1
|
Cai M, Zhang Y, Cao H, Li S, Zhang Y, Huang K, Song H, Guan X. Exploring the remarkable effects of microwave treatment on starch modification: From structural evolution to changed physicochemical and digestive properties. Carbohydr Polym 2024; 343:122412. [PMID: 39174077 DOI: 10.1016/j.carbpol.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
As one of the crucial components of the food system, starch can be hydrolyzed into glucose after gastrointestinal digestion, so regulating its digestive properties is vital for maintaining health. Microwaves can promote the rearrangement of intramolecular structure of starch, thus improving its physicochemical properties, enhancing its slowly digestible features, and expanding its scope of application. This review zooms in describing recent research results concerning the effects of microwave treatment on the multi-scale structure and physicochemical properties of starch and summarizing the patterns of these changes. Furthermore, the changes in starch structure, resistant starch content, and glycemic index after digestion are pointed out to gain an insight into the enhancement of starch slowly digestible properties by microwave treatment. The resistance of starch to enzymatic digestion may largely hinge on the specific structures formed during microwave treatment. The multi-level structural evolutions of starch during digestion endow it with the power to resist digestion and lower the glycemic index. The properties of starch dictate its application, and these properties are highly associated with its structure. Consequently, understanding the structural changes of microwave-modified starch helps to prepare modified starch with diversified varieties and functional composites.
Collapse
Affiliation(s)
- Mengdi Cai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Gu Y, Xu R, Liu T, McClements DJ, Zhao X, Wu J, Zhao M, Zhao Q. Enhancing the nonlinear rheological property and digestibility of mung bean flour gels using controlled microwave treatments: Effect of starch debranching and protein denaturation. Int J Biol Macromol 2024; 270:132049. [PMID: 38704060 DOI: 10.1016/j.ijbiomac.2024.132049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In this study, we examined the possibility of using industrial microwave processing to enhance the gelling properties and reduce the starch digestibility of mung bean flour (MBF). MBF (12.6 % moisture) was microwaved at a power of 6 W/g to different final temperatures (100-130 °C), and then its structural and functional properties were characterized. The microwave treatment had little impact on the crystalline structure or amylose content of the starch, but it roughened the starch granule surfaces and decreased the short-range ordered structure and degree of branching. In addition, the extent of mung bean protein denaturation caused by the microwave treatment depended on the final temperature. Slightly denaturing the proteins (100 °C) did not affect the nature of the gels (protein phase dispersed in a starch phase) but the gel network became more compact. Moderately denaturing the proteins (110-120 °C) led to more compact and homogeneous starch-protein double network gels. Excessive protein denaturation (130 °C) caused the gel structure to become more heterogeneous. As a result, the facilitated tangles between starch chains by more linear starch molecules after debranching, and the protein network produced by moderate protein denaturation led to the formation of stronger gel and the improvement of plasticity during large deformation (large amplitude oscillatory shear-LAOS). Starch recrystallization, lipid complexion, and protein network retard starch digestion in the MBF gels. In conclusion, an industrial microwave treatment improved the gelling and digestive properties of MBF, and Lissajous curve has good adaptability in characterizing the viscoelasticity of gels under large deformations.
Collapse
Affiliation(s)
- Yue Gu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | - Xiujie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinjin Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China.
| |
Collapse
|
4
|
Kumar R, Roy D, Damodharan N, Kennedy JF, Kumar KJ. Effect of dry heat and its combination with vacuum heat on physicochemical, rheological and release characteristics of Alocasia macrorrhizos retrograded starches. Int J Biol Macromol 2024; 264:130733. [PMID: 38471610 DOI: 10.1016/j.ijbiomac.2024.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Retrograded starches have received increasing attention due to their potential excipient properties in pharmaceutical formulations. However, to evade its application-oriented challenges, modification of retrograded starch is required. The study emphasizes influence of dry heating and the dual heat treatment by dry heating amalgamation with the vacuum heat treatment on quality parameters of retrograded starch. The starch was isolated by using two different extraction media (0.05 % w/v NaOH and 0.03 % citric acid) from Alocasia macrorrhizos and then retrograded separately. Further, retrograded starches were first modified by dry heating and afterwards modified with combination of dry and vacuum heating. Modification decreased moisture, ash content and increased solubility. Modified Samples from NaOH media had higher water holding capacity and amylose content. X-ray diffraction revealed type A and B crystals with increasing crystallinity of retrograded heat-modified samples from NaOH media. Thermogravimetric analysis, differential scanning calorimetry confirmed thermal stability. Shear tests showed shear-thinning behavior whereas dominant storage modulus (G/) over loss modulus (G//), depicting gel-like behavior. Storage, loss, and complex viscosity initially increased, then decreased with temperature. In-vitro release reflects, modified retrograded starches offers versatile drug release profiles, from controlled to rapid. Tailoring starch properties enables precise drug delivery, enhancing pharmaceutical formulation flexibility and efficacy.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Dipan Roy
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - N Damodharan
- SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - John F Kennedy
- Chembiotech Laboratories, Institute of Research and Development, Tenbury Wells WR15 8FF, UK
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
5
|
Banerjee R, Kumar KJ. Evaluating the effects of time-dependent drying and pressure heat treatments on the variation of physicochemical and rheological properties of suran starch. Int J Biol Macromol 2024; 263:130071. [PMID: 38340926 DOI: 10.1016/j.ijbiomac.2024.130071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Recent research developments have shed light on hydrothermal treatment as a commonly employed method for physical modifications. Surprisingly, there is a scarcity of studies investigating the impact of time variation which is a critical process parameter. Therefore, it is important to closely monitor the critical process parameters throughout the process. Hence, the present study investigates the influence of time-dependent hydrothermal modifications like dry heat (DH) and pressure heat (AT) on Suran starch, focusing on the physicochemical and rheological properties. Over time, the modified starches showed increased swelling and solubility power due to intermolecular hydrogen bond disruption. Prolonged heat exposure made starch granules more susceptible to water absorption, enhancing their swelling capacity. Rheological analysis revealed time-dependent shear-thinning behaviour, with modified starches showing improved resistance to shear stress compared to native starch. Extended heat treatment led to structural rearrangements in starch granules, resulting in increased entanglement and higher viscosity, contributing to improved mechanical properties. Interestingly, the AT-25 starch sample exhibited the highest elasticity, indicating enhanced structural rigidity under high shear conditions. The time-dependent alterations due to pressure treatments improved the functionalities and structural integrity of modified Suran starch. These findings highlight the positive impact of time-dependent heat treatment modifications on Suran starch, making it a valuable resource for various industrial applications. Enhancing the industrial viability of underutilized Suran starch could contribute significantly to meeting the demand for starch in various industries.
