1
|
Lignin nanoparticles filled chitosan/polyvinyl alcohol polymer blend as a coating material of urea with a slow‐release property. J Appl Polym Sci 2023. [DOI: 10.1002/app.53755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
2
|
Chang XX, Mubarak NM, Karri RR, Tan YH, Khalid M, Dehghani MH, Tyagi I, Khan NA. Insights into chitosan-based cellulose nanowhiskers reinforced nanocomposite material via deep eutectic solvent in green chemistry. ENVIRONMENTAL RESEARCH 2023; 219:115089. [PMID: 36529332 DOI: 10.1016/j.envres.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In the present work, the synthesis of cellulose nanowhiskers (CNW)/chitosan nanocomposite films via deep eutectic solvents (DES) changing the chemical structures were carried out. It was observed that a pure chitosan film has broadband at 3180-3400 cm-1, indicating amide and hydroxyl groups. Upon CNW incorporation, the peak gets sharper and stronger and shifts to a greater wavelength. Further, the addition of DES infuses more elements of amide into the nanocomposite films. Moreover, the mechanical properties incorporating CNW filler into a chitosan matrix show an enhancement in tensile strength (TS), Young's modulus (YM), and elongation at break. The TS and YM increase while the elongation decrease as the CNW concentration increases. The YM of biocomposite films is increased to 723 MPa at 25% CNW into chitosan films. Besides, the TS has enhanced to 11.48 MPa at 15% CNW concentration in the biocomposite films. The elongation at break has decreased to 11.7% at 25% CNW concentration. Hence, incorporating CNW into the chitosan matrix via DES can still improve the mechanical properties of the nanocomposite films. Therefore, the application of DES results in a lower YM and TS as the films are hygroscopic. In conclusion, DES can be considered the new green solvent media for synthesizing materials. It has the potential to replace ionic liquids due to its biodegradability and non-toxic properties while preserving the character of low-vapour pressure. Besides that, chitosan can be used as potential material for applications in process industries, such as the biomedical and pharmaceutical industries. Thus, DES can be used as a green solvent and aim to reduce the toxic effect of chemicals on the environment during chemical production.
Collapse
Affiliation(s)
- Xin Xiong Chang
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, India
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College, Nuh-122107,Haryana, India
| |
Collapse
|
3
|
Lewandowska K, Szulc M. Rheological and Film-Forming Properties of Chitosan Composites. Int J Mol Sci 2022; 23:ijms23158763. [PMID: 35955893 PMCID: PMC9369327 DOI: 10.3390/ijms23158763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan (Chit) and its composite films are widely used in biomedical, cosmetic, and packaging applications. In addition, their properties can be improved and modified using various techniques. In this study, the effect of the type of clay in Chit composites on the structure, morphology, and physical properties of Chit solution and films was tested. The liquid flow properties of Chit solution with and without clay were carried out using the steady shear test. Chit films containing clay were obtained using the solution-casting method. The morphology, structure, and physical properties of the films were characterized by scanning electron microscopy, atomic force microscopy, infrared spectroscopy, swelling behavior, and tensile tests. The results reveal that for the Chit solution with clay (C1) containing 35 wt.% dimethyl dialkyl (C14-C18) amine, the apparent viscosity is the highest, whereas Chit solutions with other clays show reduced apparent viscosity. Rheological parameters of Chit composites were determined by the power law and Cross models, indicating shear-thinning behavior. Analytical data were compared, and show that the addition of clay is favorable to the formation of intermolecular interactions between Chit and clay, which improves in the properties of the studied composites.
Collapse
|
4
|
Szwajca A, Juszczyńska S, Jarzębski M, Baryła-Pankiewicz E. Incorporation of Fluorescent Fluorinated Methacrylate Nano-Sized Particles into Chitosan Matrix Formed as a Membranes or Beads. Polymers (Basel) 2022; 14:polym14132750. [PMID: 35808794 PMCID: PMC9268857 DOI: 10.3390/polym14132750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Fluorescent particles are of particular interest as probes and active agents for biomedical, pharmaceutical, and food applications. Here, we present two strategies for incorporation of core-shell acrylic fluorescent nanoparticles (NPs) with Rhodamine B (RhB) as a dye into a chitosan (CS) matrix. We selected two variants of NPsRhB immobilisation in a CS membrane and biopolymeric CS beads. Modification of the method for production of the biopolymer cover/transporter of nanoparticles allowed two series of hydrogels loaded with nanoparticles to be obtained with a similar concentration of the aqueous solution of the nanoparticles. Microscopic analysis showed that the NPs were nonuniformly distributed in millimetre-sized CS beads, as well as membranes, but the fluorescence signal was strong. The composition of CS layers loaded with nanoparticles (CS/NPsRhB) showed water vapour barrier properties, characterised by the contact angle of 71.8°. Finally, we incorporated NPsRhBCS beads into a gelatine matrix to check their stability. The results confirmed good stability of the NPsRhBCS complex system, and no dye leakage was observed from the beads and the membranes. The proposed complex system demonstrated promising potential for further use in bioimaging and, thus, for the development of advanced diagnostic tools.
