1
|
de Lima CSA, Rial-Hermida MI, de Freitas LF, Pereira-da-Mota AF, Vivero-Lopez M, Ferreira AH, Kadłubowski S, Varca GHC, Lugão AB, Alvarez-Lorenzo C. Mucoadhesive gellan gum-based and carboxymethyl cellulose -based hydrogels containing gemcitabine and papain for bladder cancer treatment. Int J Biol Macromol 2023; 242:124957. [PMID: 37217049 DOI: 10.1016/j.ijbiomac.2023.124957] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Local treatment of bladder cancer faces several limitations such as short residence time or low permeation through urothelium tissue. The aim of this work was to develop patient-friendly mucoadhesive gel formulations combining gemcitabine and the enzyme papain for improved intravesical chemotherapy delivery. Hydrogels based on two different polysaccharides, gellan gum and sodium carboxymethylcellulose (CMC), were prepared with either native papain or papain nanoparticles (nanopapain) to explore for the first time their use as permeability enhancers through bladder tissue. Gel formulations were characterized regarding enzyme stability, rheological behavior, retention on bladder tissue and bioadhesion, drug release properties, permeation capacity, and biocompatibility. After 90 days of storage, the enzyme loaded in the CMC gels retained up to 83.5 ± 4.9 % of its activity in the absence of the drug, and up to 78.1 ± 5.3 with gemcitabine. The gels were mucoadhesive and the enzyme papain showed mucolytic action, which resulted in resistance against washing off from the urothelium and enhanced permeability of gemcitabine in the ex vivo tissue diffusion tests. Native papain shortened lag-time tissue penetration to 0.6 h and enhanced 2-fold drug permeability All formulations demonstrated pseudoplastic behavior and no irritability. Overall, the developed formulations have potential as an upgraded alternative to intravesical therapy for bladder cancer treatment.
Collapse
Affiliation(s)
- Caroline S A de Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP-University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - M Isabel Rial-Hermida
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Lucas Freitas de Freitas
- Nuclear and Energy Research Institute, IPEN-CNEN/SP-University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Ana F Pereira-da-Mota
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Aryel Heitor Ferreira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP-University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil; MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Sao Paulo 01302-907, Brazil
| | - Sławomir Kadłubowski
- Institute of Applied Radiation Chemistry (IARC), Lodz University of Technology, Wroblewskiego No. 15, 93-590 Lodz, Poland
| | - Gustavo H C Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP-University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Ademar B Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP-University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Radomska K, Wolszczak M. Influence of Ionizing Radiation on Spontaneously Formed Aggregates in Proteins or Enzymes Solutions. Pharmaceutics 2023; 15:pharmaceutics15051367. [PMID: 37242609 DOI: 10.3390/pharmaceutics15051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
We have shown that many proteins and enzymes (ovalbumin, β-lactoglobulin, lysozyme, insulin, histone, papain) undergo concentration-dependent reversible aggregation as a result of the interaction of the studied biomolecules. Moreover, irradiation of those protein or enzyme solutions under oxidative stress conditions results in the formation of stable soluble protein aggregates. We assume that protein dimers are mainly formed. A pulse radiolysis study has been made to investigate the early stages of protein oxidation by N3• or •OH radicals. Reactions of the N3• radical with the studied proteins lead to the generation of aggregates stabilized by covalent bonds between tyrosine residues. The high reactivity of the •OH with amino acids contained within proteins is responsible for the formation of various covalent bonds (including C-C or C-O-C) between adjacent protein molecules. In the analysis of the formation of protein aggregates, intramolecular electron transfer from the tyrosine moiety to Trp• radical should be taken into account. Steady-state spectroscopic measurements with a detection of emission and absorbance, together with measurements of the dynamic scattering of laser light, made it possible to characterize the obtained aggregates. The identification of protein nanostructures generated by ionizing radiation using spectroscopic methods is difficult due to the spontaneous formation of protein aggregates before irradiation. The commonly used fluorescence detection of dityrosyl cross-linking (DT) as a marker of protein modification under the influence of ionizing radiation requires modification in the case of the tested objects. A precise photochemical lifetime measurement of the excited states of radiation-generated aggregates is useful in characterizing their structure. Resonance light scattering (RLS) has proven to be an extremely sensitive and useful technique to detect protein aggregates.
