Hu B, Zheng X, Wang Y, Wang J, Zhang F. Computational Approaches for Elucidating Protein-Protein Interactions in Cation Channel Signaling.
Curr Drug Targets 2019;
21:179-192. [PMID:
31490747 DOI:
10.2174/1389450120666190906154412]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND
The lipid bilayer of the plasma membrane is impermeable to ions, yet changes in the flux of ions across the cell membrane are critical regulatory events in cells. Because of their regulatory roles in a range of physiological processes, such as electrical signaling in muscles and neurons, to name a few, these proteins are one of the most important drug targets.
OBJECTIVE
This review mainly focused on the computational approaches for elucidating proteinprotein interactions in cation channel signaling.
DISCUSSION
Due to continuously advanced facilities and technologies in computer sciences, the physical contacts of macromolecules of channel structures have been virtually visualized. Indeed, techniques like protein-protein docking, homology modeling, and molecular dynamics simulation are valuable tools for predicting the protein complex and refining channels with unreleased structures. Undoubtedly, these approaches will greatly expand the cation channel signaling research, thereby speeding up structure-based drug design and discovery.
CONCLUSION
We introduced a series of valuable computational tools for elucidating protein-protein interactions in cation channel signaling, including molecular graphics, protein-protein docking, homology modeling, and molecular dynamics simulation.
Collapse