Collapse
Affiliation(s)
- Riya Banerjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
6
|
Shi M, Dong X, Jiao X, Wang H, Chen S, Ji X, Yan Y. Effect of extrusion on the formation, structure and properties of yam starch-gallic acid complexes. Int J Biol Macromol 2024; 264:130461. [PMID: 38428767 DOI: 10.1016/j.ijbiomac.2024.130461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
This paper investigated the effects of twin-screw extrusion treatment on the formation, structure and properties of yam starch-gallic acid complexes. Yam starch and gallic acid were extruded. The microstructure, gelatinization characteristics, and rheological properties of the samples were determined. The microstructure of extruded yam starch-gallic acid complexes presented a rough granular morphology, low swelling, and high solubility. The X-ray diffraction analysis showed that the extruded yam starch-gallic acid complexes exhibited A + V-type crystalline structure. Fourier transform infrared spectroscopy results showed that the extrusion treatment could destroy the internal orderly structure of yam starch, and the addition of gallic acid could further reduce its molecular orderliness. Differential scanning calorimetry analysis showed a decrease in the enthalpy of gelatinization of the sample. Dynamic rheological analysis showed that the storage modulus and loss modulus of the extruded yam starch-gallic acid complexes were significantly reduced, exhibiting a weak gel system. The results of viscosity showed that extrusion synergistic gallic acid reduced the peak viscosity and setback value of starch. In addition, extrusion treatment had an inhibitory effect on the digestibility of yam starch, and enhanced the interaction of gallic acid with yam starch or hydrolytic enzymes. Therefore, extrusion synergistic gallic acid has improved the structure and properties of yam starch-related products, which can provide new directions and new ideas for the development of yam starch.
Collapse
Affiliation(s)
- Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, PR China.
| | - Xuena Dong
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Xuelin Jiao
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Hongwei Wang
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Shanghai Chen
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| |
Collapse
|
7
|
Gayary MA, Marboh V, Mahnot NK, Chutia H, Mahanta CL. Characteristics of rice starches modified by single and dual heat moisture and osmotic pressure treatments. Int J Biol Macromol 2024; 255:127932. [PMID: 37949279 DOI: 10.1016/j.ijbiomac.2023.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The effect of osmotic pressure treatment (OPT), heat moisture treatment (HMT), and their dual combination as HMT-OPT and OPT-HMT on functional and pasting properties, gel texture, crystallinity, thermal, morphological, and rheological properties, and in vitro digestibility of modified starches were investigated. HMT was done with 29 % moisture at 111 °C for 45 min while OPT was performed at 117 °C for 35 min with saturated sodium sulphate solution. All modifications increased amylose content, improved pasting stability, and reduced swelling power and solubility. Dual modifications caused higher morphological changes than single modified starches. HMT and OPT increased pasting temperature, setback and final viscosity while decreased peak viscosity and breakdown, whereas HMT-OPT and OPT-HMT reduced all pasting parameters except pasting temperature. 1047/1022 and 995/1022 ratios and relative crystallinity decreased. V-type polymorphs were formed, and gelatinization temperature range increased with lower gelatinization enthalpy. Starch gel elasticity, RS and SDS content were enhanced to a greater extent after HMT-OPT and OPT-HMT. HMT as a single and dual form with OPT showed prominent effect on pasting, thermal, crystalline, and rheological properties. Application of HMT, OPT and dual modified starches with improved functionalities may be targeted for suitable food applications such as noodles.
Collapse
Affiliation(s)
- Mainao Alina Gayary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India; Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Vegonia Marboh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Nikhil Kumar Mahnot
- Department of Food Technology, Rajiv Gandhi University, Doimukh 791112, Arunachal Pradesh, India
| | - Hemanta Chutia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
8
|
Zhang W, Bao Y, Li HT. Altering structure and enzymatic resistance of high-amylose maize starch by irradiative depolymerization and annealing with palmitic acid as V-type inclusion compound. Carbohydr Polym 2023; 322:121343. [PMID: 37839846 DOI: 10.1016/j.carbpol.2023.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
This study explored a new physical modification approach to regulate enzymatic resistance of high-amylose starch for potentially better nutritional outcomes. High-amylose maize starch (HAMS) was subjected to chain depolymerization by electron beam irradiation (EBI), followed by inducing ordered structure through annealing in palmitic acid solution (APAS). APAS treatment significantly promotes the formation of ordered structure. Starch after the combinative modification showed up to 5.2 % increase in total crystallinity and up to 1.2 % increase in V-type fraction. The EBI-APAS modification led to increased gelatinization temperature (from 66.1 to 87.6 °C) and reduced final digested percentage under in vitro stimulated digestion conditions. The moderate extent of depolymerization resulted in higher enzymatic resistance, indicating that the extent of depolymerization is crucial in EBI-APAS modification. Pearson analysis showed a significant correlation between gelatinization onset temperature and digestion kinetic parameter (k1, rate constant of fast-phase digestion). Overall, the result suggests that ordered structures of degraded molecules induced by the combinative modification contribute to the enzymatic resistance of starch. This study sheds lights on future applications of EBI-APAS approach to regulate multi-scale structures and nutritional values of high-amylose starch.
Collapse
Affiliation(s)
- Wenyu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
10
|
Yılmaz A, Tugrul N. Effect of ultrasound-microwave and microwave-ultrasound treatment on physicochemical properties of corn starch. ULTRASONICS SONOCHEMISTRY 2023; 98:106516. [PMID: 37423071 PMCID: PMC10422102 DOI: 10.1016/j.ultsonch.2023.106516] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Natural starch is an agricultural sourced biopolymer being low cost, biodegradable, high efficiently, renewable and easy available. Despite these advantages, phisochemical properties of native starch are limited for most industrial applications and must be modified. Ultrasound and microwave treatment have been widely applied separately for starch modification. Ultrasound treatment, with high efficiency and low cost, and microwave treatment, which produces homogeneous and high quality products, are short proceesing time technologies that can be used together to change the structure and properties of starches obtained from various plants. In this study the effects of ultrasound and microwave combined treatment on the physicochemical properties of natural corn starch were investigated. Corn starch was irritated using different combination of ultrasound-microwave and microwave-ultrasound treatment; using 90, 180, 360 and 600 W microwave power during 1, 2, 3 min, and using ultrasound at 35 °C constant temperature for 20, 30, 40 min. The structural changes of modified corn starches were determined by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. Nowadays, many physical methods are used for starch modification, but limited studies were on ultrasound-microwave and microwave-ultrasound combined treatment method. As a result of this study, it was observed that ultrasound and microwave combination is an efficient, fast and environmentally friendly method for natural corn starch modification.
