1
|
Sharma S, Lal UR, Bal T. pH-sensitive polymeric micelles of polyvinyl acetate grafted neem gum amphiphilic graft copolymer for curcumin delivery. Int J Biol Macromol 2025; 303:140574. [PMID: 39920929 DOI: 10.1016/j.ijbiomac.2025.140574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
The increasing demand for efficient drug delivery systems to address the challenges of hydrophobic therapeutic agents, such as poor solubility and bioavailability, has driven research into polymeric micelles. In this study, polymeric micelles were formulated using polyvinyl acetate grafted neem gum amphiphilic graft copolymer (NG-g-PVAc), synthesized via a microwave-assisted technique, to encapsulate and deliver curcumin, a hydrophobic model drug with significant therapeutic potential. Curcumin-loaded polymeric micelles (CUR-PMs) were prepared using a co-solvent evaporation method, achieving a high encapsulation efficiency of 95.42 ± 2.22 % and a critical micelle concentration (CMC) of 0.027 mg/mL, indicating stability in aqueous environments. Physicochemical characterization, including particle size analysis, XRD, and TEM, confirmed the formation of well-dispersed, spherical micelles. In vitro release studies revealed a pH-sensitive and sustained release profile over 8 days, with enhanced drug release at pH 7.4, simulating physiological conditions. CUR-PMs demonstrated superior antibacterial activity against gram-positive bacteria, suggesting potential in wound-healing applications, and exhibited significantly higher cytotoxicity against Hep-G2 cells compared to free curcumin, highlighting improved therapeutic efficacy. Toxicological studies in zebrafish and murine models confirmed the safety and biocompatibility of CUR-PMs, supporting their suitability for biomedical applications. This work highlights the potential of neem gum-based polymeric micelles as a cost-effective and environmentally friendly drug delivery platform. However, limitations such as scalability and long-term stability under varying storage conditions require further investigation to facilitate clinical translation.
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Uma R Lal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160067, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| |
Collapse
|
2
|
Qin H, Teng Y, Dai R, Wang A, Liu J. Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy. Front Immunol 2024; 15:1395187. [PMID: 38799466 PMCID: PMC11116596 DOI: 10.3389/fimmu.2024.1395187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Glycan-based scaffolds are unique in their high specificity, versatility, low immunogenicity, and ability to mimic natural carbohydrates, making them attractive candidates for use in cancer treatment. These scaffolds are made up of glycans, which are biopolymers with well biocompatibility in the human body that can be used for drug delivery. The versatility of glycan-based scaffolds allows for the modulation of drug activity and targeted delivery to specific cells or tissues, which increases the potency of drugs and reduces side effects. Despite their promise, there are still technical challenges in the design and production of glycan-based scaffolds, as well as limitations in their therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yibin Teng
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Dai
- Department of Pharmacy, Peking Union Medical University Hospital, Beijing, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Jacob S, Kather FS, Morsy MA, Boddu SHS, Attimarad M, Shah J, Shinu P, Nair AB. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:672. [PMID: 38668166 PMCID: PMC11054677 DOI: 10.3390/nano14080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| |
Collapse
|
4
|
Shen J, Jiao W, Yuan B, Xie H, Chen Z, Wei M, Sun Y, Wu Y, Zhang F, Li Z, Jin X, Du L, Jin Y. Oral Curcumin-Thioketal-Inulin Conjugate Micelles against Radiation-Induced Enteritis. Antioxidants (Basel) 2024; 13:417. [PMID: 38671865 PMCID: PMC11047665 DOI: 10.3390/antiox13040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Radiation-induced enteritis is an unavoidable complication associated with pelvic tumor radiotherapy, significantly influencing the prognosis of cancer patients. The limited availability of commercial gastrointestinal radioprotectors in clinical settings poses a substantial challenge in preventing radiation enteritis. Despite the inherent radioprotective characteristics of Cur in vitro, its poor solubility in water, instability, and low bioavailability lead to inferior therapeutic effects in vivo. Herein, we developed novel ROS-responsive micelles (CTI) from inulin and curcumin, aimed at mitigating radiation enteritis. CTI micelles had excellent solubility and stability. Importantly, CTI improved the cytotoxicity and bioavailability of curcumin, thereby showing enhanced effectiveness in neutralizing ROS induced by radiation, safeguarding against DNA damage, and reducing radiation-induced cellular mortality. Moreover, in a radiation enteritis mice model, CTI not only alleviated severe radiation-induced intestinal injury but also improved redox-related indicators and reduced inflammatory cytokine expression. Furthermore, CTI effectively increased gut microbiota abundance and maintained gut homeostasis. In conclusion, CTI could be a promising candidate for the clinical management of radiation enteritis. Our study provides a new perspective for radioprotection using natural antioxidants.
Collapse
Affiliation(s)
- Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wencheng Jiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yingbao Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Feng Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhangyu Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Jin
- Department of Anesthesiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100191, China
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
5
|
Lee PC, Li CZ, Lu CT, Zhao MH, Lai SM, Liao MH, Peng CL, Liu HT, Lai PS. Microcurrent Cloth-Assisted Transdermal Penetration and Follicular Ducts Escape of Curcumin-Loaded Micelles for Enhanced Wound Healing. Int J Nanomedicine 2023; 18:8077-8097. [PMID: 38164267 PMCID: PMC10758166 DOI: 10.2147/ijn.s440034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 μg/mL, indicating 250-fold higher than native curcumin (8.68 μg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.
