1
|
Ni R, Ge K, Luo Y, Zhu T, Hu Z, Li M, Tao P, Chi J, Li G, Yuan H, Pang Q, Gao W, Zhang P, Zhu Y. Highly sensitive microfluidic sensor using integrated optical fiber and real-time single-cell Raman spectroscopy for diagnosis of pancreatic cancer. Biosens Bioelectron 2024; 264:116616. [PMID: 39137518 DOI: 10.1016/j.bios.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic cancer is notoriously lethal due to its late diagnosis and poor patient response to treatments, posing a significant clinical challenge. This study introduced a novel approach that combines a single-cell capturing platform, tumor-targeted silver (Ag) nanoprobes, and precisely docking tapered fiber integrated with Raman spectroscopy. This approach focuses on early detection and progression monitoring of pancreatic cancer. Utilizing tumor-targeted Ag nanoparticles and tapered multimode fibers enhances Raman signals, minimizes light loss, and reduces background noise. This advanced Raman system allows for detailed molecular spectroscopic examination of individual cells, offering more practical information and enabling earlier detection and accurate staging of pancreatic cancer compared to conventional multicellular Raman spectroscopy. Transcriptomic analysis using high-throughput gene screening and transcriptomic databases confirmed the ability and accuracy of this method to identify molecular changes in normal, early, and metastatic pancreatic cancer cells. Key findings revealed that cell adhesion, migration, and the extracellular matrix are closely related to single-cell Raman spectroscopy (SCRS) results, highlighting components such as collagen, phospholipids, and carotene. Therefore, the SCRS approach provides a comprehensive view of the molecular composition, biological function, and material changes in cells, offering a novel, accurate, reliable, rapid, and efficient method for diagnosing and monitoring pancreatic cancer.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Kaixin Ge
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Min Li
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Pan Tao
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Jinyi Chi
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Guanron Li
- Health Science Center, Ningbo University, Ningbo, 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - Haojun Yuan
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wanlei Gao
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China.
| | - Peiqing Zhang
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Mohammadi S, Kharrazi S, Mazlomi M, Amani A, Tavoosidana G. Investigation of Melphalan interaction as an alkylating agent with nucleotides by using surface enhanced Raman spectroscopy (SERS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124359. [PMID: 38704996 DOI: 10.1016/j.saa.2024.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/07/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
SERS (Surface Enhanced Raman Spectroscopy) is a new Raman spectroscopy which relies on Surface Plasmon Resonance (SPR) of metal nanoparticles. We have applied colloidal silver and gold nanoparticles as amplifier agents to enhance nucleotide Raman signals. It is observed that without these enhancing agents, it is impossible to investigate nucleotide spectrum due to weak Raman signals. Interaction mechanism of Melphalan, an anticancer drug with four nucleotides (Adenine, Cytosine, Guanine, Thymine) was investigated using SERS to detect and identify changes due to alkylating process in Raman spectra. After incubating Melphalan drug with nucleotides for 24 h at 37 °C, some changes occurred in SERS spectrum and interpretation of SERS spectra revealed the influence of the alkyl substitution on peaks and Raman shifts. After incubation of Melphalan with each nucleotide, intensity of relevant SERS signals assigned to Amid III group of Cytosine and Amid I of Thymine decreased significantly, confirming alkylating taking place. In this study, we also investigated the effect of nanoparticles type on nucleotide spectrum. We could not obtain useful information in the cases of guanine nucleotide. The SERS spectrum of Cytosine as an example of nucleotides in aqueous solution compared to solid state and results demonstrated that in solid state better signals were obtained than in liquid state.