Collapse
Affiliation(s)
- Aslıhan Yılmaz
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Nurcan Tugrul
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
11
|
He R, Li S, Zhao G, Zhai L, Qin P, Yang L. Starch Modification with Molecular Transformation, Physicochemical Characteristics, and Industrial Usability: A State-of-the-Art Review. Polymers (Basel) 2023; 15:2935. [PMID: 37447580 DOI: 10.3390/polym15132935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Starch is a readily available and abundant source of biological raw materials and is widely used in the food, medical, and textile industries. However, native starch with insufficient functionality limits its utilization in the above applications; therefore, it is modified through various physical, chemical, enzymatic, genetic and multiple modifications. This review summarized the relationship between structural changes and functional properties of starch subjected to different modified methods, including hydrothermal treatment, microwave, pre-gelatinization, ball milling, ultrasonication, radiation, high hydrostatic pressure, supercritical CO2, oxidation, etherification, esterification, acid hydrolysis, enzymatic modification, genetic modification, and their combined modifications. A better understanding of these features has the potential to lead to starch-based products with targeted structures and optimized properties for specific applications.
Collapse
Affiliation(s)
- Ruidi He
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Gongqi Zhao
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Ligong Zhai
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Peng Qin
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| |
Collapse
|
12
|
Balakumaran M, Gokul Nath K, Giridharan B, Dhinesh K, Dharunbalaji AK, Malini B, Sunil CK. White finger millet starch: Hydrothermal and microwave modification and its characterisation. Int J Biol Macromol 2023; 242:124619. [PMID: 37141966 DOI: 10.1016/j.ijbiomac.2023.124619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
White finger millet (WFM) starch was modified by hydrothermal (HS) and microwave (MS) methods. Modification methods had a significant change in the b* value observed in the HS sample, and it caused the higher chroma (∆C) value. The treatments have not significantly changed the chemical composition and water activity (aw) of native starch (NS) but reduced the pH value. The gel hydration properties of modified starch enhanced significantly, especially in the HS sample. The least NS gelation concentration (LGC) of 13.63 % increased to 17.74 % in HS and 16.41 % in MS. The pasting temperature of the NS got reduced during the modification process and altered the setback viscosity. The starch samples exhibit the shear thinning behavior and reduce starch molecules' consistency index (K). FTIR results exhibit that the modification process highly altered the short-range order of starch molecules more than the double helix structure. A significant reduction in relative crystallinity was observed in the XRD diffractogram, and the DSC thermogram depicts the significant change in the hydrogen bonding of starch granules. It can be inferred that the HS and MS modification method significantly alters the properties of starch, which can increase the food applications of WFM starch.
Collapse
Affiliation(s)
- M Balakumaran
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - K Gokul Nath
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - B Giridharan
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - K Dhinesh
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - A K Dharunbalaji
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - B Malini
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - C K Sunil
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India; Centre of Excellence for Grain Sciences, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India.
| |
Collapse
|
13
|
Zhang S, Zhao K, Xu F, Chen X, Zhu K, Zhang Y, Xia G. Study of unripe and inferior banana flours pre-gelatinized by four different physical methods. Front Nutr 2023; 10:1201106. [PMID: 37404857 PMCID: PMC10315463 DOI: 10.3389/fnut.2023.1201106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
This study aimed to prepare the pre-gelatinized banana flours and compare the effects of four physical treatment methods (autoclaving, microwave, ultrasound, and heat-moisture) on the digestive and structural characteristics of unripe and inferior banana flours. After the four physical treatments, the resistant starch (RS) content values of unripe and inferior banana flours were decreased from 96.85% (RS2) to 28.99-48.37% (RS2 + RS3), while C∞ and k values were increased from 5.90% and 0.039 min-1 to 56.22-74.58% and 0.040-0.059 min-1, respectively. The gelatinization enthalpy (ΔHg) and I1047/1022 ratio (short-range ordered crystalline structures) were decreased from 15.19 J/g and 1.0139 to 12.01-13.72 J/g, 0.9275-0.9811, respectively. The relative crystallinity decreased from 36.25% to 21.69-26.30%, and the XRD patterns of ultrasound (UT) and heat-moisture (HMT) treatment flours maintained the C-type, but those samples pre-gelatinized by autoclave (AT) and microwave (MT) treatment were changed to C + V-type, and heat-moisture (HMT) treatment was changed to A-type. The surface of pre-gelatinized samples was rough, and MT and HMT showed large amorphous holes. The above changes in structure further confirmed the results of digestibility. According to the experimental results, UT was more suitable for processing unripe and inferior banana flours as UT had a higher RS content and thermal gelatinization temperatures, a lower degree and rate of hydrolysis, and a more crystalline structure. The study can provide a theoretical basis for developing and utilizing unripe and inferior banana flours.
