1
|
Liang W, Shi H, Yang X, Wang J, Yang W, Zhang H, Liu L. Recent advances in AFM-based biological characterization and applications at multiple levels. SOFT MATTER 2020; 16:8962-8984. [PMID: 32996549 DOI: 10.1039/d0sm01106a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy (AFM) has found a wide range of bio-applications in the past few decades due to its ability to measure biological samples in natural environments at a high spatial resolution. AFM has become a key platform in biomedical, bioengineering and drug research fields, enabling mechanical and morphological characterization of live biological systems. Hence, we provide a comprehensive review on recent advances in the use of AFM for characterizing the biomechanical properties of multi-scale biological samples, ranging from molecule, cell to tissue levels. First, we present the fundamental principles of AFM and two AFM-based models for the characterization of biomechanical properties of biological samples, covering key AFM devices and AFM bioimaging as well as theoretical models for characterizing the elasticity and viscosity of biomaterials. Then, we elaborate on a series of new experimental findings through analysis of biomechanics. Finally, we discuss the future directions and challenges. It is envisioned that the AFM technique will enable many remarkable discoveries, and will have far-reaching impacts on bio-related studies and applications in the future.
Collapse
Affiliation(s)
- Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Haohao Shi
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Hemin Zhang
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
2
|
Wang Y, Wang J, Huang S, Liu C, Fu Y. Evaluating the effect of aminoglycosides on the interaction between bovine serum albumins by atomic force microscopy. Int J Biol Macromol 2019; 134:28-35. [PMID: 31063788 DOI: 10.1016/j.ijbiomac.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/19/2023]
Abstract
Characterization and determination of protein-protein interactions (PPIs) plays an important role in molecular biological science. In this study, the effect of aminoglycosides (AGs: streptomycin, gentamycin, lincomycin and clindamycin) on interactions between bovine serum albumin (BSA) was evaluated employing imaging and probing adhesion event by AFM. Multi-spectroscopy and molecular docking were supplementary to investigate the acting forces of the effect. AFM measurements revealed the aggregation of BSA grains and changes of adhesion forces at single molecule level. With adhesion forces between BSA pairs decomposed by Poisson method, specific forces in streptomycin, gentamycin, lincomycin and climdamycin were obviously decreased with the rate of 33.1%, 26.4%, 32.3% and 31.3% while non-specific forces slightly decreased with 5.5%, 3.3%, 4.0% and 7.7%. Combined with results of multi-spectroscopy as well as molecular docking, the whole determination showed AGs affected PPIs by multiple forces, where the hydrogen bonding and hydration effect were the main reasons. The binding of drugs and proteins acted by hydrogen bonding affected the interaction forces between BSA. Consequently, AFM was proposed to be an effective and precise tool in application including evaluating the effects of exogenous compounds on biomacromolecular interactions and rapid screening of drug candidates to avoid potential damages in disease treatment.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Shuheng Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Chundong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
3
|
Ahlawat J, Deemer EM, Narayan M. Chitosan Nanoparticles Rescue Rotenone-Mediated Cell Death. MATERIALS 2019; 12:ma12071176. [PMID: 30978909 PMCID: PMC6480189 DOI: 10.3390/ma12071176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
The aim of the present investigation was to study the anti-oxidant effect of chitosan nanoparticles on a human SH-SY5Y neuroblastoma cell line using a rotenone model to generate reactive oxygen species. Chitosan nanoparticles were synthesized using an ionotropic gelation method. The obtained nanoparticles were characterized using various analytical techniques such as Dynamic Light Scattering, Scanning Electron Microscopy, Transmission Electron Microscopy, Fourier Transmission Infrared spectroscopy and Atomic Force Microscopy. Incubation of SH-SY5Y cells with 50 µM rotenone resulted in 35-50% cell death within 24 h of incubation time. Annexin V/Propidium iodide dual staining verified that the majority of neuronal cell death occurred via the apoptotic pathway. The incubation of cells with chitosan nanoparticles reduced rotenone-initiated cytotoxicity and apoptotic cell death. Given that rotenone insult to cells causes oxidative stress, our results suggest that Chitosan nanoparticles have antioxidant and anti-apoptotic properties. Chitosan can not only serve as a novel therapeutic drug in the near future but also as a carrier for combo-therapy.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Eva M Deemer