Collapse
Affiliation(s)
- Anna Szwajca
- Department of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Correspondence:
| | - Sandra Juszczyńska
- Department of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Elżbieta Baryła-Pankiewicz
- Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland;
| |
Collapse
|
5
|
Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri MYM, Asyraf MRM, Sapuan SM, Zainudin ES, Sharma S, Abral H, Asrofi M, Syafri E, Sari NH, Rafidah M, Zakaria SZS, Razman MR, Majid NA, Ramli Z, Azmi A, Bangar SP, Ibrahim R. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers (Basel) 2022; 14:874. [PMID: 35267697 PMCID: PMC8912483 DOI: 10.3390/polym14050874] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.
Collapse
Affiliation(s)
- Rushdan Ahmad Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Humaira Alias Aisyah
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Abu Hassan Nordin
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Norzita Ngadi
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; (A.H.N.); (N.N.)
| | - Mohamed Yusoff Mohd Zuhri
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - Salit Mohd Sapuan
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Edi Syams Zainudin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (E.S.Z.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, India;
| | - Hairul Abral
- Department of Mechanical Engineering, Andalas University, Padang 25163, Sumatera Barat, Indonesia;
| | - Mochamad Asrofi
- Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia;
| | - Edi Syafri
- Department of Agricultural Technology, Agricultural Polytechnic, Payakumbuh 26271, West Sumatra, Indonesia;
| | - Nasmi Herlina Sari
- Mechanical Engineering Department, Faculty of Engineering, University of Mataram, Mataram 83115, West Nusa Tenggara, Indonesia;
| | - Mazlan Rafidah
- Department of Civil Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Sharifah Zarina Syed Zakaria
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Nuriah Abd Majid
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.Z.S.Z.); (N.A.M.)
| | - Zuliskandar Ramli
- Institute of the Malay World and Civilisation (ATMA), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia;
| | - Ashraf Azmi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Rushdan Ibrahim
- Pulp and Paper Branch, Forest Research Institute Malaysia, Kepong 52109, Selangor, Malaysia;
| |
Collapse
|
6
|
Ansari MJ, Jasim SA, Bokov DO, Thangavelu L, Yasin G, Khalaji AD. Preparation of new bio-based chitosan/Fe 2O 3/NiFe 2O 4 as an efficient removal of methyl green from aqueous solution. Int J Biol Macromol 2022; 198:128-134. [PMID: 34968538 DOI: 10.1016/j.ijbiomac.2021.12.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Modified chitosan with various functional groups has high potential as an efficient adsorbent in removing water pollution. In this study, new magnetic adsorbent, bio-based chitosan/Fe2O3/NiFe2O4, was successfully prepared by green chemistry route involving mixing of chitosan as core moiety and Fe2O3/NiFe2O4 nanocomposite, and slow evaporation of solvent. Synthesized chitosan/Fe2O3/NiFe2O4 was characterized by FT-IR, TGA, XRD, VSM and FE-SEM. The FT-IR and XRD results confirmed that the successful preparation of chitosan/Fe2O3/NiFe2O4. Uniform dispersion of Fe2O3/NiFe2O4 nanoparticles with low aggregation was confirmed by FE-SEM. The as-prepared magnetic chitosan/Fe2O3/NiFe2O4 was developed as solid phase adsorbent to remove methyl green (MG) dye from aqueous solutions. Several important parameters such as contact time, pH, temperature and adsorbent dosage were investigated systematically. The high and fast MG dye removal (≈ 80%) occurs after 30 min. The optimal conditions for MG removal was recorded at pH = 8, contact time of 60 min, adsorbent dosage of 0.2 g and 25 °C and displayed a high MG dye removal percentage of 96.51% and adsorption capacity of 77.22 mg/g.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz, University, Al-kharj, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Al-maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Ghulam Yasin
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | | |
Collapse
|
7
|
Fourie J, Taute F, du Preez L, de Beer D. Novel chitosan-poly(vinyl acetate) biomaterial suitable for additive manufacturing and bone tissue engineering applications. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211043279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chitosan, a biocompatible and biodegradable natural polymer, offers great promise as a biomaterial for tissue engineering applications. Chitosan scaffolds have previously been fabricated using additive manufacturing techniques, however, the use of crosslinkers, weak mechanical stability and structural resolution remain problematic. In this study Chitosan-PVAc biopolymer blends were prepared using a non-organic solvent that can prepare a three-dimensional printable biopolymer in less time than conventional methods. Prepared films were characterised using SEM, FTIR and thermogravimetric analysis. Additionally, the swelling properties, biodegradability and printability of the scaffolds were also studied. The fabricated films were biodegradable within a 3-week period and showed controllable swelling properties. Results indicated no toxicity and cells attached onto films. Additionally, hydrogels showed antibacterial activity against S. aureus, S. epidermidis and E.coli, which could potentially prevent implant related infections. Additive manufacturing simulation of PVAc composite 3% chitosan and PVAc composite 4% chitosan were able to produce a layered scaffold without using crosslinkers and therefore confirming printability. Cytocompabability were assessed using a resazurin assay and cell attachment. From these results, we concluded that the printable PVAc composite 3% chitosan and PVAc composite 4% chitosan biopolymer blends meet the requirements of a biomaterial and can potentially be used for biomedical implants.
