1
|
Ma K, Wang S, Ma Y, Zeng L, Xu K, Mu N, Lai Y, Shi Y, Yang C, Chen B, Quan Y, Li L, Lu Y, Yang Y, Liu Y, Hu R, Wang X, Chen Y, Bian X, Feng H, Li F, Chen T. Increased oxygen stimulation promotes chemoresistance and phenotype shifting through PLCB1 in gliomas. Drug Resist Updat 2024; 76:101113. [PMID: 39053384 DOI: 10.1016/j.drup.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Gliomas, the most common CNS (central nerve system) tumors, face poor survival due to severe chemoresistance exacerbated by hypoxia. However, studies on whether altered hypoxic conditions benefit for chemo-sensitivity and how gliomas react to increased oxygen stimulation are limited. In this study, we demonstrated that increased oxygen stimulation promotes glioma growth and chemoresistance. Mechanically, increased oxygen stimulation upregulates miR-1290 levels. miR-1290, in turn, downregulates PLCB1, while PLCB1 facilitates the proteasomal degradation of β-catenin and active-β-catenin by increasing the proportion of ubiquitinated β-catenin in a destruction complex-independent mechanism. This process inhibits PLCB1 expression, leads to the accumulation of active-β-catenin, boosting Wnt signaling through an independent mechanism and ultimately promoting chemoresistance in glioma cells. Pharmacological inhibition of Wnt by WNT974 could partially inhibit glioma volume growth and prolong the shortened survival caused by increased oxygen stimulation in a glioma-bearing mouse model. Moreover, PLCB1, a key molecule regulated by increased oxygen stimulation, shows promising predictive power in survival analysis and has great potential to be a biomarker for grading and prognosis in glioma patients. These results provide preliminary insights into clinical scenarios associated with altered hypoxic conditions in gliomas, and introduce a novel perspective on the role of the hypoxic microenvironment in glioma progression. Furthermore, the outcomes reveal the potential risks of utilizing hyperbaric oxygen treatment (HBOT) in glioma patients, particularly when considering HBOT as a standalone option to ameliorate neuro-dysfunctions or when combining HBOT with a single chemotherapy agent without radiotherapy.
Collapse
Affiliation(s)
- Kang Ma
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shi Wang
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yingjie Ma
- Medical Data Science Academy, Chongqing Medical University, Chongqing, China
| | - Lan Zeng
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kai Xu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ning Mu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Lai
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaning Shi
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuanyan Yang
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Beike Chen
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yulian Quan
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Li
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongling Lu
- Medical Research Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Yang
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yan Liu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Rong Hu
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yujie Chen
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Hua Feng
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Li
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Tunan Chen
- Glioma Medical Research Center and Department of Neurosurgery, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
2
|
Cao W, Yuan F, Liu T, Yin R. Network pharmacology analysis, molecular docking integrated experimental verification reveal β-sitosterol as the active anti-NSCLC ingredient of Polygonatum cyrtonema Hua by suppression of PI3K/Akt/HIF-1α signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117900. [PMID: 38432577 DOI: 10.1016/j.jep.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonatum cyrtonema Hua (Huangjing) is a Chinese herb that is considered by ancient Chinese healers to have the effect of nourishing yin and moisturizing the lungs. It is clinically used to treat diseases of the pulmonary system, including non-small cell lung cancer. However, the precise active components and underlying mechanisms of Huangjing in the context of treating NSCLC remain uncertain. AIM OF THE STUDY This study aimed to explore the active components and mechanisms of Huangjing for the treatment of NSCLC by means of data mining, network pharmacology, and in vitro and vivo experiments. MATERIALS AND METHODS First, the main active compounds and key targets of Huangjing were predicted by network pharmacology. The potential key targets of Huangjing were molecularly docked with the main active compounds using Pymol. In vivo, we verified whether Huangjing and its main active compound have anti-lung cancer effects. Key targets were verified by PCR and immunohistochemistry. In vitro, we verified the effects of Huangjing's main active compound on the proliferation, apoptosis, and migration of A549 cells by CCK-8, colony formation, wound healing assay, and flow cytometry. Key targets and signaling pathway were validated by PCR and Western blot. RESULTS The network pharmacology results suggested that β-sitosterol was the main active substance. TP53, JUN, AKT1, MAPK14, ESR1, RELA, HIF1A, and RXRA were potential targets of Huangjing. Molecular docking results suggested that MAPK14, HIF-1α, and RXRA docked well with β-sitosterol. In vivo tests also confirmed that Huangjing could significantly inhibit the growth of lung cancer tumors, while PCR and immunohistochemistry results suggested that the expression of HIF-1α was significantly decreased. Critically, KEGG analysis indicated that the PI3K/Akt/HIF-1α signaling pathway was recommended as one of the main pathways related to the anti-NSCLC effect of Huangjing. We conducted in vitro experiments to confirm the significant impact of β-sitosterol on the proliferation, apoptosis, migration, and colony formation of A549 cells. Furthermore, our findings indicate that a high dosage of β-sitosterol may effectively decrease the expression of HIF-1α, AKT1, JUN and RELA in A549 cells. Similarly, in vitro experiments also revealed that high doses of β-sitosterol could inhibit the PI3K/Akt/HIF-1α signaling pathway. CONCLUSIONS We discovered Huangjing and its main active ingredient, β-sitosterol, can reduce HIF-1α, AKT1, JUN and RELA expression and decrease non-small cell lung cancer growth through the PI3K/Akt/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Wen Cao
- Department of integrated Chinese and Western medicine, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, PR China; The Third Clinical College of Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Fangwei Yuan
- The Fourth Clinical College of Nanjing Medical University, 210009, Nanjing, PR China; Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, PR China
| | - Tongyan Liu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, PR China; Department of Science and Technology, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, PR China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, PR China; Department of Science and Technology, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, PR China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211116, Nanjing, PR China; Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, 21009, Nanjing, PR China.