Collapse
Affiliation(s)
- Siwei Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Kangyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
14
|
Yan Y, An H, Liu Y, Ji X, Shi M, Niu B. Debranching facilitates malate esterification of waxy maize starch and decreases the digestibility. Int J Biol Macromol 2023:125056. [PMID: 37245772 DOI: 10.1016/j.ijbiomac.2023.125056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/15/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
In this study, the debranching followed by malate esterification was employed to prepare malate debranched waxy maize starch (MA-DBS) with a high degree of substitution (DS) and low digestibility using malate waxy maize starch (MA-WMS) as the control. The optimal esterification conditions were obtained using an orthogonal experiment. Under this condition, the DS of MA-DBS (0.866) was much higher than that of MA-WMS (0.523). A new absorption peak was generated at 1757 cm-1 in the infrared spectra, indicating the occurrence of malate esterification. Compared with MA-WMS, MA-DBS had more particle aggregation, resulting in an increase in the average particle size from scanning electron microscopy and particle size analysis. The X-ray diffraction results showed that the relative crystallinity decreased after malate esterification, in which the crystalline structure of MA-DBS almost disappeared, which was consistent with the decrease of decomposition temperature by thermogravimetric analysis and the disappearance of the endothermic peak by differential scanning calorimeter. In vitro digestibility tests showed an order: WMS > DBS > MA-WMS > MA-DBS. The MA-DBS showed the highest content of resistant starch (RS) of 95.77 % and the lowest estimated glycemic index of 42.27. In a word, pullulanase debranching could produce more short amylose, promoting malate esterification and improving the DS. The presence of more malate groups inhibited the formation of starch crystals, increased particle aggregation, and enhanced resistance to enzymolysis. The present study provides a novel protocol for producing modified starch with higher RS content, which has potential application in functional foods with a low glycemic index.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China.
| | - Hong An
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Yanqi Liu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Zhengzhou 450000, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
15
|
Calix-Rivera CS, Villanueva M, Náthia-Neves G, Ronda F. Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation-Development of New Improved Gluten-Free Ingredients. Foods 2023; 12:foods12061345. [PMID: 36981270 PMCID: PMC10048664 DOI: 10.3390/foods12061345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Tef [Eragrostis tef (Zucc.) Trotter] flour is a gluten-free cereal rich in fiber, minerals, vitamins, and antioxidants, which offers a promising alternative for new food development. This study investigated the effect of microwave radiation (MW) on the techno-functional, thermal, rheological and microstructural properties of tef flours. White and brown tef grains were milled and microwaved at different moisture contents (MC) (15%, 20% and 25%) for a total irradiation time of 480 s. The morphological structure of tef flours was affected by MW treatment, and its particle size and hydration properties increased after the treatment. Lower peak, breakdown, and setback viscosities, up to 45%, 96%, and 67% below those of the control (untreated) samples, and higher pasting temperature, up to 8 °C in the 25% MC samples, were observed. From FTIR analysis a disruption of short-range molecular order was concluded, while DSC confirmed an increased stability of starch crystallites. Rheological analysis of the gels made from the treated samples revealed that MW had a structuring and stabilizing effect on all samples, leading to higher viscoelastic moduli, G' and G″, and the maximum stress the gels withstood before breaking their structure, τmax. The MC of the flours during the MWT drove the modification of the techno-functional properties of the tef flours and the gel rheological and thermal characteristics. These results suggest that MW-treated tef flours are potential ingredients for improving the technological, nutritional and sensory quality of food products.
Collapse
Affiliation(s)
- Caleb S Calix-Rivera
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
- Department of Agroindustrial Engineering, Pacific Littoral Regional University Center, National Autonomous University of Honduras (UNAH), Choluteca 51101, Honduras
| | - Marina Villanueva
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Grazielle Náthia-Neves
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Felicidad Ronda
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
16
|
Sun X, Sun Z, Saleh AS, Lu Y, Zhang X, Ge X, Shen H, Yu X, Li W. Effects of various microwave intensities collaborated with different cold plasma duration time on structural, physicochemical, and digestive properties of lotus root starch. Food Chem 2023; 405:134837. [DOI: 10.1016/j.foodchem.2022.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
17
|
Ngadiwiyana, Gunawan, Prasetya NB, Kusworo TD, Susanto H. Synthesis and characterization of sulfonated poly(eugenol-co-allyleugenol) membranes for proton exchange membrane fuel cells. Heliyon 2022; 8:e12401. [PMID: 36590487 PMCID: PMC9801125 DOI: 10.1016/j.heliyon.2022.e12401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The research of sulfonated eugenol-allyleugenol copolymer (SPEAE) based membrane for fuel cell from eugenol derivate had been conducted. First, eugenol was reacted with various weights of allyl eugenol to form eugenol-allyleugenol copolymer (PEAE). Determination of the optimum composition of PEAE was done by testing the swelling properties. Then, PEAE was sulfonated using concentrated sulfuric acid with time variations of 1, 2, 3, 4, and 5 h to form SPEAE. The SPEAE produced was tested for the degree of sulfonation, water uptake, cation exchange capacity, and membrane proton conductivity. In addition, the characteristics of the PEAE and SPEAE copolymer membranes were also analyzed using FTIR spectrophotometers, 1H-NMR, TGA, and DSC. The results showed that the copolymerization of eugenol:allyleugenol (EG:AEG) with a ratio of 10:1 gave the lowest swelling degree. The best SPEAE copolymer was obtained from sulfonation for 2 h with yield, degree of sulfonation, water absorption value, proton conductivity, and cation exchange capacity of 90.6%, 12.87%, 50.7%, 1.83 × 10-5 S cm-1 and 0.356 meq/g, respectively. FTIR analysis shows the formation of PEAE with the loss of the vinyl eugenol groups used to form the polymer and shows the formation of SPEAE in the presence of sulfonate groups from the sulfonation reaction. 1H-NMR also confirmed the presence of the PEAE and SPEAE copolymers. In addition, analysis of thermal properties with TGA and DSC also showed that sulfonate treatment could improve membrane stability.
Collapse
Affiliation(s)
- Ngadiwiyana
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Gunawan
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia,Corresponding author.
| | - Nor B.A. Prasetya
- Chemistry Departement, Faculty of Science and Mathematics, Diponegoro University, Semarang, Central Java, Indonesia
| | - Tutuk D. Kusworo
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| | - Heru Susanto
- Chemical Engineering Departement, Faculty of Engineering, Diponegoro University, Semarang, Central Java, Indonesia
| |
Collapse
|
18
|
A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers (Basel) 2022; 14:polym14245447. [PMID: 36559814 PMCID: PMC9786624 DOI: 10.3390/polym14245447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Starch and flour from various plants have been widely used for sundry applications, especially in the food and chemical industries. However, native starch and flour have several weaknesses, especially in functional, pasting, and physicochemical properties. The quality of native starch and flour can be improved by a modification process. The type of modification that is safe, easy, and efficient is physical modification using hydrothermal treatment techniques, including heat moisture treatment (HMT) and annealing (ANN). This review discusses the hydrothermal modifications of starch and flour, especially from various tubers and cereals. The discussion is mainly on its effect on five parameters, namely functional properties, morphology, pasting properties, crystallinity, and thermal properties. Modification of HMT and ANN, in general, can improve the functional properties, causing cracking of the granule surface, stable viscosity to heat, increasing crystallinity, and increasing gelatinization temperature. However, some modifications of starch and flour by HMT and ANN had no effect on several parameters or even had the opposite effect. The summary of the various studies reviewed can be a reference for the development of hydrothermal-modified starch and flour applications for various industries.