- Material Science & Engineering department, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Mahesh Narayan
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
4
|
Chawla P, Kaushik R, Shiva Swaraj V, Kumar N. Organophosphorus pesticides residues in food and their colorimetric detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends Biotechnol 2018; 36:882-897. [PMID: 29703583 PMCID: PMC10461776 DOI: 10.1016/j.tibtech.2018.03.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Genetic engineering of plants has enhanced crop productivity in the face of climate change and a growing global population by conferring desirable genetic traits to agricultural crops. Efficient genetic transformation in plants remains a challenge due to the cell wall, a barrier to exogenous biomolecule delivery. Conventional delivery methods are inefficient, damaging to tissue, or are only effective in a limited number of plant species. Nanoparticles are promising materials for biomolecule delivery, owing to their ability to traverse plant cell walls without external force and highly tunable physicochemical properties for diverse cargo conjugation and broad host range applicability. With the advent of engineered nuclease biotechnologies, we discuss the potential of nanoparticles as an optimal platform to deliver biomolecules to plants for genetic engineering.
Collapse
Affiliation(s)
- Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA; These authors contributed equally to this work
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA; These authors contributed equally to this work
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Juliana L Matos
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Chanphai P, Tajmir-Riahi HA. tRNA conjugation with folic acid-chitosan conjugates. Int J Biol Macromol 2017; 105:810-815. [PMID: 28735004 DOI: 10.1016/j.ijbiomac.2017.07.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
The conjugation of tRNA with folic acid-chitosan conjugates was studied, using multiple spectroscopic methods and transmission electron microscopy (TEM). Thermodynamic analysis ΔH -14 to -10 (KJMol-1) and ΔS 14 to -1 (JMol-1, K-1) showed tRNA-folic acid-chitosan bindings occur via H-bonding, hydrophobic and van der Waals contacts. The loading efficacy and the stability of tRNA conjugates were enhanced as folic acid-chitosan size increased. TEM analysis showed major tRNA morphological changes, upon folic acid-chitosan conjugation. No alteration of tRNA conformation was observed on conjugate formation. Folic acid-chitosan conjugates can deliver tRNA in vitro.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7, Canada
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7, Canada.
| |
Collapse
|
7
|
Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyás B. Nanoparticle Functionalization and Its Potentials for Molecular Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600279. [PMID: 28331783 PMCID: PMC5357986 DOI: 10.1002/advs.201600279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/02/2016] [Indexed: 05/04/2023]
Abstract
Functionalization enhances the properties and characteristics of nanoparticles through surface modification, and enables them to play a major role in the field of medicine. In molecular imaging, quality functional images are required with proper differentiation which can be seen with high contrast to obtain viable information. This review article discusses how functionalization enhances molecular imaging and enables multimodal imaging by which images with combination of functions particular to each modality can be obtained. This also explains how nanoparticles interacting at molecular level, when functionalized with molecules can target the cells of interest or substances with high specificity, reducing background signal and allowing simultaneous therapies to be carried out while imaging. Functionalization allows imaging for a prolonged period and enables to track the cells over a period of time. Recent researches and progress in functionalizing the nanoparticles to specifically enhance bioimaging with different modalities and their applications are reviewed in this article.
Collapse
Affiliation(s)
- Rukmani Thiruppathi
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
- Center for BiotechnologyAlagappa College of TechnologyAnna UniversitySardar Patel RoadChennaiTamil Nadu600025India
| | - Sachin Mishra
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
| | - Mathangi Ganapathy
- Center for BiotechnologyAlagappa College of TechnologyAnna UniversitySardar Patel RoadChennaiTamil Nadu600025India
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of MedicineNanyang Technological University59 Nanyang Drive636921Singapore
| |
Collapse
|