Collapse
Affiliation(s)
- Simah Mohammadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Natural Products and Medicinal Plants research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Majzner K, Deckert-Gaudig T, Baranska M, Deckert V. DOX-DNA Interactions on the Nanoscale: In Situ Studies Using Tip-Enhanced Raman Scattering. Anal Chem 2024; 96:8905-8913. [PMID: 38771097 PMCID: PMC11154666 DOI: 10.1021/acs.analchem.3c05372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Chemotherapeutic anthracyclines, like doxorubicin (DOX), are drugs endowed with cytostatic activity and are widely used in antitumor therapy. Their molecular mechanism of action involves the formation of a stable anthracycline-DNA complex, which prevents cell division and results in cell death. It is known that elevated DOX concentrations induce DNA chain loops and overlaps. Here, for the first time, tip-enhanced Raman scattering was used to identify and localize intercalated DOX in isolated double-stranded calf thymus DNA, and the correlated near-field spectroscopic and morphologic experiments locate the DOX molecules in the DNA and provide further information regarding specific DOX-nucleobase interactions. Thus, the study provides a tool specifically for identifying intercalation markers and generally analyzing drug-DNA interactions. The structure of such complexes down to the molecular level provides mechanistic information about cytotoxicity and the development of potential anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Majzner
- Department
of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tanja Deckert-Gaudig
- Friedrich
Schiller University Jena, Institute of Physical Chemistry and Abbe
Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
- Leibniz
Insti-tute of Photonic Technology, Albert-Einstein-Str.9, Jena 07745, Germany
| | - Malgorzata Baranska
- Department
of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian
Centre for Exper-Imental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Volker Deckert
- Friedrich
Schiller University Jena, Institute of Physical Chemistry and Abbe
Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
- Leibniz
Insti-tute of Photonic Technology, Albert-Einstein-Str.9, Jena 07745, Germany
| |
Collapse
|
5
|
Yao L, Li Y, Zuo Z, Gong Z, Zhu J, Feng X, Sun D, Wang K. Studying the Interaction between Bendamustine and DNA Molecule with SERS Based on AuNPs/ZnCl 2/NpAA Solid-State Substrate. Int J Mol Sci 2023; 24:13517. [PMID: 37686321 PMCID: PMC10487454 DOI: 10.3390/ijms241713517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Bendamustine (BENDA) is a bifunctional alkylating agent with alkylating and purinergic antitumor activity, which exerts its anticancer effects by direct binding to DNA, but the detailed mechanism of BENDA-DNA interaction is poorly understood. In this paper, the interaction properties of the anticancer drug BENDA with calf thymus DNA (ctDNA) were systematically investigated based on surface-enhanced Raman spectroscopy (SERS) technique mainly using a novel homemade AuNPs/ZnCl2/NpAA (NpAA: nano porous anodic alumina) solid-state substrate and combined with ultraviolet-visible spectroscopy and molecular docking simulation to reveal the mechanism of their interactions. We experimentally compared and studied the SERS spectra of ctDNA, BENDA, and BENDA-ctDNA complexes with different molar concentrations (1:1, 2:1, 3:1), and summarized their important characteristic peak positions, their peak position differences, and hyperchromic/hypochromic effects. The results showed that the binding modes include covalent binding and hydrogen bonding, and the binding site of BENDA to DNA molecules is mainly the N7 atom of G base. The results of this study help to understand and elucidate the mechanism of BENDA at the single-molecule level, and provide guidance for the further development of effective new drugs with low toxicity and side effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqiang Feng
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Key Laboratory of Photoelectronic Technology of Shaanxi Province, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| | | | - Kaige Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Key Laboratory of Photoelectronic Technology of Shaanxi Province, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| |
Collapse
|
6
|
Sabir A, Majeed MI, Nawaz H, Rashid N, Javed MR, Iqbal MA, Shahid Z, Ashfaq R, Sadaf N, Fatima R, Sehar A, Zulfiqar A. Surface-enhanced Raman spectroscopy for studying the interaction of N-propyl substituted imidazole compound with salmon sperm DNA. Photodiagnosis Photodyn Ther 2022; 41:103262. [PMID: 36587860 DOI: 10.1016/j.pdpdt.2022.103262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Surface Enhanced Raman Spectroscopy (SERS) is a very promising and fast technique for studying drugs and for detecting chemical nature of a molecule and DNA interaction. In the current study, SERS is employed to check the interaction of different concentrations of n-propyl imidazole derivative ligand with salmon sperm DNA using silver nanoparticles as SERS substrates. OBJECTIVES Multivariate data analysis technique like principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) are employed for the detailed analysis of the SERS spectral features associated with the mode of action of the imidazole derivative ligand with DNA. METHODOLOGY Silver nanoparticles were used as a SERS substrate in DNA-drug interaction. Five different concentrations of ligands were interacted with DNA and mix with Ag-NPs as substrate. The SERS spectra of were acquired for all seven samples and processed using MATLAB. Additionally, PCA and PLS-DA were used to assessed the ability SERS to differentiate interaction of DNA-drug. RESULTS Differentiating SERS features having changes in their peak position and intensities are observed including 629, 655, 791, 807, 859, 1337, 1377 and 1456 cm-1. These SERS features reveal that binding of ligand with DNA is electrostatic in nature, and have specificity to major groove where it forms GC-CG interstrand cross-linking with the DNA double helix. CONCLUSIONS SERS give significant information regarding to Drug-DNA interaction mechanism, SERS spectra inferred the mode of action of anticancer compound that are imidazole in nature.