Collapse
|
19
|
Thermal, Pasting, and Hydration Properties of Flour from Novel Cassava Cultivars for Potential Applications in the Food Industry. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Cassava root flours from five different cultivars (C-MSAF2, C-P4/10, C-P98/0505, C-P98/0002, and C-UKF8) were studied for their potential application in the food industry. Proximate composition, functional, thermal, and pasting properties were investigated. Cassava flours were high in carbohydrates (85-86%) and their amino acid profiles varied. Cultivars C-MSAF2, C-P98/0002, and C-UKF8 showed high protein content (5.06%), mineral content (2.36%), and the largest particle size (72.33 µm), respectively. Solubility of cassava flours decreased as temperatures increased, however, swelling power and water absorption capacity increased. C-MSAF2 showed the highest peak viscosity, breakdown viscosity, and shortest peak time. C-P98/0505 showed the highest final viscosity, the highest pasting temperature, and the longest peak time. Cassava flours studied are promising candidates for utilization in the baking industry, however, their incorporation into baked product formulations needs further investigation.
Collapse
|
20
|
Bodjrenou DM, Li X, Chen W, Zhang Y, Zheng B, Zeng H. Effect of Pullulanase Debranching Time Combined with Autoclaving on the Structural, Physicochemical Properties, and In Vitro Digestibility of Purple Sweet Potato Starch. Foods 2022; 11:foods11233779. [PMID: 36496587 PMCID: PMC9740074 DOI: 10.3390/foods11233779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of pullulanase debranching combined with autoclaving (PDA) at various debranching times (0 h, 5 h, 10 h, 15 h, 20 h, and 25 h) and 121 °C/20 min of autoclave treatment on the structural and physicochemical characteristics of purple sweet potato (Jinshu No.17) starch were investigated. The results indicated that the native starch (NS) was polygonal, round, and bell-shaped with smooth surfaces. After debranching treatment, the surface of the starch samples became rough and irregular. The molecular weight became smaller after treatments. X-ray diffraction C-type pattern was transformed into a B-type structure in treated samples with increased relative crystallinity. 13C NMR indicated an increased propensity for double helix formation and new shift at C1, 3, 5 region compared to NS. The apparent amylose content was 21.53% in the NS. As the swelling power decreased, the percentage of soluble solids increased and different thermal properties were observed. A higher yield of the resistant starch (RS) was observed in all treated starch except PDA 25 h. The findings of our study reveal that a combination of pullulanase debranching time (15 h) and autoclaving (121 °C for 20 min) is a great technique that can be used to produce a higher amount of resistant starch in the Jinshu No.17 starch.
Collapse
Affiliation(s)
- David Mahoudjro Bodjrenou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-591-83789348
| |
Collapse
|
21
|
Zhou Y, Wang M, Wang L, Liu L, Wu Y, Ouyang J. Comparison of the effect of ultrasound and microwave on the functional properties and in vitro digestibility of normal maize starch and potato starch. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Meng Wang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease China National Research Institute of Food and Fermentation Industries Co. Ltd. Beijing China
| | - Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Lingling Liu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
22
|
Marta H, Hasya HNL, Lestari ZI, Cahyana Y, Arifin HR, Nurhasanah S. Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch ( Metroxylon sp.) Using Physical and Chemical Treatment. Polymers (Basel) 2022; 14:4845. [PMID: 36432972 PMCID: PMC9699444 DOI: 10.3390/polym14224845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Sago starch has weaknesses such as low thermal stability and high syneresis. Modifications were made to improve the characteristics of native sago starch. In this study, sago starch was modified by autoclave-heating treatment (AHT), osmotic-pressure treatment (OPT), octenyl-succinic anhydride modification (OSA), and citric acid cross-linking (CA). This study aimed to examine the changes in chemical composition, crystallinity, and functional properties of the native sago starch after physical and chemical modifications. The results show that physical modification caused greater granule damage than chemical modification. All modification treatments did not alter the type of crystallinity but decreased the relative crystallinity of native starch. New functional groups were formed in chemically modified starches at a wavelength of 1700-1725 cm-1. The degree of order (DO) and degree of double helix (DD) of the modified starches were also not significantly different from the native sample, except for AHT and OPT, respectively. Physical modification decreased the swelling volume, while chemical modification increased its value and is inversely proportional to solubility. AHT and OPT starches have the best freeze-thaw stability among others, indicating that both starches have the potential to be applied in frozen food.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Hana Nur Layalia Hasya
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Zahra Indah Lestari
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Heni Radiani Arifin
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Siti Nurhasanah
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
23
|
Sofi SA, Rafiq S, Singh J, Mir SA, Sharma S, Bakshi P, McClements DJ, Khaneghah AM, Dar B. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chem 2022; 405:135011. [DOI: 10.1016/j.foodchem.2022.135011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
|
24
|
Chandak A, Dhull SB, Chawla P, Fogarasi M, Fogarasi S. Effect of Single and Dual Modifications on Properties of Lotus Rhizome Starch Modified by Microwave and γ-Irradiation: A Comparative Study. Foods 2022; 11:foods11192969. [PMID: 36230043 PMCID: PMC9562692 DOI: 10.3390/foods11192969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/16/2023] Open
Abstract
A comparative study between two novel starch modification technologies, i.e., microwave (MI) and γ-irradiation (IR), is of important significance for their applications. The objective of this work is to compare the changes in lotus rhizome starch (LRS) subjected to single modifications by MI (thermal treatment) and IR (non-thermal treatment), and dual modification by changing the treatment sequence, i.e., microwave followed by irradiation (MI-IR) and irradiation followed by microwave (IR-MI). The amylose content of native and modified LRS varied from 14.68 to 18.94%, the highest and lowest values found for native and MI-LRS, respectively. IR-treated LRS showed the lowest swelling power (4.13 g/g) but highest solubility (86.9%) among native and modified LRS. An increase in light transmittance value suggested a lower retrogradation rate for dual-modified starches, making them more suitable for food application at refrigeration and frozen temperatures. Dual-modified LRS showed the development of fissures and dents on the surface of granules as well as the reduction in peak intensities of OH and CH2 groups in FTIR spectra. Combined modifications (MI and IR) reduced values of pasting parameters and gelatinization properties compared to native and microwaved LRS and showed improved stability to shear thinning during cooking and thermal processing. The sequence of modification also affected the rheological properties; the G′ and G″ of MI-IR LRS were lower (357.41 Pa and 50.16 Pa, respectively) than the IR-MI sample (511.96 Pa and 70.09 Pa, respectively), giving it a soft gel texture. Nevertheless, dual modification of LRS by combining MI and IR made more significant changes in starch characteristics than single modifications.