Collapse
Affiliation(s)
- Pei-Chi Lee
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, National Atomic Research Institute, Taoyuan, Taiwan
| | - Hsin-Tung Liu
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
7
|
Abbasi YF, Bera H, Cun D, Yang M. Recent advances in pH/enzyme-responsive polysaccharide-small-molecule drug conjugates as nanotherapeutics. Carbohydr Polym 2023; 312:120797. [PMID: 37059536 DOI: 10.1016/j.carbpol.2023.120797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Now-a-days, the polysaccharides are extensively employed for the delivery of small-molecule drugs ascribed to their excellent biocompatibility, biodegradability and modifiability. An array of drug molecules is often chemically conjugated with different polysaccharides to augment their bio-performances. As compared to their therapeutic precursors, these conjugates could typically demonstrate an improved intrinsic solubility, stability, bioavailability and pharmacokinetic profiles of the drugs. In current years, various stimuli-responsive particularly pH and enzyme-sensitive linkers or pendants are also exploited to integrate the drug molecules into the polysaccharide backbone. The resulting conjugates could experience a rapid molecular conformational change upon exposure to the microenvironmental pH and enzyme changes of the diseased states, triggering the release of the bioactive cargos at the targeted sites and eventually minimize the systemic side effects. Herein, the recent advances in pH and enzyme -responsive polysaccharide-drug conjugates and their therapeutic benefits are systematically reviewed, following a brief description on the conjugation chemistry of the polysaccharides and drug molecules. The challenges and future perspectives of these conjugates are also precisely discussed.
Collapse
|
8
|
Shah SA, Sohail M, Karperien M, Johnbosco C, Mahmood A, Kousar M. Chitosan and carboxymethyl cellulose-based 3D multifunctional bioactive hydrogels loaded with nano-curcumin for synergistic diabetic wound repair. Int J Biol Macromol 2023; 227:1203-1220. [PMID: 36473525 DOI: 10.1016/j.ijbiomac.2022.11.307] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Biopolymer-based thermoresponsive injectable hydrogels with multifunctional tunable characteristics containing anti-oxidative, biocompatibility, anti-infection, tissue regeneration, and/or anti-bacterial are of abundant interest to proficiently stimulate diabetic wound regeneration and are considered as a potential candidate for diversified biomedical application but the development of such hydrogels remains a challenge. In this study, the Chitosan-CMC-g-PF127 injectable hydrogels are developed using solvent casting. The Curcumin (Cur) Chitosan-CMC-g-PF127 injectable hydrogels possess viscoelastic behavior, good swelling properties, and a controlled release profile. The degree of substitution (% DS), thermal stability, morphological behavior, and crystalline characteristics of the developed injectable hydrogels is confirmed using nuclear magnetic resonance (1H NMR), thermogravimetric analysis, scanning electron microscopy (SEM), and x-ray diffraction analysis (XRD), respectively. The controlled release of cur-micelles from the hydrogel is evaluated by drug release studies and pharmacokinetic profile (PK) using high-performance liquid chromatography (HPLC). Furthermore, compared to cur micelles the Cur-laden injectable hydrogel shows a significant increase in half-life (t1/2) up to 5.92 ± 0.7 h, mean residence time (MRT) was 15.75 ± 0.76 h, and area under the first moment curve (AUMC) is 3195.62 ± 547.99 μg/mL*(h)2 which reveals the controlled release behavior. Cytocompatibility analysis of Chitosan-CMC-g-PF127 hydrogels using 3T3-L1 fibroblasts cells and in vivo toxicity by subcutaneous injection followed by histological examination confirmed good biocompatibility of Cur-micelles loaded hydrogels. The histological results revealed the promising tissue regenerative ability and shows enhancement of fibroblasts, keratinocytes, and collagen deposition, which stimulates the epidermal junction. Interestingly, the Chitosan-CMC-g-PF127 injectable hydrogels ladened Cur exhibited a swift wound repair potential by up-surging the cell migration and proliferation at the site of injury and providing a sustained drug delivery platform for hydrophobic moieties.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Pakistan; Developmental Bioengineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, Netherlands
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia 99258, Cyprus.
| | - Marcel Karperien
- Developmental Bioengineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, Netherlands
| | - Castro Johnbosco
- Developmental Bioengineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente, Enschede, Netherlands
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
9
|
The gel mechanism and carrier quality of fibrous and granular whey protein self-assembly. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int J Pharm 2022; 617:121622. [PMID: 35227805 DOI: 10.1016/j.ijpharm.2022.121622] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023]
|
11
|
Liao Y, Xie L, Ye J, Chen T, Huang T, Shi L, Yuan M. Sprayable Hydrogel for Biomedical Applications. Biomater Sci 2022; 10:2759-2771. [PMID: 35445676 DOI: 10.1039/d2bm00338d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric hydrogels have extraordinary potential to be utilized for biomedical applications. Recently, sprayable hydrogels have received increasing attention for their biocompatibility, degradability, tunable mechanical properties and rapid spray-filming abilities. In...
Collapse
Affiliation(s)
- Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jiahui Ye
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Tong Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Tong Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
12
|
Dhawan V, Joshi G, Sutariya B, Shah J, Ashtikar M, Nagarsekar K, Steiniger F, Lokras A, Fahr A, Krishnapriya M, Warawdekar U, Saraf M, Nagarsenker M. Polysaccharide conjugates surpass monosaccharide ligands in hepatospecific targeting - Synthesis and comparative in silico and in vitro assessment. Carbohydr Res 2021; 509:108417. [PMID: 34481155 DOI: 10.1016/j.carres.2021.108417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 12/18/2022]
Abstract
Ligands with the polysaccharide headgroups have been recently reported by our group to possess enhanced interaction with asialoglycoprotein receptor (ASGPR) in silico as compared to ligands having galactose moieties. This enhanced interaction is a result of the polymer's backbone support in anchoring the ligand in a specific orientation within the bilayer. In this paper, we have attempted to provide an in vitro proof of concept by performing a comparative evaluation of polysaccharide and monosaccharide-based ligands. Docking was performed to understand interaction with ASGPR in silico. Agarose and galactose conjugates with behenic acid were synthesized, purified, and characterized to yield biocompatible hepatospecific ligands which were incorporated into nanoliposomes. Cellular internalization of these targeted liposomes was studied using confocal microscopy and flow cytometry. The toxicity potential was assessed in vivo. Results indicated that the polysaccharide-based ligand increased cellular uptake due to better interaction with the receptor as compared to ligand bearing a single galactose group. In addition to developing novel liver targeting ligands, the study also established proof of concept that has been suggested by earlier in silico investigations. The approach can be used to design targeting ligands and develop formulations with improved targeting efficacy.
