1
|
Feng L, Wang Z, Lei Z, Zhang X, Zhai B, Sun J, Guo D, Wang D, Luan F, Zou J, Shi Y. Amomum villosum Lour.: An insight into ethnopharmacological, phytochemical, and pharmacological overview. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118615. [PMID: 39069030 DOI: 10.1016/j.jep.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amomum villosum Lour. is a widely esteemed species of medicinal plant on a global scale. Its medicinal properties have been documented as early as the Tang Dynasty, particularly the fruit, which holds significant medicinal and culinary value. This plant is extensively found in tropical and subtropical regions across Asia. It possesses the properties of warming the middle and dispelling cold, regulating Qi to invigorate the spleen, harmonizing the stomach to alleviate vomiting, and nourishing deficiencies. In recent years, A. villosum has garnered global attention for its remarkable biological activity. Currently, numerous bioactive compounds have been successfully isolated and identified, showcasing a diverse array of pharmacological activities and medicinal benefits. AIM OF THE WORK This review aims to provide a comprehensive analysis of the research advancements in the geographical distribution, botany, traditional applications, phytochemistry, pharmacological activity, quality control, clinical applications, and toxicology of A. villosum. Furthermore, a critical summary of the current research and future prospects of this plant is presented. MATERIALS AND METHODS Obtain information about A. villosum from ancient literature, doctoral and master's theses, and scholarly databases including Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, plant directories, and clinical reports. RESULTS At present, about 500 compounds have been isolated and identified from various organs of A. villosum, including monoterpenoids, sesquiterpenoids, diterpenoids, flavonoids, phenols, polysaccharides, and other components. Modern pharmacological studies have revealed that A. villosum exhibits exceptional biological activities in vitro and in vivo, such as anti-inflammatory, antioxidant, liver protection, anti-tumor, hypoglycemic, anti-microbial, regulating gastrointestinal activity, immune regulation, regulating flora, anti-obesity, estrogen, and more. Some of these activities have found extensive application in clinical practice. CONCLUSION A. villosum, as a well-established medicinal herb, holds significant therapeutic potential and is also valued for its culinary applications. Currently, the research on the active components or crude extracts of A. villosum and their potential mechanisms of action remains limited. Furthermore, certain pharmacological activities require further elucidation for a comprehensive understanding of its internal mechanisms. Moreover, it is strongly recommended to prioritize research on pharmacokinetics and toxicity studies. These efforts will facilitate a thorough exploration of the potential of A. villosum and establish a robust foundation for its potential clinical applications.
Collapse
Affiliation(s)
- Lile Feng
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Zhichao Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Zhang C, Liu J, Xing Z, Chen Y, Chen H, Zhu Y, Wu H. PLGA nanoparticle with Amomum longiligulare polysaccharide 1 increased the immunogenicity of infectious bursal disease virus VP2 protein. Br Poult Sci 2023; 64:176-184. [PMID: 36469700 DOI: 10.1080/00071668.2022.2154639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. The purpose of this study was to create ALP1-VP2-PLGA nanoparticle (AVPN) and to study the immunogenicity of AVPN. AVPN was prepared and observed by scanning and transmission electron microscopies.2. Chickens were divided into five groups and vaccinated with normal saline, VP2 protein, ALP1 and VP2 protein, AVPN or PLGA, respectively. After 28 days, the immune organ indexes were calculated; specific antibody levels in blood were detected by enzyme-linked immunosorbent assay (ELISA). Additionally, the spleen and bursa of Fabricius were determined by HE staining, immunological cytokine mRNA levels in bursa of Fabricius were detected by qPCR andchicken body weight was determined.3. The results indicated that AVPN was a spherical nanoparticle with a diameter of about 85 nm. It increased bursal indexes and IBDV-specific antibody levels and promoted the expression of IL-2 mRNA in blood and TNF-α and IgG mRNA in bursa of Fabricius. This promoted growth.4. This study suggested that AVPN can increase immunogenicity of VP2 protein, and it could possibly be used as an IBDV subunit vaccine.
