bioactive metabolites confer I. obliquus great potential to inhibit tumor growth and metastasis. Its antitumor activities are achieved either through suppressing multiple oncogenic signals including but not limited to the activation of NF-κB and FAK, and the expression of RhoA/MMP-9 via ERK1/2 and PI3K/Akt signaling pathway. The antitumor activities can also be achieved by inhibiting tyrosinase activity via PAK1-dependent signaling pathway or altering lysosomal membrane permeabilization through blocking tubulin polymerization and/or disturbing energy metabolism through LKB1/AMPK pathway. In addition, the metabolites from I. obliquus also harbour the potentials to reverse MDR either through selective inhibition on P-gp/ABCB1 or MRP1/ABCC1 proteins or the induction of G2/M checkpoint arrest in tumor cells of chemoresistant phenotypes mediated by Nox/ROS/NF-kB/STAT3 signaling pathway. In addition to the eminent effects in tumor inhibition, the metabolites in I. obliquus also exhibit immunomodulatory potential to restore the compromised immunity and protect against ulcerative damage of GI tract caused by chemotherapy. CONCLUSIONS I. obliquus possesses the potential to reduce incidence of tumorigenesis in healthy people. For those whose complete remission has been achieved by chemotherapy, administration of the fungus will inhibit the activation of upstream oncogenic signals and thereby prevent metastasis; for those who are in the process of chemotherapy administration of the fungus will not only chemosensitize the tumor cells and thereby increasing the chemotherapeutic effects, but also help to restore the compromised immunity and protect against ulcerative GI tract damage and other side-effects induced by chemotherapy.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Weifa Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
18
|
Xiao D, Xinyi W, Ze Z, Jinglong H, Weizhi Z, Jiehan Z, Yiyong C. Characterization, optimization of preparation process of an Inonotus obliquus polysaccharide-Zinc (II) complex and its antioxidant activities. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1969276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ding Xiao
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Wu Xinyi
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Zhang Ze
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - He Jinglong
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Zhang Weizhi
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Zhang Jiehan
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Chen Yiyong
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| |
Collapse
|
19
|
Szychowski KA, Skóra B, Pomianek T, Gmiński J. Inonotus obliquus - from folk medicine to clinical use. J Tradit Complement Med 2020; 11:293-302. [PMID: 34195023 PMCID: PMC8240111 DOI: 10.1016/j.jtcme.2020.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
The Inonotus obliquus (I. obliquus) mushroom was traditionally used to treat various gastrointestinal diseases. For many years, mounting evidence has indicated the potential of I. obliquus extracts for treatment of viral and parasitic infections. Furthermore, substances from I. obiquus have been shown to stimulate the immune system. The most promising finding was the demonstration that I. obliquus has hypoglycemic and insulin sensitivity potential. This review summarizes the therapeutic potential of I. obliquus extracts in counteracting the progression of cancers and diabetes mellitus as well as their antiviral and antiparasitic activities and antioxidant role. As shown by literature data, various authors have tried to determine the molecular mechanism of action of I. obliquus extracts. Two mechanisms of action of I. obliquus extracts are currently emerging. The first is associated with the broad-sense impact on antioxidant enzymes and the level of reactive oxygen species (ROS). The other is related to peroxisome proliferator-activated receptor gamma (PPARγ) effects. This receptor may be a key factor in the anti-inflammatory, antioxidant, and anti-cancer activity of I. obliquus extracts. It can be concluded that I. obliquus fits the definition of functional food and has a potentially positive effect on health beyond basic nutrition; however, studies that meet the evidence-based medicine (EBM) criteria are needed. Extracts or polysaccharides from I. obliquus exhibit an anti-cancer potential in vitro. Extracts or polysaccharides from I. obliquus exhibit anti-inflammation potential. Extracts or polysaccharides from I. obliquus exhibit hypoglycemic and insulin sensitivity potential.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Tadeusz Pomianek
- Department of Management, Faculty of Administration and Social Sciences, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
20
|
Microwave-assisted extraction of polysaccharides from the marshmallow roots: Optimization, purification, structure, and bioactivity. Carbohydr Polym 2020; 240:116301. [DOI: 10.1016/j.carbpol.2020.116301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
21
|