Collapse
Affiliation(s)
- V Dhawan
- Bombay College of Pharmacy, Kalina, Santacruz East, Mumbai, 400098, India
| | - G Joshi
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - B Sutariya
- Bombay College of Pharmacy, Kalina, Santacruz East, Mumbai, 400098, India
| | - J Shah
- Bombay College of Pharmacy, Kalina, Santacruz East, Mumbai, 400098, India
| | - M Ashtikar
- Department of Pharmaceutical Technology, Friedrich Schiller University of Jena, Lessingstraße 8, D-07743, Jena, Germany
| | - K Nagarsekar
- Department of Pharmaceutical Technology, Friedrich Schiller University of Jena, Lessingstraße 8, D-07743, Jena, Germany
| | - F Steiniger
- Centre for Electron Microscopy of the Medical Faculty, Friedrich Schiller University of Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - A Lokras
- Bombay College of Pharmacy, Kalina, Santacruz East, Mumbai, 400098, India; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - A Fahr
- Department of Pharmaceutical Technology, Friedrich Schiller University of Jena, Lessingstraße 8, D-07743, Jena, Germany
| | - M Krishnapriya
- Bombay College of Pharmacy, Kalina, Santacruz East, Mumbai, 400098, India
| | - U Warawdekar
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - M Saraf
- Bombay College of Pharmacy, Kalina, Santacruz East, Mumbai, 400098, India
| | - M Nagarsenker
- Bombay College of Pharmacy, Kalina, Santacruz East, Mumbai, 400098, India.
| |
Collapse
|
13
|
Wang B, Shan X, Lv S, Zha L, Zhang C, Dong Q, Chen W. Preparation, Characterization, and In Vitro/In Vivo Evaluation of 3-O-β-D-Galactosylated Resveratrol-Loaded Polydopamine Nanoparticles. AAPS PharmSciTech 2021; 22:220. [PMID: 34405290 DOI: 10.1208/s12249-021-02079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
3-O-β-D-galactosylated resveratrol (Gal-Res) was synthesized from resveratrol (Res) and 3-O-β-D-galactose (Gal) in our previous study. In order to improve the pH sensitivity and bioavailability of Gal-Res, Gal-Res nanoparticles (Gal-Res NPs) were prepared using polydopamine (PDA) as a drug carrier. The drug loading (DL %) and entrapment efficiency (EE %) of Gal-Res NPs were 46.80% and 88.06%. The average particle size, polydispersity index (PDI), and Zeta potential of Gal-Res NPs were 179.38 ± 2.83 nm, 0.129 ± 0.013, and - 28.05 ± 0.36 mV, respectively. The transmission electron microscope (TEM) showed that Gal-Res NPs had uniform spherical morphology. Compared with the fast release of raw Gal-Res, the in vitro release of Gal-Res NPs was slow and pH-sensitive. The results of the blood vessel irritation and hemolysis test demonstrated that Gal-Res NPs had good hemocompatibility. The pharmacokinetics study in rats showed that area under the curve of plasma drug concentration time (AUC0→600) and half-life (t1/2) of Gal-Res NPs were enhanced 1.82-fold and 2.19-fold higher than those of raw Gal-Res. The in vivo biodistribution results showed that Gal-Res NPs were more distributed in liver tissue than Gal-Res. Gal-Res NPs with high bioavailability and liver accumulation were hopeful drug delivery systems (DDS) to treat liver diseases.
Collapse
|
14
|
Mundlia J, Ahuja M, Kumar P. Enhanced biological activity of polyphenols on conjugation with gellan gum. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1760273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jyoti Mundlia
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Munish Ahuja
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Pradeep Kumar
- Faculty of Health Sciences, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
15
|
ATP/Hyals dually responsive core-shell hyaluronan/chitosan-based drug nanocarrier for potential application in breast cancer therapy. Int J Biol Macromol 2021; 183:839-851. [PMID: 33965490 DOI: 10.1016/j.ijbiomac.2021.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
The stability of self-assembled drug nanocarriers during blood circulation and the controlled intracellular drug delivery are two challenges in cancer therapy. In this paper, we constructed an adenosine triphosphate (ATP)/hyaluronidase(Hyals) dually responsive core-shell hyaluronan/chitosan-based drug nanocarrier for breast cancer therapy, using SNX-loaded 3-fluoro-4-carboxyphenylboronic acid-conjugated quaternary ammonium chitosan nanoparticles (SNX@HTCC-FPBA NPs) as the core and crosslinked polyethylene glycol-/methacrylate-modified hyaluronic acid (mHA-PEG) as the shell. The formed SNX@HTCC-FPBA/mHA-PEG NPs were stable against salt ion strength, pH values and human plasma mimicking the bloodstream, but ATP/Hyals dually sensitive with a drug delivery of 85% within 48 h in the mimicking intracellular environment of breast cancer cells. These nanoparticles showed a low hemolysis of less than 3%, a high resistance to bovine serum albumin adsorption of 0.06 mg/mg, and an efficient internalization by two breast cancer cell lines (MCF-7 and MDA-MB-453). The cell culture indicated that they were friendly to human skin fibroblasts, but presented a close IC50 value to SNX for MCF-7 (0.14 μg mL-1) and MDA-MB-453 (0.05 μg mL-1) at 48 h, respectively. Thus, SNX@HTCC-FPBA/mHA-PEG NPs were potential drug nanocarriers for breast tumor therapy.