Collapse
Affiliation(s)
- C Zhang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou, P R China
| | - J Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Z Xing
- Wenchang Longquan Wenchang Chicken Industrial Co. Ltd, Wenchang, P R China
| | - Y Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou, P R China
| | - H Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou, P R China
| | - Y Zhu
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou, P R China
| | - H Wu
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou, P R China
| |
Collapse
|
3
|
Gong L, Ding X, Guan W, Zhang D, Zhang J, Bai J, Xu W, Huang J, Qiu X, Zheng X, Zhang D, Li S, Huang Z, Su H. Comparative chloroplast genome analyses of Amomum: insights into evolutionary history and species identification. BMC PLANT BIOLOGY 2022; 22:520. [PMID: 36352400 PMCID: PMC9644571 DOI: 10.1186/s12870-022-03898-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Species in genus Amomum always have important medicinal and economic values. Classification of Amomum using morphological characters has long been a challenge because they exhibit high similarity. The main goals of this study were to mine genetic markers from cp genomes for Amomum species identification and discover their evolutionary history through comparative analysis. RESULTS Three species Amomum villosum, Amomum maximum and Amomum longipetiolatum were sequenced and annotated for the complete chloroplast (cp) genomes, and the cp genomes of A. longipetiolatum and A. maximum were the first reported. Three cp genomes exhibited typical quadripartite structures with 163,269-163,591 bp in length. Each genome encodes 130 functional genes including 79 protein-coding, 26 tRNAs and 3 rRNAs genes. 113-152 SSRs and 99 long repeats were identified in the three cp genomes. By designing specific primers, we amplified the highly variable loci and the mined genetic marker ccsA exhibited a relatively high species identification resolution in Amomum. The nonsynonymous and synonymous substitution ratios (Ka/Ks) in Amomum and Alpinia showed that most genes were subjected to a purifying selection. Phylogenetic analysis revealed the evolutionary relationships of Amomum and Alpinia species and proved that Amomum is paraphyletic. In addition, the sequenced sample of A. villosum was found to be a hybrid, becoming the first report of natural hybridization of this genus. Meanwhile, the high-throughput sequencing-based ITS2 analysis was proved to be an efficient tool for interspecific hybrid identification and with the help of the chloroplast genome, the hybrid parents can be also be determined. CONCLUSION The comparative analysis and mined genetic markers of cp genomes were conducive to species identification and evolutionary relationships of Amomum.
Collapse
Affiliation(s)
- Lu Gong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxia Ding
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wan Guan
- Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Danchun Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China
| | - Jing Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Junqi Bai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wen Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Juan Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaohui Qiu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Danyan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijie Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhihai Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China.
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| | - He Su
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, China.
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Liu H, Zhuang S, Liang C, He J, Brennan CS, Brennan MA, Ma L, Xiao G, Chen H, Wan S. Effects of a polysaccharide extract from Amomum villosum Lour. on gastric mucosal injury and its potential underlying mechanism. Carbohydr Polym 2022; 294:119822. [DOI: 10.1016/j.carbpol.2022.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
|
5
|
Characterizations of glucose-rich polysaccharides from Amomum longiligulare T.L. Wu fruits and their effects on immunogenicities of infectious bursal disease virus VP2 protein. Int J Biol Macromol 2021; 183:1574-1584. [PMID: 34044027 DOI: 10.1016/j.ijbiomac.2021.05.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study is to explore the characterization of Amomum longiligulare T.L. Wu fruits polysaccharide (ALP) and their immune enhancement effects. Two homogeneous polysaccharides (ALP1 and ALP2) were isolated from the fruits. The structural characterization results showed that ALP1 (26.10 kDa) and ALP2 (64.10 kDa) were both mainly composed of glucose. Furthermore, ALP1 was consisted of (1,2)-α-D-Glcp, (1,2,3)-α-D-Glcp and T-α-D-Glcp, while ALP2 was consisted of T-α-D-Glcp, (1,3)-α-D-Glcp and (1,3,6)-α-D-Glcp. Afterwards, the immune enhancement effects of two polysaccharides were evaluated by determining their effects on immunogenicities of infectious bursal disease virus (IBDV) VP2 protein. Chickens were immunized with IBDV VP2 protein accompanied with ALP1/ALP2. And the results indicated both ALP1 and ALP2 promoted the weights and bursa of fabricius indexes of chickens. In addition, both two polysaccharides increased specific IBDV antibody levels, while ALP1 possessed higher immune enhancement ability and was expected to be an adjuvant for IBDV VP2 protein.
Collapse
|
6
|
Purification, Structural Characterization and Immunomodulatory Effects of Polysaccharides from Amomumvillosum Lour. on RAW 264.7 Macrophages. Molecules 2021; 26:molecules26092672. [PMID: 34063301 PMCID: PMC8125432 DOI: 10.3390/molecules26092672] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-β-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-β-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.
Collapse
|
7
|
Wang W, Zou Y, Li Q, Mao R, Shao X, Jin D, Zheng D, Zhao T, Zhu H, Zhang L, Yang L, Wu X. Immunomodulatory effects of a polysaccharide purified from Lepidium meyenii Walp. on macrophages. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|