1
|
Liu Y, Cong H, Bi C, Zha H, Yu S, Zhao L, Zhu Q. Molecular characterization and functional analysis of peroxiredoxin 1 (Prx1) from roughskin sculpin (Trachidermus fasciatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:513-526. [PMID: 38103084 DOI: 10.1007/s10695-023-01281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Peroxiredoxin1(Prx1), also known as natural killer enhancing factor A (NKEF-A), is a crucial antioxidant involving in various cellular activities and immune response against bacterial and viral infection in fish. In the present study, a full-length Prx1 cDNA sequence (TfPrx1) was firstly cloned from roughskin sculpin (Trachidermus fasciatus), which was composed of 1044 bp nucleotides encoding a peptide of 199 amino acids with a molecular weight of 22.35 kDa and a theoretical pI of 6.42, respectively. The predicted peptide was a typical 2-cys Prx containing two conserved characteristic motifs 43FYPLDFTFVCPTEI56 and 170GEVCPA175 with the two conserved peroxidatic and resolving cysteine residuals forming disulfide bond. Quantitative real-time PCR analysis showed that TfPrx1 was ubiquitously expressed in all tested tissues with the highest expression in the intestine. It could be significantly induced following LPS injection and heavy metal exposure. Recombinant TfPrx1 (rTfPrx1) displayed insulin disulfide reduction and ROS-scavenging activity in a concentration-dependent manner, and further exhibited DNA and cytoprotective effects under oxidative stress. These results suggested that TfPrx1 protein may play an important role in fish immune protection from oxidative damage.
Collapse
Affiliation(s)
- Yingying Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital, Weihai, 264209, Shandong, China
| | - Caihong Bi
- Weihai No. 4 High School, Weihai, 264209, Shandong, China
| | - Haidong Zha
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Shanshan Yu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Qian Zhu
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
2
|
Koner D, Nag N, Kalita P, Padhi AK, Tripathi T, Saha N. Functional expression, localization, and biochemical characterization of thioredoxin glutathione reductase from air-breathing magur catfish, Clarias magur. Int J Biol Macromol 2023; 230:123126. [PMID: 36603726 DOI: 10.1016/j.ijbiomac.2022.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
The glutathione (GSH) and thioredoxin (Trx) systems regulate cellular redox homeostasis and maintain antioxidant defense in most eukaryotes. We earlier reported the absence of gene coding for the glutathione reductase (GR) enzyme of the GSH system in the facultative air-breathing catfish, Clarias magur. Here, we identified three thioredoxin reductase (TrxR) genes, one of which was later confirmed as a thioredoxin glutathione reductase (TGR). We then characterized the novel recombinant TGR enzyme of C. magur (CmTGR). The tissue-specific expression of the txnrd genes and the tissue-specific activity of the TrxR enzyme were analyzed. The recombinant CmTGR is a dimer of ~133 kDa. The protein showed TrxR activity with 5,5'-diothiobis (2-nitrobenzoic acid) reduction assay with a Km of 304.40 μM and GR activity with a Km of 58.91 μM. Phylogenetic analysis showed that the CmTGR was related to the TrxRs of fishes and distantly related to the TGRs of platyhelminth parasites. The structural analysis revealed the conserved glutaredoxin active site and FAD- and NADPH-binding sites. To our knowledge, this is the first report of the presence of a TGR in any fish. This unusual presence of TGR in C. magur is crucial as it helps maintain redox homeostasis under environmental stressors-induced oxidative stress.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
3
|
Kueakhai P, Chaithirayanon K, Chaiwichien A, Samrit T, Osotprasit S, Suksomboon P, Jaikua W, Sobhon P, Changklungmoa N. Monoclonal antibody against Fasciola gigantica glutathione peroxidase and their immunodiagnosis potential for fasciolosis. Vet Parasitol 2019; 276:108979. [PMID: 31778940 DOI: 10.1016/j.vetpar.2019.108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022]
Abstract
Glutathione peroxidases (GPx), major antioxidant enzymes, secreted by Fasciola spp., are important for the parasite evasion and protection against the host's immune responses. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica glutathione peroxidase (rFgGPx) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with rFgGPx. This MoAb (named 7B8) is IgG1 with κ light chains, and it reacted specifically with rFgGPx at a molecular weight 19 kDa as shown by immunoblotting, and reacted with the native FgGPx in the extracts of whole body (WB), metacercariae, newly excysted juveniles (NEJs), 4 week-old juveniles and adult F. gigantica as shown by indirect ELISA. It did not cross react with antigens in WB fractions from other adult trematodes, including Fischoederius cobboldi, Paramphistomum cervi, Setaria labiato-papillosa, Eurytrema pancreaticum, Gastrothylax crumenifer and Gigantocotyle explanatum. By immunolocalization, MoAb against rFgGPx reacted with the native protein in the tegument, vitelline cells, and eggs of adult F. gigantica. In addition, the sera from mice experimentally infected with F. gigantica were tested positive by this indirect sandwich ELISA. This result indicated that FgGPx is an abundantly expressed parasite protein that is secreted into the tegumental antigens (TA), therefore, FgGPx and its MoAb may be used for immunodiagnosis of both early and late fasciolosis gigantica in animals and humans.