Gründemann C, Reinhardt JK, Lindequist U. European medicinal mushrooms: Do they have potential for modern medicine? - An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153131. [PMID: 31790898 DOI: 10.1016/j.phymed.2019.153131] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The application of mushrooms for health purposes has a long tradition and is very common in Asian countries. This trend is also becoming increasingly popular in the western hemisphere. However, mushrooms from European tradition are being treated in a restrained manner despite having significant potential as drugs or as sources of pure bioactive substances. AIM The present review provides an overview of the most important mushrooms used in European ethnomedical traditions and explores their pharmacological potential and the challenges for the development of new drugs from these sources of natural products. METHOD Mushroom species were selected based on information in old herbal books and dispensaries, uninterrupted use and scientific literature in the PubMed database up to June 2019. RESULTS Traditional experiences and modern studies have demonstrated that medical mushrooms used in European traditions have promising distinct pharmacological potential mediated through defined mechanisms (anti-tumour, anti-inflammatory, anti-oxidative and anti-bacterial). However, the number of modern chemical, biological and pharmacological studies remains relatively small, and some mushroom species have not been studied at all. Unfortunately, no valid clinical studies can be found. Unlike the case with herbal and fungal drugs from traditional Chinese medicine, we are far from comprehensively exploring this potential. CONCLUSIONS Mushrooms from traditional European medicine have the potential to be used in modern medicine. Considerable research, interdisciplinary collaboration, involvement of the pharmaceutical industry, time and money are necessary to explore this potential not only in the form of dietary supplements but also in the form of approved drugs.
Collapse
Affiliation(s)
- Carsten Gründemann
- Center for Complementary Medicine, Institute for Environmental Health Sciences and Hospital Infection Control, University Medical Center Freiburg, Breisacher Str. 115B, 79111 Freiburg, Germany.
| | - Jakob K Reinhardt
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ulrike Lindequist
- Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, F.-l.-Jahn-Str. 17, 17487 Greifswald, Germany
| |
Collapse
|
22
|
Jiang S, Shi F, Lin H, Ying Y, Luo L, Huang D, Luo Z. Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. Int J Biol Macromol 2019; 151:1277-1286. [PMID: 31751687 DOI: 10.1016/j.ijbiomac.2019.10.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022]
Abstract
The present study explores the mechanisms underlying the anti-cancer action of Inonotus obliquus polysaccharides (IOP). Thus, we characterized the IOP components extracted from Chaga sclerotium and, found that the extracts contained 70% polysaccharides with an average molecular weight of 4.5 × 104 Da consisting of 75% glucose. We then showed that IOP extract activated AMPK in lung cancer cells expressing LKB1, suppressed cell viability, colony-formation, and triggered cell apoptosis. In conjunction, IOP downregulated Bcl-2, upregulated Bax, and enhanced cleavage of Caspase-3 and PARP. All of these effects were prevented by treatment with Compound C, a chemical inhibitor of AMPK. IOP diminished mitochondrial membrane potential (MMP), concurrent with decreases in oxidative phosphorylation and glycolysis, which was dependent on LKB1/AMPK. Finally, IOP at a dosage of 50 mg/kg significantly inhibited allograft tumor growth of the LLC1 cells in association with increased apoptosis. Collectively, our results demonstrate that IOP acts on cancer cells through a mechanism by which AMPK triggers the apoptotic pathway via the opening of mitochondrial permeability transition pore, and reducing MMP, leading to an inhibition of ATP production. Therefore, our study provides a solid foundation for the use of IOP as a promising alternative or supplementary medicine for cancer therapy.
Collapse
Affiliation(s)
- Shuping Jiang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Fuli Shi
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China.
| |
Collapse
|
23
|
Li E, Yang S, Zou Y, Cheng W, Li B, Hu T, Li Q, Wang W, Liao S, Pang D. Purification, Characterization, Prebiotic Preparations and Antioxidant Activity of Oligosaccharides from Mulberries. Molecules 2019; 24:E2329. [PMID: 31242560 PMCID: PMC6631591 DOI: 10.3390/molecules24122329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
A water-soluble oligosaccharide termed EMOS-1a was prepared by enzymatic hydrolysis of polysaccharides purified from mulberries by column chromatography. The chemical structure of the purified fraction was investigated by ultraviolet spectroscopy, Fourier-transform infrared spectroscopy, and gas chromatography-mass spectrometry, which indicated that galactose was the main constituent of EMOS-1a. Chemical analyses showed that the uronic acid and sulfate content of EMOS-1a were 5.6% and 8.35%, respectively, while gel permeation chromatography showed that EMOS-1a had an average molecular weight of 987 Da. The antioxidant activities of EMOS-1a were next investigated, and EMOS-1a exhibited concentration-dependent 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, Trolox equivalent antioxidant capacity, and ferric reducing antioxidant power. The level of proliferation of Lactobacillus rhamnosus reached 1420 ± 16% when 4% (w/v) EMOS-1a was added, where the number of colonies in MRS (de Man, Rogosa, and Sharpe) medium with no added oligosaccharide was defined as 100% proliferation. These results indicate that the oligosaccharide EMOS-1a could be used as a natural antioxidant in prebiotic preparations.