Collapse
|
16
|
Wang Y, Li Y, He L, Mao B, Chen S, Martinez V, Guo X, Shen X, Liu B, Li C. Commensal flora triggered target anti-inflammation of alginate-curcumin micelle for ulcerative colitis treatment. Colloids Surf B Biointerfaces 2021; 203:111756. [PMID: 33865087 DOI: 10.1016/j.colsurfb.2021.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is a chronic, idiopathic inflammatory bowel disease characterized by dysregulation of colon immune response. Curcumin (Cur) has strong anti-inflammatory activities, but the application is severely hindered by the extremely hydrophobicity and pitiful bioavailability. Alginate (Alg), a natural polysaccharide with ideal solubility and biosafety, was introduced to prepare the esterified alginate-curcumin conjugate (Alg-Cur) and constructed stable Alg-Cur micelle in physiological solutions. Compared with crystalline Cur, the target anti-inflammatory activities of Alg-Cur were systematically investigated. The results showed that Alg-Cur exerted effective anti-inflammatory effects in Raw 264.7 cells. After oral administration, 92.32 % of Alg-Cur reached colon, and the ester bonds were quickly sheared by abundant esterase produced by commensal anaerobic flora. The released Cur was quickly absorbed in-situ in monomolecular state, and effectively ameliorated the colonic inflammation and tissue damage by inhibiting the TLR4 expression in colonic epithelial cell, reducing the transcription and expression of the pro-inflammation cytokines downstream, as well as the infiltration of lymphocytes, macrophages and neutrophils. The Alg-Cur micelle effectively enhanced the hydrophilicity and bioavailability of Cur, and the commensal flora triggered Cur release showed great potential for UC treatment.
Collapse
Affiliation(s)
- Yanan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China
| | - Yanan Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China
| | - Lingyun He
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China
| | - Sian Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China
| | - Vanessa Martinez
- Houston Methodist Research Institute, University of St. Thomas, 3800 Montrose Blvd, Houston, TX, 77006, USA
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China
| | - Xian Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China.
| | - Baohua Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China.
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, PR China.
| |
Collapse
|
17
|
Hu G, Batool Z, Cai Z, Liu Y, Ma M, Sheng L, Jin Y. Production of self-assembling acylated ovalbumin nanogels as stable delivery vehicles for curcumin. Food Chem 2021; 355:129635. [PMID: 33780798 DOI: 10.1016/j.foodchem.2021.129635] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
In this study, we evaluated potential usage of acylated ovalbumin (AOVA) nanogels fabricated via acylation modification and heat-induced self-assembly process as novel delivery systems for curcumin. Compared to native ovalbumin (NOVA) nanogels without chemical acylation, the obtained AOVA nanogels have shown smaller average hydrodynamic diameter (155.73 nm), relatively uniform size distribution (polydispersity index around 0.28), enhanced negative surface charge (-24.3 mV), and an improved stability under the conditions of high ionic strength, different pH and storage time. Moreover, AOVA nanogels exhibited a remarkable conformational change in secondary and tertiary structures, improved surface hydrophobicity, and increased free sulfhydryl content compared with NOVA nanogels. Moreover, curcumin encapsulated in AOVA nanogels displayed higher encapsulation efficiency (93.64%) and slower sustained release under simulated gastrointestinal conditions as compared with NOVA nanogels. Hence, we have suggested that AOVA nanogels successfully fabricated with improved physicochemical properties as a novel ideal carrier for hydrophobic active compounds.
Collapse
Affiliation(s)
- Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zahra Batool
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
18
|
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021; 13:477. [PMID: 33540922 PMCID: PMC7867356 DOI: 10.3390/polym13030477] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The broad diversity of structures and the presence of numerous functional groups available for chemical modifications represent an enormous advantage for the development of safe, non-toxic, and cost-effective micellar drug delivery systems (DDS) based on natural biopolymers, such as polysaccharides, proteins, and peptides. Different drug-loading methods are used for the preparation of these micellar systems, but it appeared that dialysis is generally recommended, as it avoids the formation of large micellar aggregates. Moreover, the preparation method has an important influence on micellar size, morphology, and drug loading efficiency. The small size allows the passive accumulation of these micellar systems via the permeability and retention effect. Natural biopolymer-based micellar DDS are high-value biomaterials characterized by good compatibility, biodegradability, long blood circulation time, non-toxicity, non-immunogenicity, and high drug loading, and they are biodegraded to non-toxic products that are easily assimilated by the human body. Even if some recent studies reported better antitumoral effects for the micellar DDS based on polysaccharides than for commercial formulations, their clinical use is not yet generalized. This review is focused on the studies from the last decade concerning the preparation as well as the colloidal and biological characterization of micellar DDS based on natural biopolymers.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
| |
Collapse
|
19
|
Reig-Vano B, Tylkowski B, Montané X, Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 2020; 170:424-436. [PMID: 33383080 DOI: 10.1016/j.ijbiomac.2020.12.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Cancer is a major health issue concerning to all of us. Current treatment options are still limited due to not-selective action. Encapsulation is contemplated as an innovative approach to address systemic toxicity and tumor resistance caused by traditional therapies, while increasing encapsulated compounds bioavailability. The coating material of capsules strongly determines the success of the system. Since alginate has been proved non-toxic, biocompatible and biodegradable, it is considered a potential vehicle for therapeutic factors encapsulation. Besides, it has the particular ability to form hydrogels, which hold a high-water content and greatly resemble to natural soft tissues. The present review exposes the state-of-the-art and the most sophisticated alginate-based systems for cancer therapy and research. It begins with an overview of alginate hydrogels and the qualities that make them especially suitable for biomedical applications. In the following section, the application of alginate hydrogels as pioneering strategies for cancer treatment is described. Several examples of alginate-based delivery systems of therapeutic drugs, proteins and nucleic acids are provided. Significant emphasis is placed in both oral delivery systems and colorectal cancer therapy. Moreover, the role of alginate 3-D scaffolds for both cell culture and delivery is explained. Lastly, other applications of alginate-based hydrogels such as tumor biomarkers immunosensing and fluorescent surgical marker are included.
Collapse
Affiliation(s)
- Belen Reig-Vano
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Xavier Montané
- Department of Analytic Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Carrer Marcel.lí Domingo s/n, Campus Sescelades, Tarragona 43007, Spain
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.
| |
Collapse
|
20
|
Alginate-Based Platforms for Cancer-Targeted Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1487259. [PMID: 33083451 PMCID: PMC7563048 DOI: 10.1155/2020/1487259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.