Collapse
Affiliation(s)
- Karolina Radomska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland
| |
Collapse
|
3
|
Radomska K, Wolszczak M. Spontaneous and Ionizing Radiation-Induced Aggregation of Human Serum Albumin: Dityrosine as a Fluorescent Probe. Int J Mol Sci 2022; 23:ijms23158090. [PMID: 35897662 PMCID: PMC9331647 DOI: 10.3390/ijms23158090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The use of spectroscopic techniques has shown that human serum albumin (HSA) undergoes reversible self-aggregation through protein−protein interactions. It ensures the subsequent overlapping of electron clouds along with the stiffening of the conformation of the interpenetrating network of amino acids of adjacent HSA molecules. The HSA oxidation process related to the transfer of one electron was investigated by pulse radiolysis and photochemical methods. It has been shown that the irradiation of HSA solutions under oxidative stress conditions results in the formation of stable protein aggregates. The HSA aggregates induced by ionizing radiation are characterized by specific fluorescence compared to the emission of non-irradiated solutions. We assume that HSA dimers are mainly responsible for the new emission. Dityrosine produced by the intermolecular recombination of protein tyrosine radicals as a result of radiolysis of an aqueous solution of the protein is the main cause of HSA aggregation by cross-linking. Analysis of the oxidation process of HSA confirmed that the reaction of mild oxidants (Br2•−, N3•, SO4•−) with albumin leads to the formation of covalent bonds between tyrosine residues. In the case of •OH radicals and partly, Cl2•−, species other than DT are formed. The light emission of this species is similar to the emission of self-associated HSA.
Collapse
|
4
|
|
5
|
Sowiński S, Varca GH, Kadłubowski S, Lugão AB, Ulański P. A mechanistic approach towards the formation of bityrosine in proteins by ionizing radiation – GYG model peptide. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Sartori GP, da Costa A, Macarini FLDS, Mariano DOC, Pimenta DC, Spencer PJ, Nali LHDS, Galisteo AJ. Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200140. [PMID: 33995513 PMCID: PMC8092855 DOI: 10.1590/1678-9199-jvatitd-2020-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. METHODS Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. RESULTS Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. CONCLUSION Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.
Collapse
Affiliation(s)
- Giselle Pacifico Sartori
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | - Andréa da Costa
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute
(IPEN/CNEN/SP), São Paulo, SP, Brazil
| | | | - Andrés Jimenez Galisteo
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
- LIM49, Hospital das Clínicas HCFMUSP, School of Medicine, University
of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
de Lima CSA, Varca JPRO, Nogueira KM, Fazolin GN, de Freitas LF, de Souza EW, Lugão AB, Varca GHC. Semi-Solid Pharmaceutical Formulations for the Delivery of Papain Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12121170. [PMID: 33271859 PMCID: PMC7761214 DOI: 10.3390/pharmaceutics12121170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Papain is a therapeutic enzyme with restricted applications due to associated allergenic reactions. Papain nanoparticles have shown to be safe for biomedical use, although a method for proper drug loading and release remains to be developed. Thus, the objective of this work was to develop and assess the stability of papain nanoparticles in a prototype semi-solid formulation suitable for dermatological or topical administrations. Papain nanoparticles of 7.0 ± 0.1 nm were synthesized and loaded into carboxymethylcellulose- and poly(vinyl alcohol)-based gels. The formulations were then assayed for preliminary stability, enzyme activity, cytotoxicity studies, and characterized according to their microstructures and protein distribution. The formulations were suitable for papain nanoparticle loading and provided a stable environment for the nanoparticles. The enzyme distribution along the gel matrix was homogeneous for all the formulations, and the proteolytic activity was preserved after the gel preparation. Both gels presented a slow release of the papain nanoparticles for four days. Cell viability assays revealed no potential cytotoxicity, and the presence of the nanoparticles did not alter the microstructure of the gel. The developed systems presented a potential for biomedical applications, either as drug delivery systems for papain nanoparticles and/or its complexes.
Collapse
Affiliation(s)
- Caroline S. A. de Lima
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
- Correspondence: (C.S.A.d.L.); (G.H.C.V.)
| | - Justine P. R. O. Varca
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Kamila M. Nogueira
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Gabriela N. Fazolin
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Lucas F. de Freitas
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Eliseu W. de Souza
- Department of Polymers, Technology College (Fatec), São Paulo 03694-000, Brazil;
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
| | - Gustavo. H. C. Varca
- Nuclear and Energy Research Institute, University of São Paulo, São Paulo 05508-000, Brazil; (J.P.R.O.V.); (K.M.N.); (G.N.F.); (L.F.d.F.); (A.B.L.)
- Correspondence: (C.S.A.d.L.); (G.H.C.V.)
| |
Collapse
|
8
|
Fazolin GN, Varca GH, de Freitas LF, Rokita B, Kadlubowski S, Lugão AB. Simultaneous intramolecular crosslinking and sterilization of papain nanoparticles by gamma radiation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Fazolin GN, Varca GH, Kadlubowski S, Sowinski S, Lugão AB. The effects of radiation and experimental conditions over papain nanoparticle formation: Towards a new generation synthesis. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Matusiak M, Kadlubowski S, Rosiak JM. Nanogels synthesized by radiation-induced intramolecular crosslinking of water-soluble polymers. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Scavenging of hydrated electron by HSA or Ligand/HSA adduct: Pulse radiolysis study. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|