Collapse
Affiliation(s)
- Jaundrie Fourie
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Department of Mechanical Engineering, North-West University, Potchefstroom, South Africa
| | - Francois Taute
- TheraLon, Potchefstroom, South Africa
- Central University of Technology, Free State, Bloemfontein, South Africa
| | - Louis du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Deon de Beer
- Central University of Technology, Free State, Bloemfontein, South Africa
| |
Collapse
|
8
|
Thou CZ, Khan FSA, Mubarak N, Ahmad A, Khalid M, Jagadish P, Walvekar R, Abdullah E, Khan S, Khan M, Hussain S, Ahmad I, Algarni TS. Surface charge on chitosan/cellulose nanowhiskers composite via functionalized and untreated carbon nanotube. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Chen P, Xie F, McNally T. Understanding the effects of montmorillonite and sepiolite on the properties of solution‐cast chitosan and chitosan/silk peptide composite films. POLYM INT 2020. [DOI: 10.1002/pi.6103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Pei Chen
- College of Food Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Fengwei Xie
- International Institute for Nanocomposites Manufacturing (IINM), WMG University of Warwick Coventry CV4 7AL UK
- School of Chemical Engineering University of Queensland Brisbane Queensland 4072 Australia
| | - Tony McNally
- International Institute for Nanocomposites Manufacturing (IINM), WMG University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
11
|
Qin Y, Li P, Guo Z. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydr Polym 2020; 236:116002. [PMID: 32172836 DOI: 10.1016/j.carbpol.2020.116002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
Abstract
The increasing resistance of pathogen fungi poses a global public concern. There are several limitations in current antifungals, including few available fungicides, severe toxicity of some fungicides, and drug resistance. Therefore, there is an urgent need to develop new antifungals with novel targets. Chitosan has been recognized as a potential antifungal substance due to its good biocompatibility, biodegradability, non-toxicity, and availability in abundance, but its applications are hampered by the low charge density results in low solubility at physiological pH. It is believed that enhancing the positive charge density of chitosan may be the most effective approach to improve both its solubility and antifungal activity. Hence, this review mainly focuses on the structural optimization strategy of cationic chitosan and the potential antifungal applications. This review also assesses and comments on the challenges, shortcomings, and prospect of cationic chitosan derivatives as antifungal therapy.
Collapse
Affiliation(s)
- Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
12
|
Dong C, Wang B, Li F, Zhong Q, Xia X, Kong B. Effects of edible chitosan coating on Harbin red sausage storage stability at room temperature. Meat Sci 2020; 159:107919. [DOI: 10.1016/j.meatsci.2019.107919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
|
13
|
Olewnik-Kruszkowska E, Gierszewska M, Jakubowska E, Tarach I, Sedlarik V, Pummerova M. Antibacterial Films Based on PVA and PVA-Chitosan Modified with Poly(Hexamethylene Guanidine). Polymers (Basel) 2019; 11:E2093. [PMID: 31847274 PMCID: PMC6960635 DOI: 10.3390/polym11122093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, thin, polymeric films consisting of poly(vinyl alcohol) (PVA) and chitosan (Ch) with the addition of poly(hexamethylene guanidine) (PHMG) were successfully prepared. The obtained materials were analyzed to determine their physicochemical and biocidal properties. In order to confirm the structure of PHMG, nuclear magnetic resonance spectroscopy (1H NMR) was applied, while in the case of the obtained films, attenuated total reflectance infrared spectroscopy with Fourier transform (FTIR-ATR) was used. The surface morphology of the polymer films was evaluated based on atomic force microscopy. Furthermore, the mechanical properties, color changes, and thermal stability of the obtained materials were determined. Microbiological tests were performed to evaluate the biocidal properties of the new materials with and without the addition of PHMG. These analyses confirmed the biocidal potential of films modified by PHMG and allowed for comparisons of their physicochemical properties with the properties of native films. In summary, films consisting of PVA and PHMG displayed higher antimicrobial potentials against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in comparison to PVA:Ch-based films with the addition of PHMG.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Magdalena Gierszewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Ewelina Jakubowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Iwona Tarach
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland; (E.J.); (I.T.)