Collapse
|
21
|
Ackova DG, Smilkov K, Bosnakovski D. Contemporary Formulations for Drug Delivery of Anticancer Bioactive Compounds. Recent Pat Anticancer Drug Discov 2019; 14:19-31. [PMID: 30636616 DOI: 10.2174/1574892814666190111104834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The immense development in the field of anticancer research has led to an increase in the research of bioactive compounds with anticancer potential. It has been known that many bioactive natural compounds have low solubility (and low bioavailability) as their main drawback when it comes to the formulation and drug delivery to specific sites. OBJECTIVE As many attempts have been made to overcome this issue, this review gives a summary of the current accomplishments regarding the development of new Drug Delivery Systems (DDSs) represented by nanoparticles (NPs) and exosomes. METHODS We analyzed the published data concerning selected compounds that present the most prominent plant secondary metabolites with anticancer potential, specifically flavone (quercetin), isoflavone (genistein and curcumin) and stilbene (resveratrol) groups that have been formulated as NPs and exosomes. In addition, we summarized the patent literature published from 2015-2018 that address these formulations. RESULTS Although the exact mechanism of action for the selected natural compounds still remains unclear, the anticancer effect is evident and the main research efforts are directed to finding the most suitable delivery systems. Recent patents in this field serve as evidence that these newly designed natural compound delivery systems could be powerful new anticancer agents in the very near future if the noted difficulties are overcome. CONCLUSION The focus of recent research is not only to clarify the exact mechanisms of action and therapeutic effects, but also to answer the issue of suitable delivery systems that can transport sufficient doses of bioactive compounds to the desired target.
Collapse
Affiliation(s)
- Darinka G Ackova
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of
| | - Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of
| | - Darko Bosnakovski
- Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev - Stip, Macedonia, the Former Yugoslav Republic of.,Department of Pediatrics, University of Minnesota, Minneapolis, United States
| |
Collapse
|
22
|
Song J, Liu Y, Lin L, Zhao Y, Wang X, Zhong M, Xie T, Luo Y, Li S, Yang R, Li H. Glycyrrhetinic acid modified and pH-sensitive mixed micelles improve the anticancer effect of curcumin in hepatoma carcinoma cells. RSC Adv 2019; 9:40131-40145. [PMID: 35541419 PMCID: PMC9076264 DOI: 10.1039/c9ra07250k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Curcumin (CUR), a natural polyphenolic compound existing in plants, exhibits anticancer potential in inhibiting the growth of various types of human cancer. However, the poor aqueous solubility and low bioavailability limit its clinical applications. pH-sensitive macromolecule F68-acetal-PCL (FAP) and active targeting macromolecule F68-glycyrrhetinic acid (FGA) were designed to fabricate mixed micelles for efficient delivery of CUR. The thin film hydration method was used to prepare CUR loaded mixed (MIX/CUR) micelles. The drug loading rate (DL) of MIX/CUR micelles was 6.31 ± 0.92%, which remained stable for 15 days at 4 °C. The particle size and zeta potential of the MIX/CUR micelles were 91.06 ± 1.37 nm and -9.79 ± 0.47 mV, respectively. The MIX/CUR micelles exhibited pH sensitivity in a weak acid environment, and showed rapid particle size variation and drug release. In addition, in vitro tests demonstrated that MIX/CUR micelles induced higher cytotoxicity and apoptosis than free CUR, non-pH-sensitive F68-PCL (FBP)/CUR micelles and pH-sensitive FAP/CUR micelles in SMMC7721 and Hepa1-6 cells. Besides, mixed micelles were more effective than FBP and FAP micelles in a cell uptake experiment, which was medicated by a GA receptor. All in all, these results indicated that MIX/CUR micelles could be regarded as an ideal drug administration strategy against hepatoma carcinoma cells.
Collapse
Affiliation(s)
- Jizheng Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ye Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Xiuqing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ming Zhong
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Tanggui Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ruocong Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
23
|
Khodabakhsh Aghdam S, Khoshfetrat AB, Rahbarghazi R, Jafarizadeh-Malmiri H, Khaksar M. Collagen modulates functional activity of hepatic cells inside alginate-galactosylated chitosan hydrogel microcapsules. Int J Biol Macromol 2019; 156:1270-1278. [PMID: 31760032 DOI: 10.1016/j.ijbiomac.2019.11.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
To provide comparable hepatic tissue microenvironment and induce functional behavior for hepatocytes, galctosylated-chitosan (GC) as well as collagen (Col) was added to alginate microcapsule coated with extra layer of chitosan. Four different hydrogel groups of alginate/chitosan (AC); alginate-galactosylated chitosan/chitosan (AGC/C); alginate-collagen/chitosan (ACol/C); and alginate-galactosylated chitosan-collagen/chitosan (AGCCol/C) were prepared and characterized for physical properties such as porosity, swelling, degradation rate, and stiffness. Introduction of GC as well as Col to alginate regulated significantly the physical properties of the resultant hydrogels. GC addition decreased dramatically swelling, degradation, pore size and mechanical properties of the resultant hydrogel. However, the influence of GC on the physical properties in the presence of Col (AGCCol/A) was in a reverse manner, as compared to the AGC/C hydrogel. The AGCCol/C microenvironment also promoted proliferation of microencapsulated HepG2 cells, as a model of hepatocyte, compared to the control-matched groups. Biochemical analysis after 10 days revealed a superior effect of AGCCol/C on the secretion of albumin and urea compared to other groups (P < 0.05). These features were coincided with the mRNA up-regulation of P450 and albumin in the AGCCol/C groups compared to the AGC/C and ACol/C groups (P < 0.05). The study demonstrated that enrichment of alginate-based hydrogels with Col and GC could be touted as an appropriate 3D platform for modular hepatic tissue engineering.