| |
Collapse
|
3
|
Ma Y, Li W, Yang G, Fan Y, Wei P, Liu H, Li X, Gu W, Zhou J, Meng Q. Crab microRNA-381-5p regulates prophenoloxidase activation and phagocytosis to promote intracellular bacteria Spiroplasma eriocheiris infection by targeting mannose-binding protein. Int J Biol Macromol 2024; 264:130503. [PMID: 38428783 DOI: 10.1016/j.ijbiomac.2024.130503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Mannose-binding lectin plays an essential role in bacteria or virus-triggered immune response in mammals. Previous proteomic data revealed that in Eriocheir sinensis, the mannose-binding protein was differentially expressed after Spiroplasma eriocheiris infection. However, the function of mannose-binding protein against pathogen infection in invertebrates is poorly understood. In this study, a crab mannose-binding protein (EsMBP) was characterized and enhanced the host resistance to S. eriocheiris infection. The application of recombinant C-type carbohydrate recognition domain (CTLD) of EsMBP led to increased crab survival and decreased S. eriocheiris load in hemocytes. Meanwhile, the overexpression of CTLD of EsMBP in Raw264.7 cells inhibited S. eriocheiris intracellular replication. In contrast, depletion of EsMBP by RNA interference or antibody neutralization attenuated phenoloxidase activity and hemocyte phagocytosis, rendering host more susceptible to S. eriocheiris infection. Furthermore, miR-381-5p in hemocytes suppressed EsMBP expression and negatively regulated phenoloxidase activity to exacerbate S. eriocheiris invasion of hemocytes. Taken together, our findings revealed that crab mannose-binding protein was involved in host defense against S. eriocheiris infection and targeted by miR-381-5p, providing further insights into the control of S. eriocheiris spread in crabs.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Wenbo Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Guanzheng Yang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Yangzhi Fan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Panpan Wei
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Hongli Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China.
| |
Collapse
|
4
|
He Z, Wang Y, Han L, Hu Y, Cong X. The mechanism and application of traditional Chinese medicine extracts in the treatment of lung cancer and other lung-related diseases. Front Pharmacol 2023; 14:1330518. [PMID: 38125887 PMCID: PMC10731464 DOI: 10.3389/fphar.2023.1330518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer stands as one of the most prevalent malignancies worldwide, bearing the highest morbidity and mortality rates among all malignant tumors. The treatment of lung cancer primarily encompasses surgical procedures, radiotherapy, and chemotherapy, which are fraught with significant side effects, unfavorable prognoses, and a heightened risk of metastasis and relapse. Although targeted therapy and immunotherapy have gradually gained prominence in lung cancer treatment, diversifying the array of available methods, the overall recovery and survival rates for lung cancer patients remain suboptimal. Presently, with a holistic approach and a focus on syndrome differentiation and treatment, Traditional Chinese Medicine (TCM) has emerged as a pivotal player in the prognosis of cancer patients. TCM possesses characteristics such as targeting multiple aspects, addressing a wide range of concerns, and minimizing toxic side effects. Research demonstrates that Traditional Chinese Medicine can significantly contribute to the treatment or serve as an adjunct to chemotherapy for lung cancer and other lung-related diseases. This is achieved through mechanisms like inhibiting tumor cell proliferation, inducing tumor cell apoptosis, suppressing tumor angiogenesis, influencing the cellular microenvironment, regulating immune system function, impacting signal transduction pathways, and reversing multidrug resistance in tumor cells. In this article, we offer an overview of the advancements in research concerning Traditional Chinese Medicine extracts for the treatment or adjunctive chemotherapy of lung cancer and other lung-related conditions. Furthermore, we delve into the challenges that Traditional Chinese Medicine extracts face in lung cancer treatment, laying the foundation for the development of diagnostic, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
- Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Cardoso RV, Pereira PR, Freitas CS, Mattos ÉBDA, Silva AVDF, Midlej VDV, Vericimo MA, Conte-Júnior CA, Paschoalin VMF. Tarin-Loaded Nanoliposomes Activate Apoptosis and Autophagy and Inhibit the Migration of Human Mammary Adenocarcinoma Cells. Int J Nanomedicine 2023; 18:6393-6408. [PMID: 37954458 PMCID: PMC10638905 DOI: 10.2147/ijn.s434626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Background Tarin, a lectin purified from Colocasia esculenta, promotes in vitro and in vivo immunomodulatory effects allied to promising anticancer and antimetastatic effects against human adenocarcinoma mammary cells. This makes this 47 kDa-protein a natural candidate against human breast cancer, a leading cause of death among women. Tarin encapsulated in pegylated nanoliposomes displays increased effectiveness in controlling the proliferation of a mammary adenocarcinoma lineage comprising MDA-MB-231 cells. Methods The mechanisms enrolled in anticancer and antimetastatic responses were investigated by treating MDA-MB-231 cells with nano-encapsulated tarin at 72 μg/mL for up to 48h through flow cytometry and transmission electron microscopy (TEM). The safety of nano-encapsulated tarin towards healthy tissue was also assessed by the resazurin viability assay, and the effect of nanoencapsulated tarin on cell migration was evaluated by scratch assays. Results Ultrastructural analyses of MDA-MB-231 cells exposed to nanoencapsulated tarin revealed the accumulation of autophagosomes and damaged organelles, compatible with autophagy-dependent cell death. On the other hand, the flow cytometry investigation detected the increased occurrence of acidic vacuolar organelles, a late autophagosome trait, along with the enhanced presence of apoptotic cells, activated caspase-3/7, and cell cycle arrest at G0/G1. No deleterious effects were observed in healthy fibroblast cells following tarin nanoencapsulated exposition, in contrast to reduced viability in cells exposed to free tarin. The migration of MDA-MB-231 cells was inhibited by nano-encapsulated tarin, with delayed movement by 24 h compared to free tarin. Conclusion The nanoliposome formulation delivers tarin in a delayed and sustained manner, as evidenced by the belated and potent antitumoral and anti-migration effects on adenocarcinoma cells, with no toxicity to healthy cells. Although further investigations are required to fully understand antitumorigenic tarin mechanisms, the activation of both apoptotic and autophagic machineries along with the caspase-3/7 pathway, and cell cycle arrest may comprise a part of these mechanisms.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cyntia Silva Freitas
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Yan M, Dong S, Gong Q, Xu Q, Ge Y. Comparative chloroplast genome analysis of four Polygonatum species insights into DNA barcoding, evolution, and phylogeny. Sci Rep 2023; 13:16495. [PMID: 37779129 PMCID: PMC10543443 DOI: 10.1038/s41598-023-43638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
The Polygonatum genus represents a perennial herb with the Liliaceae family, boasting substantial economic and medicinal significance. The majority of Polygonatum plants exhibit notable similarity while lacking distinctive identifying characteristics, thus resulting in the proliferation of adulterated medicinal materials within the market. Within this study, we conducted an in-depth analysis of the complete chloroplast (cp) genomes of four Polygonatum plants and compared them with four closely akin species. The primary objectives were to unveil structural variations, species divergence, and the phylogenetic interrelations among taxa. The cp genomes of the four Polygonatum species were typified by a conventional quadripartite structure, incorporating a large single copy region (LSC), a small single copy region (SSC), and a pair of inverted repeat regions. In total, we annotated a range of 131 to 133 genes, encompassing 84 to 86 protein-coding genes, 38 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 0 to 2 pseudogenes (ycf1, infA). Our comparative analyses unequivocally revealed a remarkable consistency in gene order and GC content within the Polygonatum genus. Furthermore, we predicted a potential 59 to 64 RNA editing sites distributed across 22 protein-coding genes, with the ndhB gene exhibiting the most prominent propensity for RNA editing sites, boasting a tally of 15 sites. Notably, six regions of substantial potential variability were ascertained, characterized by elevated Pi values. Noteworthy, molecular markers for species identification, population genetic scrutiny, and phylogenetic investigations within the genus were identified in the form of the psaJ-rpl33 and trnS + trnT-psaD barcodes. The resultant phylogenetic tree unequivocally depicted the formation of a monophyletic clade comprising species within the evolutionary framework of Liliaceae, demonstrating closer evolutionary affinities with Maianthemum, Dracaeneae, and Asparageae. This comprehensive compendium of findings collectively contributes to the advancement of molecular species identification, elucidation of phylogenetic interrelationships, and the establishment of DNA barcodes tailored to the Polygonatum species.