Collapse
Affiliation(s)
- Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Shiyuan Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Weiwei Cheng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China.
| | - Tenggen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Qian Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Weifei Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Sentai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Daorui Pang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
24
|
Chen YY, Xue YT. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from porphyra haitanensis. Carbohydr Polym 2019; 206:179-186. [DOI: 10.1016/j.carbpol.2018.10.093] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022]
|
25
|
Purification, chemical characterization and antioxidant activities of a novel polysaccharide from Auricularia polytricha. Int J Biol Macromol 2018; 120:1087-1092. [DOI: 10.1016/j.ijbiomac.2018.08.160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/13/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
|
26
|
Zhang L, Lin D, Li H, Yu S, Bai J, Ding Z, Wu J. Immunopotentiating effect of Inonotus obliquus fermentation products administered at vaccination in chickens. Mol Cell Probes 2018; 41:43-51. [PMID: 30227259 DOI: 10.1016/j.mcp.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 01/27/2023]
Abstract
Vaccination is an important approach for the control of avian viral diseases. The aim of this study was to evaluate the immune-potentiating effect of oral administration of Inonotus obliquus fermentation products (IOFP) at vaccination in chickens. In total, 120 one-day-old specific-pathogen-free chickens were randomly assigned to six groups: groups 1 to 3 were vaccinated with Newcastle disease virus (NDV) LaSota live vaccine via intranasal and eye-dropped route at seven days of age, and boosted two weeks later. Before each immunization, chickens in groups 1 and 2 were orally administered 0.8% IOFP and 0.2% astragalus polysaccharide (APS) in their diets, respectively, for seven consecutive days and group 3 was fed with commercial diet. At the same time, group 4, 5 and 6 were inoculated in the same manner with PBS and fed with commercial diet, containing 0.8% IOFP and 0.2% APS diet, respectively, as negative controls. At 0, 7, 14, 21, 28, and 35 days post-inoculation (dpi) firstly, the temporal changes in serum Newcastle disease hemagglutination inhibition (HI) and neutralizing antibody titers were determined. Meanwhile, proliferations of peripheral blood mononuclear cells (PBMCs) isolated from each group in response to concanavalin A stimulation and the expression levels of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines were determined by 3-(4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, and ELISA methods. On days 0, 14 and 28 after the first vaccination, the percentages of CD3+, CD3+CD8+, and CD3+CD4+ T lymphocytes were detected by flow cytometry. At 35 dpi, a challenge test was carried out and protective efficacy was determined. Results showed that oral administration of IOFP could significantly enhance ND HI and neutralizing antibody titers, proliferation of PBMCs, proportions of CD3+, CD3+CD8+, and CD3+CD4+ T lymphocytes, as well as the ratio of Th1/Th2, and all of these values were superior to those seen with APS as a positive control, and other groups. Therefore, IOFP possesses significant immune-potentiating properties in chickens and may be a more economical and convenient oral adjuvant to improve vaccination in avian species.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No.8, Sangyuan Road, Jinan, Shandong, China.
| | - Dongmei Lin
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Haiyan Li
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No.8, Sangyuan Road, Jinan, Shandong, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Sen Yu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No.8, Sangyuan Road, Jinan, Shandong, China
| | - Junping Bai
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No.8, Sangyuan Road, Jinan, Shandong, China; College of Life Sciences and Food Engineering, Hebei University of Engineering, 199, Guangming South Street, Handan, Hebei, China
| | - Zhiyong Ding
- Qinhuangdao Gaotong Bio-tech Co., Ltd, 83, Wufengshan Road, Changli, Hebei, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, No.8, Sangyuan Road, Jinan, Shandong, China.
