1
|
Jiang N, Wang Y, Zhou J, Zheng R, Yuan X, Wu M, Bao J, Wu C. A novel mannose-binding lectin from Liparis nervosa with anti-fungal and anti-tumor activities. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1081-1092. [PMID: 32852549 DOI: 10.1093/abbs/gmaa090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/05/2020] [Indexed: 01/22/2023] Open
Abstract
Plant lectins are carbohydrate-binding proteins with nonimmune origin, which can reversibly bind with carbohydrates, agglutinate cells, and precipitate polysaccharides and glycoconjugates. Plant lectins have attracted much attention for their anti-virus, anti-proliferation, and pro-apoptosis properties. Thus the exploration of new lectins has received special attention. Here we purified a mannose-binding lectin from the rhizomes of Liparis nervosa by ion exchange chromatography on DEAE-Sepharose, affinity chromatography on Mannose-Sepharose 4B, and gel filtration chromatography on Sephacryl S-100. The purified L. nervosa lectin (LNL) was identified to be a monomeric protein with a molecular mass of 13 kDa. LNL exhibited hemagglutinating activity towards rabbit erythrocytes, and its activity could be strongly inhibited by D-mannose, N-acetyl glucosamine and thyroglobulin. In vitro experiments showed that LNL exhibited a comparable anti-fungal activity against Piricularia oryzae (Cavara), Bipolaris maydis, Fusarium graminearum, and Sclerotium rolfsii, and anti-proliferation activity against tumor cells by inducing apoptosis. The full-length cDNA sequence of LNL is 715 bp in length and contains a 525 bp open reading frame (ORF) encoding a 110-residue mature protein. It was predicted to have three mannose-binding conserved motifs 'QXDXNXVXY'. The binding pattern of LNL was further revealed by homology modeling and molecular docking. We demonstrated that LNL is not only a potential therapeutic candidate against tumor but also a new anti-fungal agent.
Collapse
Affiliation(s)
- Na Jiang
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuqing Wang
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Zhou
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ruxiao Zheng
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiao Yuan
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Miaomiao Wu
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinku Bao
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chuanfang Wu
- School of Life Sciences and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|