Collapse
Affiliation(s)
- Meixiu Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shujie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qiuyi Gong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qin Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
7
|
Zhang Q, Zheng K, Gao Y, Zhao S, Zhao Y, Li W, Nan Y, Li Z, Liu W, Wang X, Chen Y, Liu G, Jin F. Plasma exosomal miR-1290 and miR-29c-3p as diagnostic biomarkers for lung cancer. Heliyon 2023; 9:e21059. [PMID: 37916122 PMCID: PMC10616353 DOI: 10.1016/j.heliyon.2023.e21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Background Enhancing the diagnostic efficacy of early-stage lung cancer is crucial for improving prognosis. The objective of this study was to ascertain dependable exosomal miRNAs as biomarkers for the diagnosis of lung cancer. Methods Exosomal miRNA candidates were identified through miRNA sequencing and subsequently validated in various case-control sets using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The correlation between the expression of exosomal miRNAs and the clinicopathological features of lung cancer was investigated. To assess the diagnostic efficacy of exosomal miRNAs for lung cancer, the receiver operating characteristic (ROC) curve analysis was conducted. The optimal cutoff value of exosomal miRNAs was determined in the testing cohort and subsequently confirmed in the validation cohort. Results The results showed that the expression of exosomal miR-1290 was significantly elevated, while that of miR-29c-3p was significantly decreased in the plasma of lung cancer patients, especially in those with early-stage lung cancer, compared to individuals with benign lung conditions (P < 0.01). Exosomal miR-1290 and miR-29c-3p demonstrated superior diagnostic efficacy compared to conventional tumor biomarkers in distinguishing between lung cancer and benign lung diseases, as evidenced by their respective area under the curve (AUC) values of 0.934 and 0.868. Furthermore, exosomal miR-1290 and miR-29c-3p exhibited higher diagnostic efficiency in early-stage lung cancer than traditional tumor markers, with AUC values of 0.947 and 0.895, respectively. Notably, both exosomal miR-1290 and miR-29c-3p displayed substantial discriminatory capacity in distinguishing between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), as indicated by their respective AUC values of 0.810 and 0.842. Conclusions The findings of this study provided evidence that exosomal miR-1290 and miR-29c-3p hold significant potential as biomarkers for the early detection of lung cancer, as well as for differentiating between NSCLC and SCLC.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
- Department of Respiration, Eastern Air Force Hospital, NanJing 210000, China
| | - Kaifu Zheng
- Department of General Surgery, the 991th Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang 441000, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Shihong Zhao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Yabo Zhao
- Department of Thoracic surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Yandong Nan
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Zhengping Li
- Department of General Surgery, the 991th Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang 441000, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Xinxin Wang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Yanwei Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Gang Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China
| |
Collapse
|
8
|
Bektas S, Kaptan E. Therapeutic potential of lectins in the treatment of breast cancer: A review. Int J Biol Macromol 2023; 249:126073. [PMID: 37536407 DOI: 10.1016/j.ijbiomac.2023.126073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer is one of the most common malignancies and the leading cause of cancer-related deaths in women. There are 3 major subtypes of breast cancer that are distinguished by expression of estrogen or progesterone receptors and ERBB2 gene amplification. The 3 subtypes have different risk profiles and treatment strategies. Abnormal glycosylation is thought to play an important role in the development of the tumorigenic and metastatic phenotype of breast cancer and resistance to therapy. They may also be a potentially attractive target for breast cancer treatment. Proteins such as lectins, a family of carbohydrate-binding proteins found in a variety of organisms from viruses to humans, can specifically interact with abnormally glycosylated carbohydrate residues in cancer cells and induce cytotoxic effects. In recent years, there has been a growing number of research addressing studies demonstrating their antitumorigenic and antimalignant effects. This review summarizes recent findings on lectins from plants, animals, fungi, and bacteria that are potentially therapeutic agents against breast cancer and outlines the basis of their mechanism of action.
Collapse
Affiliation(s)
- Suna Bektas
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, 34134 Istanbul, Turkey
| | - Engin Kaptan
- Istanbul University, Faculty of Science, Department of Biology, Vezneciler, 34134 Istanbul, Turkey.
| |
Collapse
|
9
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
10
|
Cancer associated fibroblasts secreted exosomal miR-1290 contributes to prostate cancer cell growth and metastasis via targeting GSK3β. Cell Death Dis 2022; 8:371. [PMID: 35999213 PMCID: PMC9399109 DOI: 10.1038/s41420-022-01163-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/22/2023]
Abstract
Cancer-associated fibroblasts (CAFs) play crucial roles in mediating tumor growth and metastasis via transferring exosomes to neighboring cells, whereas the mechanisms by which CAFs regulate the tumorgenesis of prostate cancer (PC) remain largely unknown. In this study, CAFs and normal fibroblasts (NFs) were isolated from PC tissues and adjacent normal tissues, respectively. Exosomes (NFs-Exo and CAFs-Exo) were then isolated from the supernatant of NFs and CAFs. Next, the differentially expressed miRNAs (DEMs) between NFs-Exo and CAFs-Exo were identified using RNA-sequencing. Cell viability, migration and invasion were detected with CCK-8 and Transwell assays. Protein expression was measured with western blot. We found that CAFs-Exo remarkably enhanced PC cell migration, invasion, stemness, epithelial-mesenchymal transition (EMT) and metastasis. Significantly, miR-1290 level was upregulated in CAFs-Exo compared to NFs-Exo. In addition, CAFs could transfer exosomes to PC cells, resulting in a marked increase of miR-1290 level in cells. Moreover, exosomal miR-1290 could inhibit GSK3β/β-catenin signaling by binding with the downstream target GSK3β mRNA. Meanwhile, miR-1290 antagomir notably reversed the effects of CAFs-Exo on PC cells through activating GSK3β/β-catenin signaling. Collectively, exosomal miR-1290 from CAFs could promote PC cell growth and metastasis via inhibiting GSK3β/β-catenin signaling, suggesting that miR-1290 may serve as potential therapeutic target for the treatment of PC.