| |
Collapse
|
27
|
Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus. Int J Biol Macromol 2018; 112:326-332. [DOI: 10.1016/j.ijbiomac.2018.01.132] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 01/11/2023]
|
28
|
Glucose fed-batch integrated dissolved oxygen control strategy enhanced polysaccharide, total triterpenoids and inotodiol production in fermentation of a newly isolated Inonotus obliquus strain. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Structural characterization of bioactive heteropolysaccharides from the medicinal fungus Inonotus obliquus (Chaga). Carbohydr Polym 2017; 185:27-40. [PMID: 29421057 DOI: 10.1016/j.carbpol.2017.12.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/30/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022]
Abstract
The aim of this paper was to perform a comprehensive characterization of polysaccharides isolated from the interior (IOI) and exterior (IOE) parts of the fungus Inonotus obliquus. Pre-extraction with DCM and MeOH, followed by water and alkali extraction and ethanol precipitation gave two water extracts and two alkali extracts. Neutral and acidic polysaccharide fractions were obtained after anion-exchange chromatography of the water extracts. The neutral polysaccharides (60-73 kDa) were heterogeneous and branched and consisted of a (1 → 3)-linked β-Glc backbone with (1 → 6)-linked kinks in the chain at approximately every fifth residue, with branches of (1 → 6)-linked β-Glc in addition to substantial amounts of (1 → 6)-linked α-Gal with 3-O-methylation at about every third Gal residue. The acidic polysaccharide fractions (10-31 kDa) showed similar structural motifs as the neutral fractions differing mainly by the presence of (1 → 4)-linked α-GalA and α-GlcA. β-Xyl, α-Man and α-Rha were also present in varying amounts in all fractions. No major structural differences between the IOI and IOE fractions were observed. An alkaline polysaccharide fraction (>450 kDa) was obtained from the IOI alkali extract, and consisted mainly of (1 → 3)- and (1 → 6)-linked β-Glc and (1 → 4)-linked β-Xyl. Several of the fractions showed in vitro immunomodulatory effect by increasing NO production in the murine macrophage and dendritic cell lines J774.A1 and D2SC/1. Most fractions managed to increase NO production only at the highest concentration tested (100 μg/ml), while the neutral fraction IOE-WN activated potent NO production at 10 μg/ml and was considered the most promising immunomodulating fraction in this study.
Collapse
|
30
|
Cai Y, Zhou X, Han A, Chen P, Bai H. In vitro immunological and anti-complementary activities of two water-soluble lignins from Zizyphus jujube cv. Jinchangzao. Int J Biol Macromol 2017; 105:204-212. [DOI: 10.1016/j.ijbiomac.2017.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 01/30/2023]
|
31
|
Staniszewska J, Szymański M, Ignatowicz E. Antitumor and immunomodulatory activity of Inonotus obliquus. HERBA POLONICA 2017. [DOI: 10.1515/hepo-2017-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Summary
The article presents the antitumor and immunomodulatory activity of compounds and extracts from Inonotus obliquus. Polysaccharides isolated from sclerotium have a direct antitumor effect due to protein synthesis inhibition in tumor cells. Polysaccharides derived from the mycelium function by activating the immune system. Due to the limited toxicity of these substances, both extracts as well as isolated and purified chemicals may be a good alternative to current chemotherapy and play a role in cancer prevention. In vitro experiments have shown the inhibition of inflammation with the influence of action of I. obliquus extracts; however, in vivo experiments on animals implanted with tumor cells of different types have shown the activation of the host immune system. This led to decrease in tumor mass and prolonged survival. The immunomodulatory mechanism of action is complex and it seems that stimulation of macrophages and induction of apoptosis in cancer cells is of great importance.