Collapse
Affiliation(s)
- Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
- Correspondence: (S.B.D.); (M.F.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of ClujNapoca, CaleaMănăstur 3–5, 400372 Cluj-Napoca, Romania
- Correspondence: (S.B.D.); (M.F.)
| | - Szabolcs Fogarasi
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu LaurianStreet, 400271 Cluj-Napoca, Romania
| |
Collapse
|
25
|
Dutta D, Sit N. Comparison of Properties of Films Prepared from Potato Starch Modified by Annealing and Heat‐Moisture Treatment. STARCH-STARKE 2022. [DOI: 10.1002/star.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ditimoni Dutta
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology Tezpur University Tezpur Assam 784028 India
| |
Collapse
|
26
|
Deng C, Melnyk O, Marenkova T, Luo Y. Modification in Physicochemical, Structural and Digestive Properties of Potato Starch During Heat-Moisture Treatment Combined with Microwave Pre- and Post-Treatment. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Adewale P, Yancheshmeh MS, Lam E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr Polym 2022; 291:119590. [DOI: 10.1016/j.carbpol.2022.119590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
28
|
In-vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydr Polym 2022; 291:119600. [DOI: 10.1016/j.carbpol.2022.119600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
29
|
de Moraes MS, de Melo Queiroz AJ, de Figueirêdo RMF, D'arc Paz de Matos J, da Silva LPFR, do Nascimento Silva S, Gregório MG, de Oliveira AP, Quirino DJG, de Andrade RA. Germinated pumpkin flours: Antioxidant potential, phenolic compounds, minerals, morphology, and thermal analyses. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Suiane de Moraes
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | | | - Joana D'arc Paz de Matos
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | | | - Mailson Gonçalves Gregório
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | | | | |
Collapse
|
30
|
Barua S, Hanewald A, Bächle M, Mezger M, Srivastav PP, Vilgis TA. Insights into the structural, thermal, crystalline and rheological behavior of various hydrothermally modified elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Focus on the removal of lead and cadmium ions from aqueous solutions using starch derivatives: A review. Carbohydr Polym 2022; 290:119463. [DOI: 10.1016/j.carbpol.2022.119463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
|
32
|
Subroto E, Filianty F, Indiarto R, Andita Shafira A. Physicochemical and functional properties of modified adlay starch ( Coix lacryma-jobi) by microwave and ozonation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Fitry Filianty
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Aurel Andita Shafira
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
33
|
Zhi W, Zhou Y, Wang R, Wang M, Wang W, Hu A, Zheng J. Effect of microwave treatment on the properties of starch in millet kernels. STARCH-STARKE 2022. [DOI: 10.1002/star.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenli Zhi
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Yu Zhou
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Ruobing Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Meng Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Wei Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Aijun Hu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| |
Collapse
|
34
|
Wu F, Chi B, Xu R, Liao H, Xu X, Tan X. Changes in structures and digestibility of amylose-oleic acid complexes following microwave heat-moisture treatment. Int J Biol Macromol 2022; 214:439-445. [PMID: 35752333 DOI: 10.1016/j.ijbiomac.2022.06.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Amylose-oleic acid complexes (AOA) were exposed to microwave heat-moisture treatment (M-HMT) with different moisture content (MC), and the variations in structures and digestibility were investigated. M-HMT caused the dissociation of helical structures and destruction of short-range molecular order of AOA. Meanwhile, the molecules of amylose and oleic acid rearranged and more amylose-oleic acid complexes were formed during M-HMT, the complexing index of AOA was increased from 25.41 % to 41.20 % when treating at 35 % MC. Moreover, the relative content of single helix increased with increasing MC, resulting in higher V-type relative crystallinity. With ≥30 % MC, the treated complexes showed greater thermostability than that of original AOA. The treatment increased the enzymatic digestibility of AOA, and sample treated with 35 % MC had the highest resistant starch content of 82.33 %, which was 17.96 % higher than that of native AOA. The improved enzyme resistance should be correlated to increased molecular interplay and formation of amylose-oleic acid complexes.
Collapse
Affiliation(s)
- Fubin Wu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ruyan Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China
| | - Huiyun Liao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China.
| | - Xiaoqi Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
35
|
González-Mendoza ME, Martínez-Bustos F, Castaño-Tostado E, Amaya-Llano SL. Effect of Microwave Irradiation on Acid Hydrolysis of Faba Bean Starch: Physicochemical Changes of the Starch Granules. Molecules 2022; 27:molecules27113528. [PMID: 35684467 PMCID: PMC9182591 DOI: 10.3390/molecules27113528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.
Collapse
Affiliation(s)
- Mayra Esthela González-Mendoza
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
| | - Fernando Martínez-Bustos
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Libramiento Norponiente 2000, Real de Juriquilla, Querétaro 76230, Mexico;
| | - Eduardo Castaño-Tostado
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
| | - Silvia Lorena Amaya-Llano
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (M.E.G.-M.); (E.C.-T.)