Collapse
|
11
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
12
|
Guz M, Jeleniewicz W, Cybulski M. An Insight into miR-1290: An Oncogenic miRNA with Diagnostic Potential. Int J Mol Sci 2022; 23:1234. [PMID: 35163157 PMCID: PMC8835968 DOI: 10.3390/ijms23031234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
For more than two decades, the view of the roles of non-coding RNAs (ncRNAs) has been radically changing. These RNA molecules that are transcribed from our genome do not have the capacity to encode proteins, but are critical regulators of gene expression at different levels. Our knowledge is constantly enriched by new reports revealing the role of these new molecular players in the development of many pathological conditions, including cancer. One of the ncRNA classes includes short RNA molecules called microRNAs (miRNAs), which are involved in the post-transcriptional control of gene expression affecting various cellular processes. The aberrant expression of miRNAs with oncogenic and tumor-suppressive function is associated with cancer initiation, promotion, malignant transformation, progression and metastasis. Oncogenic miRNAs, also known as oncomirs, mediate the downregulation of tumor-suppressor genes and their expression is upregulated in cancer. Nowadays, miRNAs show promising application in diagnosis, prediction, disease monitoring and therapy response. Our review presents a current view of the oncogenic role of miR-1290 with emphasis on its properties as a cancer biomarker in clinical medicine.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (W.J.); (M.C.)
| | | | | |
Collapse
|
13
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samadian M. A Review on the Role of miR-1290 in Cell Proliferation, Apoptosis and Invasion. Front Mol Biosci 2022; 8:763338. [PMID: 35004844 PMCID: PMC8740132 DOI: 10.3389/fmolb.2021.763338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to affect expression of several genes contributing in important biological processes. miR-1290 a member of this family with crucial roles in the carcinogenesis. This miRNA is transcribed from MIR1290 gene on chromosome 1p36.13. This miRNA has interactions with a number of mRNA coding genes as well as non-coding RNAs SOCS4, GSK3, BCL2, CCNG2, KIF13B, INPP4B, hMSH2, KIF13B, NKD1, FOXA1, IGFBP3, CCAT1, FOXA1, NAT1, SMEK1, SCAI, ZNF667-AS1, ABLIM1, Circ_0000629 and CDC73. miR-1290 can also regulate activity of JAK/STAT3, PI3K/AKT, Wnt/β-catenin and NF-κB molecular pathways. Most evidence indicates the oncogenic roles of miR-1290, yet controversial evidence also exists. In the present review, we describe the results of in vitro, animal and human investigations about the impact of miR-1290 in the development of malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kalhori MR, Soleimani M, Arefian E, Alizadeh AM, Mansouri K, Echeverria J. The potential role of miR-1290 in cancer progression, diagnosis, prognosis, and treatment: An oncomiR or onco-suppressor microRNA? J Cell Biochem 2021; 123:506-531. [PMID: 34897783 DOI: 10.1002/jcb.30191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Cancer is one of the leading causes of death in humans because of the lack of early diagnosis, distant metastases, and the resistance to adjuvant therapies, including chemotherapy and radiotherapy. In addition to playing an essential role in tumor progression and development, microRNAs (miRNAs) can be used as a robust biomarker in the early detection of cancer. MiR-1290 was discovered for the first time in human embryonic stem cells, and under typical physiological situations, plays an essential role in neuronal differentiation and neural stem cell proliferation. Its coding sequence is located at the 1p36.13 regions in the first intron of the aldehyde dehydrogenase 4 gene member A1. miR-1290 is out of control in many cancers such as breast cancer, colorectal cancer, esophageal squamous cell carcinoma, gastric cancer, lung cancer, pancreatic cancer, and plays a vital role in their development. Therefore, it is suggested that miR-1290 can be considered as a potential diagnostic and therapeutic target in many cancers. In addition to the importance of miR-1290 in the noninvasive diagnosis of various cancers, this systematic review study discussed the role of miR-1290 in altering the expression of different genes involved in cancer development and chemo-radiation resistance. Moreover, it considered the regulatory effect of natural products on miR-1290 expression and the interaction of lncRNAs by miR-1290.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, Molecular Virology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
16
|
Liu YR, Wang PY, Xie N, Xie SY. MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy. Anticancer Agents Med Chem 2021; 20:1883-1894. [PMID: 32538735 DOI: 10.2174/1871520620666200615133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.
Collapse
Affiliation(s)
- Yuan-Rong Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, 264000, ShanDong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| |
Collapse
|
17
|
Cohn DE, Barros-Filho MC, Minatel BC, Pewarchuk ME, Marshall EA, Vucic EA, Sage AP, Telkar N, Stewart GL, Jurisica I, Reis PP, Robinson WP, Lam WL. Reactivation of Multiple Fetal miRNAs in Lung Adenocarcinoma. Cancers (Basel) 2021; 13:2686. [PMID: 34072436 PMCID: PMC8199175 DOI: 10.3390/cancers13112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of normal developmental pathways. However, cancer cells can co-opt these miRNAs, and the pathways that they regulate, to drive pro-tumourigenic phenotypes. Characterization of the miRNA transcriptomes of fetal organs is essential for identifying these oncofetal miRNAs, but it has been limited by fetal sample availability. As oncofetal miRNAs are absent from healthy adult lungs, they represent ideal targets for developing diagnostic and therapeutic strategies. We conducted small RNA sequencing of a rare collection of 25 human fetal lung (FL) samples and compared them to two independent cohorts (n = 140, n = 427), each comprised of adult non-neoplastic lung (ANL) and lung adenocarcinoma (LUAD) samples. We identified 13 oncofetal miRNAs that were expressed in FL and LUAD but not in ANL. These oncofetal miRNAs are potential biomarkers for LUAD detection (AUC = 0.963). Five of these miRNAs are derived from the imprinted C14MC miRNA cluster at the 14q32 locus, which has been associated with cancer development and abnormal fetal and placental development. Additionally, we observed the pulmonary expression of 44 previously unannotated miRNAs. The sequencing of these fetal lung samples also provides a baseline resource against which aberrant samples can be compared.