Collapse
Affiliation(s)
- Pornanan Kueakhai
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Athit Chaiwichien
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Tepparit Samrit
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Supawadee Osotprasit
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Phawiya Suksomboon
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Wipaphorn Jaikua
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Narin Changklungmoa
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand; Research unit of vaccine and diagnosis of parasitic diseases, Burapha University, Long-Hard Bangsaen Road, Mueang District, Chonburi 20131, Thailand.
| |
Collapse
|
4
|
Expression and characterization of glutathione peroxidase of the liver fluke, Fasciola gigantica. Parasitol Res 2018; 117:3487-3495. [DOI: 10.1007/s00436-018-6046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022]
|
5
|
Godahewa G, Perera N, Lee J. Insights into the multifunctional role of natural killer enhancing factor-A (NKEF-A/Prx1) in big-belly seahorse (Hippocampus abdominalis): DNA protection, insulin reduction, H2O2 scavenging, and immune modulation activity. Gene 2018; 642:324-334. [DOI: 10.1016/j.gene.2017.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/29/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023]
|
6
|
Shukla R, Shukla H, Kalita P, Tripathi T. Structural insights into natural compounds as inhibitors of Fasciola gigantica thioredoxin glutathione reductase. J Cell Biochem 2017; 119:3067-3080. [PMID: 29052925 DOI: 10.1002/jcb.26444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 01/12/2023]
Abstract
Fascioliasis is caused by the helminth parasites of genus Fasciola. Thioredoxin glutathione reductase (TGR) is an important enzyme in parasitic helminths and plays an indispensable role in its redox biology. In the present study, we conducted a structure-based virtual screening of natural compounds against the Fasciola gigantica TGR (FgTGR). The compounds were docked against FgTGR in four sequential docking modes. The screened ligands were further assessed for Lipinski and ADMET prediction so as to evaluate drug proficiency and likeness property. After refinement, three potential inhibitors were identified that were subjected to 50 ns molecular dynamics simulation and free energy binding analyses to evaluate the dynamics of protein-ligand interaction and the stability of the complexes. Key residues involved in the interaction of the selected ligands were also determined. The results suggested that three top hits had a negative binding energy greater than GSSG (-91.479 KJ · mol-1 ), having -152.657, -141.219, and -92.931 kJ · mol-1 for compounds with IDs ZINC85878789, ZINC85879991, and ZINC36369921, respectively. Further analysis showed that the compound ZINC85878789 and ZINC85879991 displayed substantial pharmacological and structural properties to be a drug candidate. Thus, the present study might prove useful for the future design of new derivatives with higher potency and specificity.
Collapse
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, India
| |
Collapse
|
7
|
Tripathi T, Suttiprapa S, Sripa B. Unusual thiol-based redox metabolism of parasitic flukes. Parasitol Int 2017; 66:390-395. [DOI: 10.1016/j.parint.2016.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
|
8
|
Gupta A, Sripa B, Tripathi T. Purification and characterization of two-domain glutaredoxin in the parasitic helminth Fasciola gigantica. Parasitol Int 2017; 66:432-435. [DOI: 10.1016/j.parint.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/28/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
9
|
Shukla R, Shukla H, Kalita P, Sonkar A, Pandey T, Singh DB, Kumar A, Tripathi T. Identification of potential inhibitors of Fasciola gigantica thioredoxin1: computational screening, molecular dynamics simulation, and binding free energy studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1344141] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amit Sonkar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Dev Bukhsh Singh
- Department of Biotechnology, Institute of Biosciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
10
|
Chaudhari R, Sharma S, Patankar S. Glutathione and thioredoxin systems of the malaria parasite Plasmodium falciparum: Partners in crime? Biochem Biophys Res Commun 2017; 488:95-100. [PMID: 28479253 DOI: 10.1016/j.bbrc.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022]
Abstract
In P. falciparum, antioxidant proteins of the glutathione and thioredoxin systems are compartmentalized. Some subcellular compartments have only a partial complement of these proteins. This lack of key anti-oxidant proteins in certain sub-cellular compartments might be compensated by functional complementation between these systems. By assessing the cross-talk between these systems, we show for the first time, that the glutathione system can reduce thioredoxins that are poor substrates for thioredoxin reductase (Thioredoxin-like protein 1 and Thioredoxin 2) and thioredoxins that lack access to thioredoxin reductase (Thioredoxin 2). Our data suggests that crosstalk between the glutathione and thioredoxin systems does exist; this could compensate for the absence of certain antioxidant proteins from key subcellular compartments.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biological Sciences, TIFR, Colaba, Mumbai 400005, India.
| | - Shobhona Sharma
- Department of Biological Sciences, TIFR, Colaba, Mumbai 400005, India.
| | - Swati Patankar
- Department of Biosciences & Bioengineering, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
11
|
Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling. Int J Biol Macromol 2016; 89:152-60. [DOI: 10.1016/j.ijbiomac.2016.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 01/21/2023]
|