- Correspondence:
| |
Collapse
|
36
|
Wang L, Wang M, Zhou Y, Wu Y, Ouyang J. Influence of ultrasound and microwave treatments on the structural and thermal properties of normal maize starch and potato starch: A comparative study. Food Chem 2022; 377:131990. [PMID: 34999449 DOI: 10.1016/j.foodchem.2021.131990] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/28/2023]
Abstract
The effects of ultrasound and microwave on the physicochemical properties of normal maize and potato starches were compared. The cavitation effect of ultrasound loosened the internal space and destroyed the structure of starch granules, increased the damaged starch content, which was consistent with the decrease in relative crystallinity and the number and brightness of Maltese crosses, and the increase in D(0.5) and D(4,3) values. Microwave vibrated the molecules inside the granules and generated heat to destroy the structure of starch. The content of damaged starch was significantly lower in microwave-treated starch compared with ultrasound-treated starch. Microwave treatment promoted the formation of amylose-lipid complex, with the larger peak area at 20°(2θ) than that of the ultrasound-treated starch. The type of starch and the treatment sequence showed a significant effect. The results might help understand the mechanism of ultrasound and microwave treatments influencing the structural properties of starches.
Collapse
Affiliation(s)
- Luyu Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Meng Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China
| | - Yihan Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
37
|
Marta H, Cahyana Y, Bintang S, Soeherman GP, Djali M. Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2064490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Laboratory of Food Chemistry, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Sarah Bintang
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Giffary Pramafisi Soeherman
- Department of Food Technology, Laboratory of Food Chemistry, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
38
|
Shi M, Cheng Y, Wang F, Ji X, Liu Y, Yan Y. Rheological Properties of Wheat Flour Modified by Plasma-Activated Water and Heat Moisture Treatment and in vitro Digestibility of Steamed Bread. Front Nutr 2022; 9:850227. [PMID: 35369070 PMCID: PMC8968317 DOI: 10.3389/fnut.2022.850227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 01/26/2023] Open
Abstract
The study investigated the effects of plasma-activated water (PAW) and heat moisture treatment (HMT) on the rheological properties of wheat flour and the in vitro digestibility of steamed bread partially replaced by the modified wheat flour. After HMT, the gelatinization temperature of wheat flour increased and the gelatinization enthalpy reduced. The solubility and swelling power of wheat flour increased after the heat-moisture treatment. The solubility of modified flour after PAW-HMT treatment was lower than that of distilled water (DW)-HMT at the same temperature. The wheat flour with HMT had higher storage modulus (G') and loss modulus (G"), and had better ductility and deformability. Common wheat flour was partially replaced by modified flour to make steamed bread. The results indicated that the volume, height, diameter and specific volume of steamed bread were significantly decreased with the addition of HMT flour. However, the hardness, viscosity and chewiness increased significantly. The resistant starch content of steamed bread with the modified wheat flour increased. The results provide new insights for the development of new functional steamed bread.
Collapse
Affiliation(s)
- Miaomiao Shi
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yanqiu Cheng
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Fei Wang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Lanzhou Quality Supervision Center Limited, China Grain Reserves Group Ltd. Company, Lanzhou, China
| | - Xiaolong Ji
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yanqi Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yizhe Yan
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
39
|
Fronza P, Costa ALR, Franca AS, de Oliveira LS. Extraction and Characterization of Starch from Cassava Peels. STARCH-STARKE 2022. [DOI: 10.1002/star.202100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pãmella Fronza
- Department of Food Faculty of Pharmacy/UFMG Avenue Presidente Antônio Carlos 6627 – Campus Pampulha – CEP 31270–901 Belo Horizonte MG Brazil
| | - Ana Letícia Rodrigues Costa
- Department of Materials and Bioprocess Engineering School of Chemical Engineering University of Campinas Av. Albert Einstein, 500, CEP Campinas SP 13083‐ 852 Brazil
| | - Adriana Silva Franca
- Department of Food Faculty of Pharmacy/UFMG Avenue Presidente Antônio Carlos 6627 – Campus Pampulha – CEP 31270–901 Belo Horizonte MG Brazil
- Department of Mechanical Engineering/UFMG Avenue Presidente Antônio Carlos 6627 – Campus Pampulha – CEP 31270–901 Belo Horizonte MG Brazil
| | - Leandro Soares de Oliveira
- Department of Food Faculty of Pharmacy/UFMG Avenue Presidente Antônio Carlos 6627 – Campus Pampulha – CEP 31270–901 Belo Horizonte MG Brazil
- Department of Mechanical Engineering/UFMG Avenue Presidente Antônio Carlos 6627 – Campus Pampulha – CEP 31270–901 Belo Horizonte MG Brazil
| |
Collapse
|
40
|
González LC, Loubes MA, Tolaba MP. Effect of Ball‐Milled Rice Starch and Other Functional Ingredients on Quality Attributes of Rice‐Based Dough and Noodles. STARCH-STARKE 2022. [DOI: 10.1002/star.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luciana Carla González
- University of Buenos Aires Faculty of Exact and Natural Sciences Industry Department Buenos Aires Argentina
- CONICET‐University of Buenos Aires Institute of Food Technology and Chemical Processes (ITAPROQ) Buenos Aires Argentina
| | - María Ana Loubes
- University of Buenos Aires Faculty of Exact and Natural Sciences Industry Department Buenos Aires Argentina
- CONICET‐University of Buenos Aires Institute of Food Technology and Chemical Processes (ITAPROQ) Buenos Aires Argentina
| | - Marcela Patricia Tolaba
- University of Buenos Aires Faculty of Exact and Natural Sciences Industry Department Buenos Aires Argentina
- CONICET‐University of Buenos Aires Institute of Food Technology and Chemical Processes (ITAPROQ) Buenos Aires Argentina
| |
Collapse
|
41
|
Sun X, Saleh AS, Sun Z, Ge X, Shen H, Zhang Q, Yu X, Yuan L, Li W. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Wang C, McClements DJ, Jiao A, Wang J, Jin Z, Qiu C. Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
PERTIWI SRR, AMINULLAH, RAJANI RU, NOVIDAHLIA N. Effect of heat-moisture treatment on the physicochemical properties of native canistel starch. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Fan L, Ye Q, Lu W, Chen D, Zhang C, Xiao L, Meng X, Lee YC, Wang HMD, Xiao C. The properties and preparation of functional starch: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lvting Fan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qin Ye
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Di Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lihan Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xianghe Meng
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yi-Chieh Lee
- Department of Life Science, National Chung Hsing University, Taichung City, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Devi MB, Deka SC. Physicochemical properties and structure of starches of foxnut (
Euryale ferox
Salisb.) from India and its application. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Maibam Baby Devi
- Department of Food Engineering and Technology Tezpur University Napaam India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology Tezpur University Napaam India
| |
Collapse
|
46
|
Chen X, Ma M, Liu X, Xu Z, Zhang C, Sui Z, Corke H. Microwave treatment alters the fine molecular structure of waxy hull-less barley starch. Int J Biol Macromol 2021; 193:1086-1092. [PMID: 34742840 DOI: 10.1016/j.ijbiomac.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Waxy hull-less barley kernels and their isolated starches were exposed to different microwave conditions (power 640, 720, and 800 W, time 60, 120 and 180 s) and changes in morphology, particle size, digestibility, rheological properties, and molecular structure were measured and analyzed. Microwave treatment caused roughness and deformation of granular surfaces, and an increase in granule size. After treatment, the in vitro digestibility of starch was increased, i.e., the RDS increased, but the RS decreased. Microwave treatment decreased the K values of the in-kernel MWI WHBS. Dynamic rheological results showed that the in-kernel MWI WHBS pastes had lower TG'max, and higher G'max, G'90°C, G'25°C, G'0.1Hz and G'20Hz after treatment. The chain-length distribution did not significantly change after microwave treatment. However, the results for molecular size distributions showed that the peaks of amylopectin (Rh = ~100 nm) shifted left and right, indicating that the molecular volume might become smaller or larger under different processing conditions. The primary effects of microwave treatment may be loosening the molecular structure and cutting main chains of amylopectin.