Collapse
Affiliation(s)
- David E. Cohn
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Mateus C. Barros-Filho
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Brenda C. Minatel
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Erin A. Marshall
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Emily A. Vucic
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- NYU Langone Medical Center, New York, NY 10016, USA
| | - Adam P. Sage
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Nikita Telkar
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | - Patricia P. Reis
- Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil;
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (M.C.B.-F.); (B.C.M.); (M.E.P.); (E.A.M.); (E.A.V.); (A.P.S.); (N.T.); (G.L.S.); (W.L.L.)
| |
Collapse
|
18
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
19
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
20
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
21
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
22
|
Nagini S, Sophia J, Mishra R. Glycogen synthase kinases: Moonlighting proteins with theranostic potential in cancer. Semin Cancer Biol 2019; 56:25-36. [DOI: 10.1016/j.semcancer.2017.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
|
23
|
Bhutia SK, Panda PK, Sinha N, Praharaj PP, Bhol CS, Panigrahi DP, Mahapatra KK, Saha S, Patra S, Mishra SR, Behera BP, Patil S, Maiti TK. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol Res 2019; 144:8-18. [PMID: 30951812 DOI: 10.1016/j.phrs.2019.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Plant lectins are non-immunoglobin in nature and bind to the carbohydrate moiety of the glycoconjugates without altering any of the recognized glycosyl ligands. Plant lectins have found applications as cancer biomarkers for recognizing the malignant tumor cells for the diagnosis and prognosis of cancer. Interestingly, plant lectins contribute to inducing cell death through autophagy and apoptosis, indicating their potential implication in cancer inhibitory mechanism. In the present review, anticancer activities of major plant lectins have been documented, with a detailed focus on the signaling circuit for the possible molecular targeted cancer therapy. In this context, several lectins have exhibited preclinical and clinical significance, driving toward therapeutic potential in cancer treatment. Moreover, several plant lectins induce immunomodulatory activities, and therefore, novel strategies have been established from preclinical and clinical investigations for the development of combinatorial treatment consisting of immunotherapy along with other anticancer therapies. Although the application of plant lectins in cancer is still in very preliminary stage, advanced high-throughput technology could pave the way for the development of lectin-based complimentary medicine for cancer treatment.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| | - Prashanta K Panda
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Soumya R Mishra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Bishnu P Behera
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
24
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
25
|
Zhu Y, Huang Y, Liu M, Yan Q, Zhao W, Yang P, Gao Q, Wei J, Zhao W, Ma L. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high-risk human papillomavirus subtypes. Exp Ther Med 2018; 17:1742-1748. [PMID: 30783443 PMCID: PMC6364235 DOI: 10.3892/etm.2018.7131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the inhibitory effects of the polyphenol epigallocatechin-3-gallate (EGCG) on the growth of cervical carcinoma cell lines infected with different high-risk human papillomavirus (HPV) subtypes, as well as the associated regulation of microRNA (miR) expression. Cell proliferation was measured using an MTT assay. The effects of 7 different concentrations of EGCG (100, 80, 60, 40, 20, 10 and 0 µg/ml) on HeLa cell proliferation were assessed. HeLa cell growth was significantly inhibited by EGCG in a dose- and time-dependent manner (P<0.05), and the IC50 was 90.74 and 72.74 µg/ml at 24 and 48 h, respectively. The expression of miR-210, miR-29a, miR-203 and miR-125b in HeLa (HPV16/18+), SiHa (HPV16+), CaSki (HPV16+) and C33A (HPV-) cell lines was measured using quantitative polymerase chain reaction analysis. In CA33 cells, miR-203 (all P<0.001) and miR-125b (P<0.01 and <0.0001) were significantly downregulated by EGCG, and miR-210 was significantly upregulated with 40 and 60 µg/ml EGCG (P<0.0001). miR-125b was significantly downregulated (P<0.001 and <0.0001), and miR-210 and miR-29 were significantly upregulated by ≤80 µg/ml EGCG in HeLa cells (all P<0.0001). In CaSki cells, miR-210, miR-29a (all P<0.001) and miR-125b (P<0.01–0.0001) were significantly upregulated by EGCG. In SiHa cells, miR-125b (both P<0.001) and miR-203 (P<0.01 and <0.0001) were significantly upregulated by EGCG. In conclusion, the results of the present study suggest that EGCG suppresses cervical carcinoma cell growth, possibly via regulating the expression of miRs, suggesting their potential as therapeutic targets for the control and prevention of cervical cancer. Additionally, EGCG may be considered a novel anti-cervical cancer drug in the future.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Yongfang Huang
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Mingmin Liu
- Department of Obstetrics and Gynecology, Yangpu Hospital Affiliated to Tongji University, Shanghai 200090, P.R. China
| | - Qi Yan
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Wanhong Zhao
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Qin Gao
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Juanjuan Wei
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Wenxia Zhao
- Department of Obstetrics and Gynecology, Jiangwan Hospital, Shanghai 200434, P.R. China
| | - Lishan Ma
- Department of Obstetrics and Gynecology, Yangpu Hospital Affiliated to Tongji University, Shanghai 200090, P.R. China
| |
Collapse
|
26
|
Yang CL, Zheng XL, Ye K, Sun YN, Lu YF, Ge H, Liu H. Effects of microRNA-217 on proliferation, apoptosis, and autophagy of hepatocytes in rat models of CCL4-induced liver injury by targeting NAT2. J Cell Physiol 2018; 234:3410-3424. [PMID: 30417525 DOI: 10.1002/jcp.26748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Liver injury is an important cause of serious liver disease. This study aims to explore the effects of miR-217 targeting NAT2 on hepatocyte proliferation, apoptosis, and autophagy following carbon tetrachloride (CCL4)-induced liver injury. Rat models of CCL4-induced liver injury were established. Healthy Wistar rats were randomized into the normal, blank, negative control (NC), microRNA-217 (miR-217) mimic, miR-217 inhibitor, small interfering RNA (siRNA)-N-acetyltransferase 2 (NAT2), and miR-217 inhibitor + siRNA-NAT2 groups. NAT2 activity was evaluated with reversed-phase high-performance liquid chromatographic method. Immunohistochemistry was used to detect NAT2 protein positive rate. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to examine expressions of miR-217, NAT2, Bcl-2, Bax, p35, LC3-II, Becline-1, and the ratio of caspase-3/cleaved caspase-3. Autophagy, proliferation, and cell cycle distribution were determined by electron microscope, CCK-8, and flow cytometry. NAT2 protein positive rate and miR-217, NAT2, Bcl-2, and p35 expressions were higher and Bax, LC3-II, and Becline-1 expressions and the ratio of caspase-3/cleaved caspase-3 lower in the normal group than the other six groups. Compared with the blank and NC groups, in the miR-217 mimic and siRNA-NAT2 groups, Bax, LC3-II, and Becline-1 expressions and the ratio of caspase-3/cleaved caspase-3, and hepatocyte apoptosis and autophagy increased, while NAT2, Bcl-2, and p35 expressions and hepatocyte proliferation decreased; opposite results were observed in the miR-217 inhibitor group. Collectively, miR-217 targeting NAT2 inhibits proliferation and promotes apoptosis and autophagy of hepatocytes in CCL4-induced liver injury.