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic; (V.S.); (M.P.)
| | - Martina Pummerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic; (V.S.); (M.P.)
| |
Collapse
|
14
|
Yin M, Lin X, Ren T, Li Z, Ren X, Huang TS. Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. Int J Biol Macromol 2018; 120:992-998. [DOI: 10.1016/j.ijbiomac.2018.08.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
|
15
|
Superabsorbent nanocomposite from sugarcane bagasse, chitin and clay: Synthesis, characterization and swelling behaviour. Carbohydr Polym 2018; 193:281-288. [DOI: 10.1016/j.carbpol.2018.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/24/2018] [Accepted: 04/01/2018] [Indexed: 11/27/2022]
|
16
|
Rengifo-Herrera JA, Marín-Silva DA, Mendoza-Portillo E, Pinotti AN, Pizzio LR. Chitosan films containing TiO2 nanoparticles modified with tungstophosphoric acid for the photobleaching of malachite green in solid-gas interfaces upon different wavelengths. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Lewandowska K. Surface properties of chitosan composites with poly(N-vinylpyrrolidone) and montmorillonite. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17020043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Beigzadeh Ghelejlu S, Esmaiili M, Almasi H. Characterization of chitosan-nanoclay bionanocomposite active films containing milk thistle extract. Int J Biol Macromol 2016; 86:613-21. [PMID: 26853823 DOI: 10.1016/j.ijbiomac.2016.02.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/27/2015] [Accepted: 02/03/2016] [Indexed: 01/08/2023]
Abstract
Nowadays, bio-based and antioxidant active packaging is attracting significant attention as one of the preferred emerging technologies to prevent sensitive oxidation of foods. In this study, chitosan/nanoclay nanocomposite active films containing three different levels of sodium montmorillonite (MMT) (1, 3 and 5% w/w based on chitosan) and Silybum marianum L. extract (SME) (0.5, 1 and 1.5% v/v) were prepared. The obtained films were characterized in terms of structural, thermal, mechanical, and barrier properties as well as antioxidant behavior. X-ray diffraction patterns confirmed the exfoliated dispersion form of MMT nanolayers. Scanning electron microscopy images showed an increase in films' surface roughness by the addition of MMT. The results indicated that water vapor permeability and solubility of films reduced significantly (p<0.05) by incorporation of MMT and SME. The mechanical and optical properties of films were significantly affected by the content of MMT and SME (p<0.05). Antioxidant properties of the films also were improved by SME incorporation, suggesting that the formulated bionanocomposites could be considered as a promising antioxidant active packaging material.
Collapse
Affiliation(s)
- Sara Beigzadeh Ghelejlu
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Urmia University, Urmia, Iran.
| | - Mohsen Esmaiili
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Urmia University, Urmia, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Urmia University, Urmia, Iran.
| |
Collapse
|
19
|
Elwakeel KZ, El-Bindary AA, Ismail A, Morshidy AM. Sorptive removal of Remazol Brilliant Blue R from aqueous solution by diethylenetriamine functionalized magnetic macro-reticular hybrid material. RSC Adv 2016. [DOI: 10.1039/c5ra26508h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chitosan, glycidyl methacrylate (synthetic polymer) and magnetite are combined to produce novel magnetic macro-reticular hybrid synthetic–natural materials which are shown to be effective sorbents for RBBR ions.
Collapse
Affiliation(s)
- K. Z. Elwakeel
- Environmental Science Department
- Faculty of Science
- Port-Said University
- Port-Said
- Egypt
| | - A. A. El-Bindary
- Chemistry Department
- Faculty of Science
- Damietta University
- Damietta 34517
- Egypt
| | - A. Ismail
- Environmental Science Department
- Faculty of Science
- Port-Said University
- Port-Said
- Egypt
| | - A. M. Morshidy
- National Institute of Oceanography and Fisheries (NIOF)
- Kafr Elsheikh
- Egypt
| |
Collapse
|