Collapse
Affiliation(s)
- Amina Sabir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zaeema Shahid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rayha Ashfaq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nimra Sadaf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rida Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Aafia Sehar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anam Zulfiqar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Qi L, Ding L, Wang S, Zhong Y, Zhao D, Gao L, Wang W, Lv P, Xu Y, Wang S. A network meta-analysis: the overall and progression-free survival of glioma patients treated by different chemotherapeutic interventions combined with radiation therapy (RT). Oncotarget 2018; 7:69002-69013. [PMID: 27458167 PMCID: PMC5356607 DOI: 10.18632/oncotarget.10763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/10/2016] [Indexed: 12/02/2022] Open
Abstract
Different chemotherapy drugs are generally introduced in clinical practices combining with therapy for glioma treatment. However, these chemotherapy drugs have rarely been compared with each other and the optimum drug still remains to be proved. In this research, medical databases were consulted, PubMed, Embase and Cochrane Library included. As primary outcomes, hazard ratio (HR) of overall survival (OS) and progression-free survival (PFS) with their corresponding 95% credential intervals (CrI) were reported. A network meta-analysis was conducted; the surface under the cumulative ranking curve (SUCRA) was utilized for treatment rank and a cluster analysis based on SUCRA values was performed. This research includes 14 trials with 3,681 subjects and eight interventions. In terms of network meta-analysis, placebo was proved to be inferior to the combination of temozolomide (TMZ), nimustine (ACNU) and cisplatin (CDDP). Also, bevacizumab (BEV) in conjunction with TMZ were significantly more effective than placebo with an HR of 0.40. The estimated probabilities from SUCRA verified the above outcomes, confirming that the combination of TMZ, ACNU and CDDP exhibited the highest ranking probability of 0.889 with respect to OS, while BEV in combination with TMZ - with a probability of 0.772 - ranked the first place with respect to PFS. According to the results of this network meta-analysis, the combination of (1) TMZ, ACNU and CDDP; (2) BEV in combination with TMZ and (3) cilengitide in combination with TMZ, are considered as the preferable choices of chemotherapy drugs for glioma treatment.
Collapse
Affiliation(s)
- Ling Qi
- Basic Medical College, Jilin Medical University, Jilin, China
| | - Lijuan Ding
- Department of Radiation Oncology, First Hospital of Jilin University, Changchun, China
| | - Shuran Wang
- Department of Science and Technology, Jilin Medical University, Jilin, China
| | - Yue Zhong
- Department of Science and Technology, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- Department of Science and Technology, Jilin Medical University, Jilin, China
| | - Ling Gao
- Department of Radiation Oncology, First Hospital of Jilin University, Changchun, China
| | - Weiyao Wang
- Basic Medical College, Jilin Medical University, Jilin, China
| | - Peng Lv
- Basic Medical College, Jilin Medical University, Jilin, China
| | - Ye Xu
- Basic Medical College, Jilin Medical University, Jilin, China
| | - Shudong Wang
- Center of Cardiovascular Diseases, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Agarwal S, Tyagi G, Chadha D, Mehrotra R. Structural-conformational aspects of tRNA complexation with chloroethyl nitrosourea derivatives: A molecular modeling and spectroscopic investigation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:1-11. [PMID: 27838504 DOI: 10.1016/j.jphotobiol.2016.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022]
Abstract
Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (Ka) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×102M-1, 4.923×102M-1 and 4.223×102M-1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and efficient RNA targeted chemotherapeutic agents.
Collapse
Affiliation(s)
- Shweta Agarwal
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Gunjan Tyagi
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Deepti Chadha
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Ranjana Mehrotra
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India.
| |
Collapse
|
9
|
Ray B, Agarwal S, Kadian H, Gambhir K, Sharma P, Mehrotra R. Deciphering molecular aspects of interaction between anticancer drug mitoxantrone and tRNA. J Biomol Struct Dyn 2016; 35:2090-2102. [DOI: 10.1080/07391102.2016.1213185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bhumika Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Shweta Agarwal
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Heena Kadian
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Kaweri Gambhir
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Parag Sharma
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Ranjana Mehrotra
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
10
|
Ray B, Agarwal S, Lohani N, Rajeswari MR, Mehrotra R. Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA. J Biomol Struct Dyn 2016; 34:2518-35. [DOI: 10.1080/07391102.2015.1118708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bhumika Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Shweta Agarwal
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Neelam Lohani
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Moganty R. Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ranjana Mehrotra
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|