Collapse
Affiliation(s)
- Cheng-Liang Yang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Li Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ye
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya-Nan Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Fei Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- Department of Gastroenterology, Heping Hospital of Changzhi Medical College, Changzhi, China
| |
Collapse
|
27
|
p53-Autophagy-Metastasis Link. Cancers (Basel) 2018; 10:cancers10050148. [PMID: 29783720 PMCID: PMC5977121 DOI: 10.3390/cancers10050148] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 as the “guardian of the genome” plays an essential role in numerous signaling pathways that control the cell cycle, cell death and in maintaining the integrity of the human genome. p53, depending on the intracellular localization, contributes to the regulation of various cell death pathways, including apoptosis, autophagy and necroptosis. Accumulated evidence suggests that this function of p53 is closely involved in the process of cancer development. Here, present knowledge concerning a p53-autophagy-metastasis link, as well as therapeutic approaches that influence this link, are discussed.
Collapse
|
28
|
Yan L, Cai K, Sun K, Gui J, Liang J. MiR-1290 promotes proliferation, migration, and invasion of glioma cells by targeting LHX6. J Cell Physiol 2018; 233:6621-6629. [PMID: 29226322 DOI: 10.1002/jcp.26381] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023]
Abstract
To investigate the interaction of miR-1290 and LHX6 in gliomas, and their influence on the propagation and metastasis of glioma cells. The differential expression of miR-1290 in glioma cells was identified by chip screening. The expression level of miR-1290 and LHX6 were determined by qRT-PCR and Western blot. The influence of miR-1290 on propagation of glioma cells were analyzed by MTT assay, EdU incorporation, and colony formation, while the impact of miR-1290 on metastasis was assessed by transwell assay. The relationship between LHX6 and miR-1290 was testified by luciferase reporter assay. The gliomas orthotopic implantation model of nude mice was established to investigate the influence of miR-1290 and LHX6 on tumor growth. Tumor volumes were evaluated by photon density, and the expression of Ki67 protein was analyzed by immunohistochemistry. MiR-1290 presented a higher expression in glioma cells and tissues. MiR-1290 overexpression significantly promoted propagation and metastasis of glioma cells, while miR-1290 knockdown inhibited glioma development. MiR-1290 suppressed LHX6 expression, facilitating development of glioma cells. The orthotopic implantation model showed that miR-1290 overexpression promoted tumor growth while LHX6 overexpression inhibited it. MiR-1290 could promote glioma cell propagation and metastasis by inhibiting LHX6.
Collapse
Affiliation(s)
- Lei Yan
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Kerui Cai
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Kai Sun
- Department of Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Jinqiu Gui
- Department of Pathogenic Microbiology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Jun Liang
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
29
|
Zhao P, Zhao C, Li X, Gao Q, Huang L, Xiao P, Gao W. The genus Polygonatum : A review of ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:274-291. [PMID: 29246502 DOI: 10.1016/j.jep.2017.12.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Affiliation(s)
- Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
30
|
Yin W, Nie Y, Chen L, Wang Q, Liu S, He X, Wang W. Deregulation of microRNA-193b affects the proliferation of liver cancer via myeloid cell leukemia-1. Oncol Lett 2018; 15:2781-2788. [PMID: 29435004 PMCID: PMC5778835 DOI: 10.3892/ol.2017.7690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/23/2017] [Indexed: 01/30/2023] Open
Abstract
Deregulation of microRNA (miR)-193b has been revealed to be associated with the proliferation of liver cells. However, the interaction between miR-193b and their targets inducing liver cancer remains largely unknown. The aim of the present study was to investigate the hypothesis that miR-193b affects the proliferation of liver cancer cells. In the present study, the overall survival of patients with liver cancer and low fold change of miR-193b was higher compared with that of patients with liver cancer patients and high fold change of miR-193b. The expression level of myeloid cell leukemia-1 (Mcl-1) in patients with liver cancer was lower compared with in the control group. The results of the present study demonstrated that downregulation of miR-193b suppressed the proliferation and induced apoptosis of liver cancer cells, and inhibited the Mcl-1 protein expression level in liver cancer cells. Upregulation of miR-193b increased cell proliferation and decreased apoptosis of liver cancer cells and promoted the expression level of Mcl-1 protein. The results of the present study demonstrated that the expression of miR-193b as a novel tumor suppressor serves an important role in the proliferation of liver cancer cells by mediating Mcl-1 expression.
Collapse
Affiliation(s)
- Wenjun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, P.R. China
| | - Yuehua Nie
- Department of Radiation Oncology, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, P.R. China
| | - Lingying Chen
- Department of Blood Transfusion, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| | - Quipping Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| | - Xiusheng He
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, P.R. China
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital of University of Southern China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
31
|
Ye J, Zhang R, Wu F, Zhai L, Wang K, Xiao M, Xie T, Sui X. Non-apoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett 2018; 420:210-227. [PMID: 29410006 DOI: 10.1016/j.canlet.2018.01.061] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Traditional cancer therapy is mainly targeting on enhancing cell apoptosis, however, it is well established that many cancer cells are chemo-resistant and defective in apoptosis induction. Therefore, it may have important therapeutic implications to exploit some novel natural compounds based on non-apoptotic programmed cell death. Currently, accumulating evidence shows that the compounds from nature source can induce non-apoptotic programmed cell death in cancer cells, and therefore these natural compounds have gained a great promise for the future anticancer therapeutics. In this review, we will concentrate our efforts on the latest developments regarding major forms of non-apoptotic programmed cell death--autophagic cell death, necroptosis, ferroptosis, pyroptosis, glutamoptosis and exosome-associated cell death. Our increased understanding of the role of natural compounds in regulating non-apoptotic programmed cell death will hopefully provide prospective strategies for cancer therapy.