Collapse
Affiliation(s)
- Shahla Khodabakhsh Aghdam
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
25
|
Karabasz A, Lachowicz D, Karewicz A, Mezyk-Kopec R, Stalińska K, Werner E, Cierniak A, Dyduch G, Bereta J, Bzowska M. Analysis of toxicity and anticancer activity of micelles of sodium alginate-curcumin. Int J Nanomedicine 2019; 14:7249-7262. [PMID: 31564877 PMCID: PMC6735652 DOI: 10.2147/ijn.s213942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Curcumin is a natural polyphenol with anti-inflammatory, chemopreventive and anticancer activity. However, its high hydrophobicity and poor bioavailability limit its medical application. The development of nanocarriers for curcumin delivery is an attractive approach to overcome its low bioavailability and fast metabolism in the liver. We synthesized a blood compatible alginate-curcumin conjugate, AA-Cur, which formed colloidally stable micelles of approximately 200 nm and, as previously shown, exerted strong cytotoxicity against mouse cancer cell lines. Here we analyze in vivo toxicity and antitumor activity of AA-Cur in two different mouse tumor models. Method Potential toxicity of intravenously injected AA-Cur was evaluated by: i) analyses of blood parameters (morphology and biochemistry), ii) histology, iii) DNA integrity (comet assay), and iv) cytokine profiling (flow cytometry). Antitumor activity of AA-Cur was evaluated by measuring the growth of subcutaneously inoculated colon MC38-CEA- or orthotopically injected breast 4T1 tumor cells in control mice vs mice treated with AA-Cur. Results Injections of four doses of AA-Cur did not reveal any toxicity of the conjugate, thus indicating the safety of its use. AA-Cur elicited moderate anti-tumor activity toward colon MC38-CEA or breast 4T1 carcinomas. Conclusion The tested conjugate of alginate and curcumin, AA-Cur, is non-toxic and safe, but exhibits limited anticancer activity.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland
| | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Renata Mezyk-Kopec
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Animal Reproduction and Anatomy, Faculty of Animal Science, University of Agriculture, Krakow, Poland
| | - Agnieszka Cierniak
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
26
|
Improved antioxidant, antimicrobial and anticancer activity of naringenin on conjugation with pectin. 3 Biotech 2019; 9:312. [PMID: 31406634 DOI: 10.1007/s13205-019-1835-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present study was to improve the aqueous solubility of naringenin by conjugating with water-soluble polysaccharide carrier, pectin. The pectin-naringenin conjugate was synthesized employing dicyclohexylcarbodiimide and dimethylaminopyridine. The conjugation was confirmed by various physicochemical characterizations. The results of differential scanning calorimetry, X-ray diffraction and morphological analyses revealed semi-crystalline nature of the conjugate. The chromatographic analysis showed 37.069 µg naringenin/mg of conjugate. The conjugate was determined to have molecular weight of 6.22 × 104 kDa by static light scattering. In silico molecular mechanistic simulations performed for pectin and naringenin revealed the energetic and geometrical stability within the polysaccharide-polyphenol conjugate. The critical aggregation concentration was in the range of 44.67-56.23 μg/mL as determined by dynamic light scattering and fluorescence spectroscopy. On in vitro release, 99.4% (pH 1.2) and 57.62% (pH 7.4) of naringenin were found to be released over a period of 30 h and 48 h, respectively. Further, the release of naringenin followed Higuchi's square-root kinetics with diffusion as the possible release mechanism. A comparative evaluation for antioxidant activity revealed a significantly higher radical scavenging activity of conjugate over the naringenin. Further, the conjugate exhibited significantly higher antimicrobial action against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa while a comparable antimicrobial activity was observed against Escherichia coli and Bacillus subtilis. The cytotoxicity studies of the synthesized conjugate showed anti-cancer activity against NIH: OVCAR-5 cells. In conclusion, the pectin-naringenin conjugate presented hydrocolloidal properties with improved therapeutic efficacy and delivery over the native polyphenol.
Collapse
|
27
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
28
|
Huang C, Hu X, Hou Z, Ji J, Li Z, Luan Y. Tailored graphene oxide-doxorubicin nanovehicles via near-infrared dye-lactobionic acid conjugates for chemo-photothermal therapy. J Colloid Interface Sci 2019; 545:172-183. [DOI: 10.1016/j.jcis.2019.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/21/2023]
|
29
|
Lachowicz D, Karabasz A, Bzowska M, Szuwarzyński M, Karewicz A, Nowakowska M. Blood-compatible, stable micelles of sodium alginate – Curcumin bioconjugate for anti-cancer applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Qian J, Zha L, Wang B, Zhang C, Hong L, Chen W. Synthesis, cytotoxicity and liver targeting of 3-O-β-D-Galactosylated Resveratrol. ACTA ACUST UNITED AC 2019; 71:929-936. [PMID: 30834522 DOI: 10.1111/jphp.13084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/03/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Resveratrol (Res), a naturally occurring polyphenol, has shown pharmacological activities in treatment of liver diseases. However, the application of Res was limited by its poor bioavailability and liver targeting. Herein, 3-O-β-D-Galactosylated Resveratrol (Gal-Res) was synthesized by structural modification of Res to enhance bioavailability and liver targeting. METHODS The Gal-Res was characterized by IR, 1 H-NMR spectra and MS. The in vitro antitumour experiments, in vivo pharmacokinetics and biodistribution studies were evaluated. RESULTS Gal-Res was successfully synthesized in our study. Compared to Res, Gal-Res resulted in enhanced cytotoxicity in HepG2 cells. After intravenous injection of normal SD rats, Gal-Res significantly improved the bioavailability of Res and the Cmax and AUC0-t of Gal-Res were 3.186 and 3.929 time than that of Res. In addition, in the study of liver targeting, the relative uptake rate (Re ) of Gal-Res in the liver (2.006) is the largest. The drug targeting efficiency (Te ; 38.924%) of Gal-Res was greater than that of Res. These showed that Gal-Res could significantly improve the distribution ability of Res in liver. CONCLUSIONS On the whole, Gal-Res increased cellular uptake to HepG2 cells, bioavailability and liver targeting, providing its future clinical application in the treatment of liver diseases.