Collapse
Affiliation(s)
- Xiaojing Chen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
47
|
Navaf M, Sunooj KV, Krishna NU, Aaliya B, Sudheesh C, Akhila PP, Sabu S, Sasidharan A, Mir SA, George J. Effect of Different Hydrothermal Treatments on Pasting, Textural, and Rheological Properties of Single and Dual Modified
Corypha Umbraculifera
L. Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammed Navaf
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Nunna Ujwala Krishna
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Basheer Aaliya
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | - Cherakkathodi Sudheesh
- Department of Food Science and Technology Pondicherry University Puducherry 605014 India
| | | | - Sarasan Sabu
- School of Industrial Fisheries Cochin University of Science and Technology Kochi 682016 India
| | - Abhilash Sasidharan
- Department of Fish Processing Technology Kerala University of Fisheries and Ocean Studies Kochi 682506 India
| | - Shabir Ahmad Mir
- Department of Food Science and Technology Government College for Women M.A Road Srinagar Jammu and Kashmir 190001 India
| | - Johnsy George
- Food Engineering and Packaging Division Defence Food Research Laboratory Mysore 570011 India
| |
Collapse
|
48
|
Nagar CK, Dash SK, Rayaguru K, Pal US, Nedunchezhiyan M. Isolation, characterization, modification and uses of taro starch: A review. Int J Biol Macromol 2021; 192:574-589. [PMID: 34653440 DOI: 10.1016/j.ijbiomac.2021.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Taro is a major root crop utilized widely for diverse food and non-food applications. Taro corms are processed into various forms before consumption, which makes them digestible and palatable, extends the shelf life and reduces post-harvest losses. Taro corm contains starch as the major carbohydrate, accounting up to 70-80% of the whole dry matter. The starches obtained from different cultivars and sources significantly differ in physical, chemical, thermal, morphological, and functional properties, which can be explored for varied applications. Starch quality also controls the end-quality of food and industrial products. Several starch modification methods have been studied to improve its positive attributes and to eliminate deficiencies in its native characteristics. These modification methods, which can be categorised into physical, chemical and enzymatic, have proved to improve the characteristics and applications of starch. This review aims to compile the information about the chemical composition, characterization, isolation and modification methods, with an objective of its increased use in food or non-food industries. In addition, challenges and issues in the small-scale processing of taro are discussed. The information available in this review may help in a better understanding and utilization of taro starch.
Collapse
Affiliation(s)
- Chetan Kumar Nagar
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India.
| | - Sanjaya Kumar Dash
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India
| | - Kalpana Rayaguru
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India
| | - Uma Sankar Pal
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India
| | - Maniyam Nedunchezhiyan
- Regional Centre of ICAR-Central Tuber Crops Research Institute, Bhubaneswar 751 019, India
| |
Collapse
|
49
|
Aaliya B, Sunooj KV, Rajkumar CBS, Navaf M, Akhila PP, Sudheesh C, George J, Lackner M. Effect of Thermal Pretreatments on Phosphorylation of Corypha umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture and Autoclave Treatments. Polymers (Basel) 2021; 13:3855. [PMID: 34771410 PMCID: PMC8587339 DOI: 10.3390/polym13213855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Talipot starch, a non-conventional starch source with a high yield (76%) from the stem pith of talipot palm (Corypha umbraculifera L.) was subjected to three different thermal treatments (dry-heat, heat-moisture and autoclave treatments) prior to phosphorylation. Upon dual modification of starch with thermal treatments and phosphorylation, the phosphorous content and degree of crosslinking significantly increased (p ≤ 0.05) and was confirmed by the increased peak intensity of P=O and P-O-C stretching vibrations compared to phosphorylated talipot starch in the FT-IR spectrum. The highest degree of crosslinking (0.00418) was observed in the autoclave pretreated phosphorylated talipot starch sample. Thermal pretreatment remarkably changed the granule morphology by creating fissures and grooves. The amylose content and relative crystallinity of all phosphorylated talipot starches significantly decreased (p ≤ 0.05) due to crosslinking by the formation of phosphodiester bonds, reducing the swelling power of dual-modified starches. Among all modified starches, dry-heat pretreated phosphorylated starch gel showed an improved light transmittance value of 28.4%, indicating reduced retrogradation tendency. Pasting and rheological properties represented that the thermal pretreated phosphorylated starch formed stronger gels that improved thermal and shear resistance. Autoclave treatment before phosphorylation of talipot starch showed the highest resistant starch content of 48.08%.
Collapse
Affiliation(s)
- Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Kappat Valiyapeediyekkal Sunooj
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Chillapalli Babu Sri Rajkumar
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Plachikkattu Parambil Akhila
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India; (B.A.); (C.B.S.R.); (M.N.); (P.P.A.); (C.S.)
| | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Mysore 570011, India;
| | - Maximilian Lackner
- Department Industrial Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
50
|
Asranudin, Holilah, Syarifin ANK, Purnomo AS, Ansharullah, Fudholi A. The effect of heat moisture treatment on crystallinity and physicochemical-digestibility properties of purple yam flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|