Collapse
Affiliation(s)
- Jing Ye
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruonan Zhang
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Wu
- Des Moines Medical School, Des Moines, IA, USA
| | - Lijuan Zhai
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kaifeng Wang
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mang Xiao
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Tong JB, Zhang XX, Wang XH, Zeng SJ, Wang DY, Zhang ZQ, Hu J, Yang C, Li ZG. Qiyusanlong decoction suppresses lung cancer in mice via Wnt/β-catenin pathway. Mol Med Rep 2018; 17:5320-5327. [PMID: 29393404 DOI: 10.3892/mmr.2018.8478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of the most fatal cancers due to its high metastatic rate. Traditional Chinese medicine has been used in cancer patients for decades to improve quality of life and prolong survival time. The present study used a novel Qiyusanlong (QYSL) decoction composed of 10 kinds of Chinese medicine including astragalus membranaceus (Huangqi), polygonatumod oratum (yuzu), scolopendra (tianlong), pberetima (dilong), solanum nigrum (longkui), herbahedyotis (baihushecao), semen coicis (yiyiren), euphorbia helioscopia (zeqi), curcuma longa (eshu) and tendril-leaved fritillary bulb (chuanbei). The effects and function of the QYSL decoction remain to be elucidated. The present study established a mouse xenograft model using Lewis lung carcinoma cell injection and administered different doses of QYSL decoction to the mice. It was demonstrated that the chemotherapy drug Cisplatin (DDP) and QYSL decoction repressed lung tumor growth, and the inhibitory effect of DDP was more significant. Furthermore, QYSL decoction and DDP modulated the expression of regulatory proteins in the Wnt/β‑catenin pathway, including Wnt1, Wnt2, Wnt5a and glycogen synthase kinase 3β, detected by western blotting, and affected the signals of cluster of differentiation 44 variation 6 and Survivin in tumor tissues, examined via immunohistochemistry. The combination of QYSL decoction and DDP enhanced the inhibitory effect. These data demonstrated that the QYSL decoction repressed lung tumor development via the Wnt/β‑catenin pathway. The therapeutic effect of QYSL decoction alone was milder compared with DDP, however the combination of QYSL decoction and chemotherapy exhibited an increased the rapeutic effect compared with the treatments administered alone. These findings revealed the function of QYSL decoction as a lung cancer treatment and provided insight for a novel lung cancer therapy.
Collapse
Affiliation(s)
- Jia-Bing Tong
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Xing-Xing Zhang
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Xin-Heng Wang
- Key Laboratory of Xin An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Shi-Jie Zeng
- Key Laboratory of Xin An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Dan-Yang Wang
- Key Laboratory of Xin An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Zhi-Qiang Zhang
- Key Laboratory of Xin An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jian Hu
- Key Laboratory of Xin An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Chen Yang
- Department of Respiratory, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Ze-Geng Li
- Key Laboratory of Xin An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
33
|
Nascimento KS, Santiago MQ, Pinto-Junior VR, Osterne VJS, Martins FWV, Nascimento APM, Wolin IAV, Heinrich IA, Martins MGQ, Silva MTL, Lossio CF, Rocha CRC, Leal RB, Cavada BS. Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int J Biochem Cell Biol 2017; 92:79-89. [DOI: 10.1016/j.biocel.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
|
34
|
de Andrade Luz L, Rossato FA, Costa RAPE, Napoleão TH, Paiva PMG, Coelho LCBB. Cytotoxicity of the coagulant Moringa oleifera lectin (cMoL) to B16-F10 melanoma cells. Toxicol In Vitro 2017. [DOI: 10.1016/j.tiv.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
36
|
Luan W, Qian Y, Ni X, Chanda TK, Xia Y, Wang J, Yan Y, Xu B. Polygonatum odoratum lectin promotes BECN1 expression and induces autophagy in malignant melanoma by regulation of miR1290. Onco Targets Ther 2017; 10:4569-4577. [PMID: 29066911 PMCID: PMC5604572 DOI: 10.2147/ott.s147406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is not only a survival response to growth-factor or nutrient deprivation but also an important mechanism for tumor-cell suicide, including melanoma. Polygonatum odoratum lectin (POL) displays apoptosis- and autophagy-inducing effects in many human tumors. POL also inhibits the growth of melanoma cells, but its role and molecular mechanism in malignant melanoma remain unclear. In this study, we found that POL suppressed proliferation and induced autophagy in melanoma cells. miR1290 was upregulated and inhibited autophagy in melanoma. BECN1 is the direct functional effector of miR1290. Furthermore, we found that POL promoted BECN1 expression though inhibition of miR1290, thus inducing melanoma-cell autophagy. This finding elucidates a new role and mechanism for POL in melanoma, and provides a potential antineoplastic agent for melanoma treatment.
Collapse
Affiliation(s)
| | | | - Xin Ni
- Department of Gastroenterology
| | | | - Yun Xia
- Department of Plastic Surgery
| | | | - Yulan Yan
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Bin Xu
- Department of Plastic Surgery
| |
Collapse
|
37
|
谭 辉, 王 键, 尹 婷, 何 玲, 邓 勇, 李 凤, 王 玉. [Yiqihuoxue prescription promotes nerve regeneration by miR-124-mediated regulation of Wnt signaling in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1047-1053. [PMID: 28801284 PMCID: PMC6765732 DOI: 10.3969/j.issn.1673-4254.2017.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effect of Yiqihuoxue prescription (NLXT) on nerve regeneration in MCAO-R rat models of qi deficiency and blood stasis syndrome and explore the underlying mechanisms. METHODS The rats were randomized into 4 groups, namely the control group, model group, NLXT group and TXL group. The rats in NLXT group and TXL group were treated with gavage of NLXT and TXL solutions, respectively. The NFDS, QDSS and BSSS of the rats were evaluated. The regional cerebral blood flow (rCBF) were dynamically monitored with laser Doppler scanning, and the volume of cerebral infarction was detected with TTC-dye; the expression levels of nestin and BrdU were assayed with immunohistochemistry and mmunofluorescent staining. The expressions of miRNA-124, Wnt3a, GSK3β and β-catenin in the rat brain tissue were detected with PCR or Western blotting. RESULTS NLXT and TXL both improved the neurological functions of the model rats, reduced NFDS, QDSS, and BSSS scores, decreased the volume of cerebral infarction, and promoted the recovery of the rCBF (P<0.01). Nestin and BrdU expression levels were significantly increased in the rat brain tissue in NLXT group and TXL group. NLXT significantly inhibited high expressions of miRNA-124 and Wnt3a in response to stress, and increased β-catenin expression level (P<0.01). NLXT and TXL produced no obvious effect on GSK3β expression in the model rats (P>0.05). CONCLUSION NLXT can activate Wnt signaling by affecting miRNA-124 expression to offer neuroprotection and promote nerve regeneration in rats with cerebral ischemia with qi deficiency and blood stasis syndrome.