Collapse
Affiliation(s)
- Jiajia Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Liqiong Zha
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Beilei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Lufeng Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
31
|
Zhang Q, Suntsova L, Chistyachenko YS, Evseenko V, Khvostov MV, Polyakov NE, Dushkin AV, Su W. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int J Biol Macromol 2019; 128:158-166. [PMID: 30664966 DOI: 10.1016/j.ijbiomac.2019.01.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/11/2023]
Abstract
Pharmaceutical solid dispersions (SD) of curcumin (Cur) with macromolecule polysaccharide arabinogalactan (AG) from wood of Larix sibirica were prepared by mechanical ball milling. The physical properties of the dispersed curcumin mixture in solid state were characterized by scanning electron microscope, differential scanning calorimetry and powder X-ray diffraction studies. These methods showed a strong decrease in the degree of crystallinity of Cur and its transformation to amorphization state, accompanied by the formation of the guest-host type complexes. The behavior of the samples in solutions was characterized by reverse phase HPLC, 1H NMR spectroscopy, UV-Visible spectroscopy and gel permeation chromatography (GPC). Mechanochemically prepared complexes demonstrated the increased solubility of Cur up to ~10.5 times in contrast to pure curcumin. The rapid storage test showed high chemical stability of Cur, which depended on mass relations of Cur-AG. Besides, improved membrane permeability of Cur-AG SD was tested by parallel artificial membrane permeability assay. Pharmacokinetic study of Cur-AG SD formulation in rat demonstrated a significant~8-fold enhancement of bioavailability in comparison to pure curcumin. In MTT tests, Cur-AG SD showed moderate cytotoxicity against human glioblastoma cells and immortalized human fibroblasts. Therefore, Cur-AG solid dispersion was a more promising and efficacious formulation for application in oral drug delivery.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lubov Suntsova
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | | | - Veronika Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Mikhail V Khvostov
- Institute of Organic Chemistry, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Alexandr V Dushkin
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
32
|
He W, Jiang Y, Li Q, Zhang D, Li Z, Luan Y. A versatile strategy to create an active tumor-targeted chemo-photothermal therapy nanoplatform: A case of an IR-780 derivative co-assembled with camptothecin prodrug. Acta Biomater 2019; 84:356-366. [PMID: 30502480 DOI: 10.1016/j.actbio.2018.11.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/21/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022]
Abstract
Self-assembled nanovehicles of chemotherapy drug with photothermal agent are regarded as intriguing chemo-photothermal therapy nanoplatform. However, most of the drugs and photothermal agents have poor water solubility and poor interactions to drive the formation of self-assembled nanovehicles, which is a bottleneck of co-assembled drug/photothermal agent for cancer therapy. Here, we proposed a versatile strategy to create self-assembled chemo-photothermal therapy nanoplatform based on the chemical modification of photothermal agent and drug. The IR-780 and camptothecin (CPT) were chosen as the studied models since they are important photothermal agent and anticancer drug, both of which have such poor water solubility with strong itself molecular interactions that they cannot co-assemble together. IR-780 was modified with an active targeting ligand lactobionic acid (LA) to result in amphiphilic IR780-LA while CPT was modified into redox-sensitive prodrug CPT-ss-CPT through a disulfide linkage to realize its assembly. Well-defined nanoparticles (NPs) could be created through the co-assembling of IR780-LA and CPT-ss-CPT. The IR780-LA/CPT-ss-CPT nanoparticles were demonstrated to be an excellent fluorescence imaging-guided, redox-responsive and enhanced synergistic chemo-photothermal therapy nanoplatform against tumors. Specifically, our chemical modification strategy offers a universal way to create self-assembled chemo-photothermal therapy nanoplatform, which solves the bottleneck of co-assembled drug/photothermal agent for cancer therapy. STATEMENT OF SIGNIFICANCE: Self-assembled nanoparticles of chemotherapeutics with photothermic drugs are regarded as intriguing chemo-photothermal therapy nanoplatform. However, most drugs have too poor solubility and interactions to form into self-assembled nanoparticles. We proposed a versatile strategy to create co-assembled chemo-photothermal therapy nanoparticles based on the chemical modification of common drugs. The IR-780 was modified with an active targeting ligand LA to result in amphiphilic IR780-LA molecules, while CPT was modified into redox-sensitive prodrug CPT-ss-CPT through disulfide linkage. Well-defined IR780-LA/CPT-ss-CPT nanoparticles were created through the co-assembling of IR780-LA and CPT-ss-CPT. The nanoparticles were demonstrated to be an excellent fluorescence imaging-guided, redox-responsive, active targeting chemo-photothermal therapy nanoplatform against tumors. Our strategy offers a versatile way to construct smart chemo-photothermal therapy nanoplatform from common drugs.
Collapse
|
33
|
Alonso S. Exploiting the bioengineering versatility of lactobionic acid in targeted nanosystems and biomaterials. J Control Release 2018; 287:216-234. [DOI: 10.1016/j.jconrel.2018.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022]
|
34
|
Mundlia J, Ahuja M, Kumar P, Pillay V. Pectin–curcumin composite: synthesis, molecular modeling and cytotoxicity. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2538-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Nanoparticle formulations to enhance tumor targeting of poorly soluble polyphenols with potential anticancer properties. Semin Cancer Biol 2017; 46:205-214. [PMID: 28673607 DOI: 10.1016/j.semcancer.2017.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
Polyphenols have been extensively studied for their relevant anticancer activity. Quite often however their instability, extensive metabolization, low bioavailability and poor solubility limit their application in cancer prevention and therapy. Formulation in nanoparticles has been widely proposed as a means to overcome these limits, maximize localization and specific activity at tumor site. The present review is intended as an update of literature regarding nanoparticulate carriers aimed to deliver polyphenols to the cancer site. Three molecules were chosen, all of which were hydrophobic and poorly soluble, representative of different polyphenol classes: quercetin (QT) among the flavonoid group, curcumin (CUR) as representative of curcuminoids, and resveratrol (RSV) among the stilbenes. In particular, nanoparticulate systems suitable for poorly soluble drugs will be described and attention will be paid to characteristics designed to improve tumor targeting, specific delivery and interaction with tumor cells.