Collapse
Affiliation(s)
- Justyna Staniszewska
- Department of Pharmacognosy Poznan , University of Medical Sciences , Święcickiego 4, 60–781 Poznań , Poland
| | - Marcin Szymański
- Department of Pharmacognosy Poznan , University of Medical Sciences , Święcickiego 4, 60–781 Poznań , Poland
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry , Poznan University of Medical Sciences , Święcickiego 4, 60–781 Poznań , Poland
| |
Collapse
|
32
|
Chou YJ, Kan WC, Chang CM, Peng YJ, Wang HY, Yu WC, Cheng YH, Jhang YR, Liu HW, Chuu JJ. Renal Protective Effects of Low Molecular Weight of Inonotus obliquus Polysaccharide (LIOP) on HFD/STZ-Induced Nephropathy in Mice. Int J Mol Sci 2016; 17:ijms17091535. [PMID: 27649140 PMCID: PMC5037810 DOI: 10.3390/ijms17091535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetes mellitus. Oxidative stress, insulin resistance and pro-inflammatory cytokines have been shown to play an important role in pathogeneses of renal damage on type 2 diabetes mellitus (DM). Inonotus obliquus (IO) is a white rot fungus that belongs to the family Hymenochaetaceae; it has been used as an edible mushroom and exhibits many biological activities including anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic properties. Especially the water-soluble Inonotus obliquus polysaccharides (IOPs) have been previously reported to significantly inhibit LPS-induced inflammatory cytokines in mice and protect from streptozotocin (STZ)-induced diabetic rats. In order to identify the nephroprotective effects of low molecular weight of IOP fraction (LIOP), from the fruiting bodies of Inonotus obliquus, high-fat diet (HFD) plus STZ-induced type 2-like diabetic nephropathy C57BL/6 mice were investigated in this study. Our data showed that eight weeks of administration of 10–100 kDa, LIOP (300 mg/kg) had progressively increased their sensitivity to glucose (less insulin tolerance), reduced triglyceride levels, elevated the HDL/LDL ratio and decreased urinary albumin/creatinine ratio(ACR) compared to the control group. By pathological and immunohistochemical examinations, it was indicated that LIOP can restore the integrity of the glomerular capsules and increase the numbers of glomerular mesangial cells, associated with decreased expression of TGF-β on renal cortex in mice. Consistently, three days of LIOP (100 μg/mL) incubation also provided protection against STZ + AGEs-induced glucotoxicity in renal tubular cells (LLC-PK1), while the levels of NF-κB and TGF-β expression significantly decreased in a dose-dependent manner. Our findings demonstrate that LIOP treatment could ameliorate glucolipotoxicity-induced renal fibrosis, possibly partly via the inhibition of NF-κB/TGF-β1 signaling pathway in diabetic nephropathy mice.
Collapse
Affiliation(s)
- Yen-Jung Chou
- Department of Traditional Chinese Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan.
| | - Wei-Chih Kan
- Division of Nephrology, Department of Medicine; Chi-Mei Medical Center, Tainan 710, Taiwan.
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan.
| | - Chieh-Min Chang
- Department of Traditional Chinese Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan.
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Hsien-Yi Wang
- Division of Nephrology, Department of Medicine; Chi-Mei Medical Center, Tainan 710, Taiwan.
- Department of Sports Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Wen-Chun Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| | - Yu-Hsuan Cheng
- Institute of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Yu-Rou Jhang
- Institute of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Hsia-Wei Liu
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Jiunn-Jye Chuu
- Institute of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
- Pharmacy, Wei Gong Memorial Hospital, Miaoli 351, Taiwan.
| |
Collapse
|
33
|
Razali FN, Sinniah SK, Hussin H, Zainal Abidin N, Shuib AS. Tumor suppression effect of Solanum nigrum polysaccharide fraction on Breast cancer via immunomodulation. Int J Biol Macromol 2016; 92:185-193. [PMID: 27365117 DOI: 10.1016/j.ijbiomac.2016.06.079] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 12/21/2022]
Abstract
A polysaccharide fraction from Solanum nigrum, SN-ppF3 was shown previously to have an immunomodulatory activity where it could possibly be used to enhance the host immune response in fighting cancer. The non-toxic SN-ppF3 was fed orally to breast tumor bearing-mice with concentrations of 250 and 500mg/kg for 10days. During the treatment period, size of the tumor and weight of the mice were monitored. At the end of the treatment, blood, tumor, spleen and thymus were harvested for physiological and immunological analyses. After the treatment, the tumor volume and tumor weight were significantly inhibited by 65% and 40%, respectively. Based on the histological observation, the treatment of SN-ppF3 resulted in the disruption of tumor cells morphology. The increase in infiltrating T cells, NK cells and macrophages were observed in tumor tissues of the treated mice, which partly explained the higher apoptosis tumor cells observed in the treated mice. Moreover, the level of TNF-α, IFN-γ and IL-4 were elevated, while the level of IL-6 was decreased significantly, in serum of the treated mice. These results suggested that tumor suppression mechanisms observed in SN-ppF3-treated mice were most probably due through enhancing the host immune response.
Collapse
Affiliation(s)
- Faizan Naeem Razali
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saravana Kumar Sinniah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Huzlinda Hussin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurhayati Zainal Abidin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adawiyah Suriza Shuib
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|