Collapse
Affiliation(s)
- 辉 谭
- />安徽中医药大学新安医学教育部重点实验室, 安徽 合肥 230038Key Laboratory for Xin'an Medicine of the Education Ministry, Anhui Chinese Medical University, Hefei 230038, China
| | - 键 王
- />安徽中医药大学新安医学教育部重点实验室, 安徽 合肥 230038Key Laboratory for Xin'an Medicine of the Education Ministry, Anhui Chinese Medical University, Hefei 230038, China
| | - 婷婷 尹
- />安徽中医药大学新安医学教育部重点实验室, 安徽 合肥 230038Key Laboratory for Xin'an Medicine of the Education Ministry, Anhui Chinese Medical University, Hefei 230038, China
| | - 玲 何
- />安徽中医药大学新安医学教育部重点实验室, 安徽 合肥 230038Key Laboratory for Xin'an Medicine of the Education Ministry, Anhui Chinese Medical University, Hefei 230038, China
| | - 勇 邓
- />安徽中医药大学新安医学教育部重点实验室, 安徽 合肥 230038Key Laboratory for Xin'an Medicine of the Education Ministry, Anhui Chinese Medical University, Hefei 230038, China
| | - 凤 李
- />安徽中医药大学新安医学教育部重点实验室, 安徽 合肥 230038Key Laboratory for Xin'an Medicine of the Education Ministry, Anhui Chinese Medical University, Hefei 230038, China
| | - 玉凤 王
- />安徽中医药大学新安医学教育部重点实验室, 安徽 合肥 230038Key Laboratory for Xin'an Medicine of the Education Ministry, Anhui Chinese Medical University, Hefei 230038, China
| |
Collapse
|
38
|
Li T, Li M, Hu S, Cheng X, Gao Y, Jiang S, Yu Q, Zhang C, Sun P, Xian W, Song Z, Zhang Y, Zheng Q. MiR-221 mediates the epithelial-mesenchymal transition of hepatocellular carcinoma by targeting AdipoR1. Int J Biol Macromol 2017; 103:1054-1061. [PMID: 28539268 DOI: 10.1016/j.ijbiomac.2017.05.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that miRNAs play vital roles in tumorigenesis. However, their effects on the epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) need to be better understood. Our present study demonstrates that miR-221, which is overexpressed in HCC tissues, promotes EMT in HCC cell lines by targeting a new gene, AdipoR1. First, overexpression of miR-221 was identified in 40 pairs of human HCC tumor and matched normal tissues. Moreover, we found that elevated miR-221 was strongly associated with worse clinicopathologic features in HCC patients. Next, the loss of miR-221 inhibited, but its restoration enhanced, the EMT process in HCC cell lines. Furthermore, bioinformatics software predicted that AdipoR1 would be a direct target of miR-221. We then observed negative regulation of miR-221 on AdipoR1 protein expression, and direct binding between them was further verified using dual-luciferase assays. In addition, knockdown of AdipoR1 resulted in promotion of the EMT in HCC cells, and AdipoR1 overexpression reversed the miR-221-induced EMT. Lastly, we found that the JAK/STAT3 pathway may be involved in the AdipoR1-mediated EMT process. In conclusion, miR-221 acts as a promoter of the EMT process in HCC cells by targeting AdipoR1, and this study highlights the potential effects of miR-221 on the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Tong Li
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Min Li
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Shaobo Hu
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Xiang Cheng
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yang Gao
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Shuai Jiang
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Qihong Yu
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Chen Zhang
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Ping Sun
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Wenjing Xian
- Department of Anesthesia, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Zifang Song
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yong Zhang
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Qichang Zheng
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China.
| |
Collapse
|
39
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
40
|
Liu T, Wu L, Wang D, Wang H, Chen J, Yang C, Bao J, Wu C. Role of reactive oxygen species-mediated MAPK and NF-κB activation inpolygonatum cyrtonemalectin-induced apoptosis and autophagy in human lung adenocarcinoma A549 cells. J Biochem 2016; 160:315-324. [DOI: 10.1093/jb/mvw040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/15/2016] [Indexed: 01/08/2023] Open
|
41
|
Zhu K, He Y, Xia C, Yan J, Hou J, Kong D, Yang Y, Zheng G. MicroRNA-15a Inhibits Proliferation and Induces Apoptosis in CNE1 Nasopharyngeal Carcinoma Cells. Oncol Res 2016; 24:145-51. [PMID: 27458095 PMCID: PMC7838691 DOI: 10.3727/096504016x14611963142290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer, frequently occurring in Southeast Asia and Southern China. Several microRNAs (miRNAs) have been shown to have an inhibitive effect on NPC, while the effect of miR-15a on NPC remains unclear. Thus, our study aimed to investigate the potential effect of miR-15a on NPC cell proliferation, apoptosis, and possible functional mechanism. Human NPC CNE1 cells were transfected with miR-15a mimics, miR-15a inhibitors, or a control. Afterward, cell viability and apoptosis were assayed by using CCK-8, BrdU assay, and flow cytometry. Moreover, Western blot was used to detect the expression changes of proliferation and apoptosis of related proteins. As a result, miR-15a overexpression significantly reduced cell proliferation (p < 0.01 or p < 0.001) and induced cell apoptosis (p < 0.001), while miR-15a suppression got the opposite result for cell proliferation and apoptosis. In addition, miR-15a overexpression upregulated the protein levels of p27, GSK-3β, Bax, procaspase 3, and active caspase 3, whereas miR-15a suppression downregulated these proteins. The protein level of p21 was not significantly regulated by miR-15a overexpression or suppression. These results indicated that miR-15a played a role for inhibition of proliferation and induction of apoptosis in CNE1 cells.
Collapse
Affiliation(s)
- Kang Zhu
- *Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ying He
- †Department of Radiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cui Xia
- *Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing Yan
- *Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jin Hou
- *Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Demin Kong
- *Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yeye Yang
- *Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guoxi Zheng
- *Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|