Collapse
|
36
|
Long H, Li X, Sang Z, Mei L, Yang T, Li Z, Zhou L, Zheng Y, He G, Guo G, Wang Z, Deng Y, Luo Y. Improving the pharmacokinetics and tissue distribution of pyrinezolid by self-assembled polymeric micelles. Colloids Surf B Biointerfaces 2017; 156:149-156. [PMID: 28527358 DOI: 10.1016/j.colsurfb.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 02/05/2023]
Abstract
Antibiotic-resistance by bacteria is a growing global concern within the healthcare field, and it has provided an impetus for continued antimicrobial development. Pyrinezolid (PZ), a novel oxazolidinone compound, can effectively inhibit most gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Though PZ is a promising antimicrobial candidate, the druggability of PZ is limited by its poor water solubility. Therefore, the amphipathic mPEG-PLLA copolymer was used to prepare the pyrinezolid micelles (PZ-M). Herein, we described the preparation, pharmacokinetic properties, tissue distribution, efficacy and toxicity of PZ-M. In vivo studies show that PZ-M possess prolonged blood circulation time and increased oral bioavailability compared with free PZ. Meanwhile, PZ-M increase lung PZ exposure and reduce liver and kidney exposure, which indicates that PZ-M may enhance the efficacy in vivo in MRSA-related pneumonia patients and decrease potential renal and hepatic toxicities.
Collapse
Affiliation(s)
- Haiyue Long
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zitai Sang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zicheng Li
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yu Zheng
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Deng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
37
|
Chen G, Li J, Cai Y, Zhan J, Gao J, Song M, Shi Y, Yang Z. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy. Sci Rep 2017; 7:44210. [PMID: 28281678 PMCID: PMC5345068 DOI: 10.1038/srep44210] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses a variety of therapeutic properties. However, it is suffered from its low water solubility and low bioavailability property, which seriously restricts its clinical application. In this study, we developed a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed good water solubility and could form supramolecular gels by disulfide bond reduction triggered by glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy.
Collapse
Affiliation(s)
- Guoqin Chen
- Cardiology Department of Panyu Central Hospital, Guangzhou, China; Cardiovascular Disease Institute of Panyu District, Guangzhou, Guangdong 511400, P. R. China
| | - Jinliang Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, Cardiology Department of Panyu Central Hospital, Guangzhou, Guangdong 511400, P. R. China
| | - Yanbin Cai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Jie Zhan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
| | - Mingcai Song
- Cardiology Department of Panyu Central Hospital, Guangzhou, China; Cardiovascular Disease Institute of Panyu District, Guangzhou, Guangdong 511400, P. R. China
| | - Yang Shi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
38
|
Praphakar RA, Munusamy MA, Alarfaj AA, Kumar SS, Rajan M. Zn2+cross-linked sodium alginate-g-allylamine-mannose polymeric carrier of rifampicin for macrophage targeting tuberculosis nanotherapy. NEW J CHEM 2017. [DOI: 10.1039/c7nj01808h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Our aim was to evaluate the capacity of polymeric nanoparticles (PNPs) to selectively deliver an antituberculosis drug (rifampicin; RF) to alveolar macrophages.
Collapse
Affiliation(s)
- Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| | | | | | - S. Suresh Kumar
- Department of Medical Microbiology and Parasitology
- University Putra Malaysia
- 43400 UPM Serdang Selangor
- Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| |
Collapse
|
39
|
Lou R, Xie H, Zheng H, Ren Y, Gao M, Guo X, Song Y, Yu W, Liu X, Ma X. Alginate-based microcapsules with galactosylated chitosan internal for primary hepatocyte applications. Int J Biol Macromol 2016; 93:1133-1140. [PMID: 27667543 DOI: 10.1016/j.ijbiomac.2016.09.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022]
Abstract
Alginate-galactosylated chitosan/polylysine (AGCP) microcapsules with excellent stability and high permeability were developed and employed in primary hepatocyte applications. The galactosylated chitosan (GC), synthesized via the covalent coupling of lactobionic acid (LA) with low molecular weight and water-soluble chitosan (CS), was ingeniously introduced into the core of alginate microcapsules by regulating the pH of gelling bath. The internal GC of the microcapsules simultaneously provided a large number of binding sites for the hepatocytes and further promoted the hepatocyte-matrix interactions via the recognition of asialoglycoprotein receptors (ASGPRs) on the hepatocyte surface, and afforded the AGCP microcapsules an excellent stability via the electrostatic interactions with alginate. As a consequence, primary hepatocytes in AGCP microcapsules demonstrated enhanced viability, urea synthesis, albumin secretion, and P-450 enzyme activity, showing great prospects for hepatocyte applications in microcapsule system.
Collapse
Affiliation(s)
- Ruyun Lou
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongguo Xie
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Huizhen Zheng
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Ren
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meng Gao
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Guo
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yizhe Song
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weiting Yu
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Xiudong Liu
- College of Environment and Chemical Engineering, Dalian University, Dalian Economic Technological Development Zone, Dalian 116622, PR China.
| | - Xiaojun Ma
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
40
|
Anirudhan TS, Binusreejayan. Dextran based nanosized carrier for the controlled and targeted delivery of curcumin to liver cancer cells. Int J Biol Macromol 2016; 88:222-35. [PMID: 27012895 DOI: 10.1016/j.ijbiomac.2016.03.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/11/2022]
Abstract
Curcumin (Cur), a poly phenolic yellow colored compound present in Indian spice turmeric, has a wide variety of biological properties. Bioavailability of Cur is limited by its low water solubility, rapid metabolism and low stability. In the present study, we mainly focus on synthesis and characterization of dextran based nano-sized drug carrier (GHDx) for the delivery of Cur. A liver targeting moiety is incorporated in GHDx so as to improve the therapeutic efficiency and decrease adverse effects of conventional cancer therapy. The effect of different parameters on grafting variables was studied. GHDx was characterised by FTIR, (1)H NMR XRD, TG/DTG, TEM, SEM, AFM, DLS and zeta potential analyses. Adsorption experiments were carried out for drug loading. Swelling of GHDx was studied as a function of pH and temperature. Three step release of Cur from GHDx was confirmed by analyzing in vitro release data in simulated intracellular pH using different kinetic models. In vitro cytotoxicity analysis on L929 and Hep G2 cells shows that GHDx is safe carrier while Cur loaded GHDx exhibits high toxicity with slow drug release towards hepatic cells. The results show that the GHDx can be customized as a stimuli sensitive potential carrier for the delivery of drugs.
Collapse
Affiliation(s)
- Thayyath Sreenivasan Anirudhan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India.
| | - Binusreejayan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
| |
Collapse
|